Effect of preparation temperature and cycling voltage range on molten salt method prepared SnO2

M.V. Reddy_{a,c,d,*}, Lee Yann Tsyr Andreea_{a,b}, Ang Yen Ling_{a,b}, Justin Ng Choon Hwee_{a,b}, Chong Ai Lin_b, S. Admas_c, K.P. Loh_d, Mkhulu K. Mathee, Kenneth I. Ozoemenae, B.V.R. Chowdaria

a Department of Physics, Solid State Ionics & Advanced Batteries Lab, National University of Singapore, Singapore 117542, Singapore

b NUS High School of Mathematics and Science, 20 Clementi Avenue 1, Singapore 129957, Singapore

c Department of Materials Science & Engineering, National University of Singapore, Singapore 117576, Singapore

d Department of Chemistry, Graphene Research Center, National University of Singapore, Singapore 117542, Singapore

e Energy Materials, Materials Science & Manufacturing, Council for Scientific & Industrial Research (CSIR), Pretoria 0001, South Africa

Abstract

We prepared nano-sized tin (IV) oxide (SnO₂) via molten-salt technique: heating a mixture of tin tetrachloride, lithium nitrate and lithium chloride at 280 °C in air. The powders are characterized by X-ray diffraction and transmission scanning microscopy techniques. The XRD studies showed a structure similar to tetragonal structure. The cyclic voltammetry studies showed characteristic cathodic peak potentials of reduction of Sn⁴⁺ to Sn metal in the first cathodic scan, and alloying–de–alloying reaction of Sn at 0.25 and 0.5 V vs. Li for successive cathodic and anodic scans cycled in the voltage range, 0.005–1.0 V. Galvanostatic cycling studies show that reversible capacities (MSM SnO₂ prepared at 280 °C) of 640, 720, 890 mAh g⁻¹ in the voltage range, 0.005–1.0 V, 0.005–1.3 V and 0.005–1.5 V, respectively at a current rate of 100 mA g⁻¹ .We also discussed the effect of particle size and its electrochemical properties in the voltage range, 0.005–1.0 V.