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Abstract. We demonstrate a versatile method for the measurement of the

orbital angular momentum (OAM) density of an optical field. By performing

a modal decomposition with digital holograms, we reconstruct the full optical

field from a small set of single-point intensity measurements, from which

optical vortices, global OAM and OAM density can be derived. We validate the

method on defined OAM-carrying beams yielding fidelities in the OAM density

measurement of up to 99%, and subsequently apply the technique to unknown

fields from optical fibers.
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1. Introduction

It is well understood that light carries both a linear and an angular momentum [1, 2], and while

the linear momentum per photon is related to the light beam’s wavelength (h̄k), the angular

momentum per photon is an integer multiple of h̄ [3]. The spin angular momentum component

of light’s total angular momentum has for long been associated with the polarization of light,

and it was realized some 20 years ago that the orbital angular momentum (OAM) component

was related to the spatial distribution of light [4]. Specifically, it was realized that the OAM of

a light field could be customized by selecting a field with an azimuthal phase distribution of

exp(ilφ), giving rise to an OAM of lh̄ per photon. Such modes have been routinely generated in

the laboratory and used for a plethora of applications [5, 6], notably in optical tweezers [7–9],

communication studies [10, 11] and at the single-photon level for realizing high-dimensional

entanglement [12–14]. As the latter necessitates the ability to measure multiple OAM states

simultaneously, there has recently been progress toward the detection of OAM modes of light.

There are several options available for the detection of single OAM modes: the ubiquitous

detection scheme involves operating the mode creation optics in reverse, e.g. the so-called

fork holograms, and then projecting into a detectable Gaussian mode [12], a method that has

seen an innovation recently by coupling vortex beams to plasmonic waves for detection [15].

Other solutions have involved diffraction off apertures [16–18], where the signal returned is

indicative of the OAM spectrum, but this also requires analysis of a full two-dimensional (2D)

interference pattern. Methods based on the rotational frequency shift [19–21] also exist but

are rather complex to implement, while recent work on dove prism interferometers suggests

a robustness for sorting odd and even OAM modes [22]. Recently, an efficient mode sorter

[23, 24] has been proposed for the measurement of any OAM state as well as superposition

states, and this has successfully been applied to Laguerre–Gaussian and Bessel OAM-carrying

beams and their superpositions [25, 26]. Such sorters are ideal for detecting the presence of

an OAM mode, even in a multimode field, but not for determining the intermodal phases of

superposition fields. Without this information it is not possible to infer from the measurement

the total OAM of the beam, nor the OAM density of the beam. Previous tools have considered
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very specialized field distributions to measure the OAM density, e.g. Bessel beams, but would

not be well suited to general fields with several modes involved [27].

In this paper, we demonstrate the measurement of the total OAM and OAM density of an

arbitrary light field. We show that by modally decomposing the beam into an appropriate basis

using a digital hologram, one can infer from only a few single-point intensity measurements the

modal weightings and phases of any superposition, from which the OAM properties of the beam

are directly accessible. Such a tool is ideally suited to classical light fields where many photons

exist, and in particular to modal demultiplexing of OAM states in optical communication

applications, either in free space or in fibers, and is considered to be of great significance in

the fields of novel imaging [28] and particle manipulation [29] studies. To this end, we illustrate

the technique on optical fibers after validating it on the measurement of structured light created

with digital holograms.

2. Modal decomposition

Modal decomposition is a powerful tool for the detailed investigation of laser fields. Every

optical field can be conceived as quantized by a number of modes. Such modes may have a

physical presence as in the case of laser resonators [30] or optical fibers [31], which allow the

oscillation or propagation of only discrete field distributions, the so-called modes. Alternatively,

modes may merely be used as a different (mathematical) description of a laser field, allowing a

detailed beam analysis, but without physical relevance of the mode content [32, 33].

Mathematically, any optical field can be expressed in terms of modes, which constitute

orthogonal basis functions:

U(r) =
N

∑

l=1

cl9l(r) (1)

with r = (x, y) the spatial coordinates, cl = ρl ei1φl the complex expansion coefficient with

amplitude ρl and intermodal phase 1φl (with respect to a reference phase), Ψl(r) the lth mode

field, which can be vector valued, and N the number of modes. Beam intensity I (r) and phase

8(r) are easily inferred from the modal amplitudes and phases via

I (r) = |U(r)|2, (2)

8 j(r) = arg
[

U j(r)
]

, (3)

where 8 j is the respective phase of the field component U j . The modal decomposition of a

laser field as described by equation (1) can be performed all-optically using correlation filters

[34, 35]. Such a filter performs a correlation of the incident field with modes that are encoded

into the filter, which allows us to measure the power and relative phase of each individual

mode from an inner product measurement [36, 37]. This ability is based on the specific design

of the transmission function of the holographic device that constitutes the correlation filter.

This transmission function varies with the quantity that needs to be measured. Measuring the

power of a distinct mode requires the complex conjugate of that very mode to be encoded as

transmission function [35]

Tl(r) = 9∗
l (r), (4)

New Journal of Physics 15 (2013) 073025 (http://www.njp.org/)
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Figure 1. Scheme of the inner product measurement employing the correlation

filter, a 2f configuration and a camera. Exemplarily, the analysis of an in-phase

superposition of equally weighted Laguerre–Gaussian modes LG0,4 + LG0,−4

is shown. Displaying transmission functions equal to LG∗
0,3 and LG∗

0,4 yields

correlation signals I0,3 and I0,4 as well as relative modal powers ρ2
0,3 and ρ2

0,4.

With the transmission functions superposed gratings enable signal separation

from undiffracted light.

where ‘∗’ denotes the complex conjugation. Using this transmission function for performing the

inner product measurement yields an intensity on the optical axis in the Fourier plane of the

correlation filter that is ∝ ρ2
l . Hence, from a simple intensity measurement the power of a mode

can be inferred.

Similarly, the unambiguous measurement of the phase difference of a mode to a chosen

reference mode 1φl necessitates encoding a superposition of the mode field with the reference

field into the match filter [35]:

T cos
l (r) = [9∗

0 (r) + 9∗
l (r)]/

√
2,

T sin
l (r) = [9∗

0 (r) + i9∗
l (r)]/

√
2.

(5)

Accordingly, the intermodal phase 1φl can be calculated by [35]

1φl = − arctan

[

2I sin
l − ρ2

l − ρ2
0

2I cos
l − ρ2

l − ρ2
0

]

, (6)

where I sin
l and I cos

l depict the intensity signals from the inner product (phase) measurements.

Physically, such filters can be implemented using a phase-only spatial light modulator

(SLM) [34] or solid amplitude-only filters [35] by employing special coding techniques to

transfer the complex-valued transmission function to a phase-only [38] or an amplitude-only

function [39], respectively.

The procedure of the inner product measurement is shown schematically in figure 1.

Consider e.g. a superposition of two equally weighted Laguerre–Gaussian modes (LG0,4 +

LG0,−4)/
√

2 with azimuthal orders of +4 and −4, but zero radial order, illuminating the

correlation filter. Displaying a transmission function T = LG∗
0,3 (e.g. encoded on an SLM) yields

an intensity minimum at the center of the optical axis in the Fourier plane of the match filter

as realized by a 2f setup and measured with a camera. Hence, the correlation signal I0,3 ∝ ρ2
0,3

is zero. However, if the field of a mode is displayed as a transmission function that is actually
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contained in the beam, e.g. T = LG∗
0,4, a non-zero correlation signal appears, yielding a relative

modal power of ρ2
0,4 = 0.5 (cf figure 1).

The correlation filter can only correlate scalar, i.e. homogeneously polarized, fields. In the

general case of vector beams with spatially varying polarization, a complete description of the

optical field U is provided by the subsequent analysis of the Cartesian field components Ux and

Uy , including the proper phase difference δ between them.

This can be done by determination of the Stokes parameters S0 . . . S3 of the beam, which

necessitates six (assuming completely polarized light) modal decomposition measurements

with a quarter-wave plate and a polarizer in appropriate orientations in front of the hologram

[40–42]:

S0 = |Ux |2 + |Uy|2 = I (0◦) + I (90◦),

S1 = |Ux |2 − |Uy|2 = I (0◦) − I (90◦),

S2 = 2|Ux ||Uy| cos δ = I (45◦) − I (135◦),

S3 = 2|Ux ||Uy| sin δ = Iλ/4(45◦) − Iλ/4(135◦).

(7)

Each field transmitted by a quarter-wave plate and a polarizer is modally decomposed and the

beam intensity is reconstructed following equation (2). Accordingly, I (α) are the reconstructed

intensities behind the polarizer at angular orientations α = 0◦, 45◦, 90◦, 135◦, and Iλ/4(α) denote

two additional measurements with the polarizer placed at α = 45◦, 135◦ behind a preceding

quarter-wave plate. Performing the depicted six modal decompositions, information on the

optical field is complete, including amplitude, phase and polarization distribution.

3. Orbital angular momentum density

As shown in the previous section, modal decomposition using a correlation filter yields

complete information about the optical field. Hence, the Poynting vector distribution P(r) can

be calculated by [32]

P(r) =
1

2
ℜ

[

i

ωǫ0

ǫ−1(r)[∇ × U(r)] × U∗(r)

]

(8)

for vector fields U, and by [43]

P(r) =
ǫ0ω

4

[

i(U∇U ∗ − U ∗∇U ) + 2k|U |2ez

]

(9)

for scalar fields U , where ω is the angular frequency, ǫ is the permittivity, ǫ0 is the permittivity

of vacuum, k = 2π/λ is the wave number and ez is the z-direction. From the Poynting vector,

the OAM density is accessible from [44]

j = r ×
P

c2
. (10)

Hence, the OAM density is measurable for both scalar and vector fields, using the modal

decomposition principle as outlined in section 2. In the following, only the z-component jz,

which is of most relevance for application, is considered and termed ‘OAM density’.

New Journal of Physics 15 (2013) 073025 (http://www.njp.org/)
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Figure 2. Experimental setup for the generation and characterization of

Laguerre–Gaussian beams of different order. HeNe: helium–neon laser; L: lens;

M: mirror: SLM1,2: spatial light modulators; A: aperture; CCD1,2: CCD cameras;

BS: beam splitter.

4. Investigation of Laguerre–Gaussian beams

Laguerre–Gaussian modes are well known to carry OAM, which has made them the

predominant object of investigation in recent years [5, 6]. Hence, they depict a well-suited

example to prove the procedure for determining the OAM density as described in sections 2

and 3.

4.1. Experimental setup

The experimental setup for measuring these defined OAM states consisted of a branch for

beam generation (A) and their subsequent analysis (B), as depicted in figure 2. To generate

the various Laguerre–Gaussian beams, for which we intended to calculate the OAM density, a

helium–neon laser (linearly polarized) was expanded through a telescope and directed onto the

first SLM (reflective, HoloEye, PLUTO-VIS, 1920 × 1080 pixels of pitch 8 µm). By displaying

the respective mode fields on SLM1 using the coding technique as described in [34, 38],

the corresponding beams were generated in the first diffraction order with the same linear

polarization as the seed laser. The beam plane of SLM1 was relay imaged through a beam

splitter (BS) to a near-field CCD camera directly recording the beam intensity, CCD2 (Spiricon,

USB-SP620U), and a second SLM (SLM2, same specifications as SLM1), which was used to

perform the inner product measurement to find the modal powers ρ2
l and intermodal phases

1φl as described in section 2. An aperture in the Fourier plane of SLM1 was used to select

the first diffraction order and block all the remaining ones. The diffracted field from SLM2

was Fourier transformed by a single lens in 2f configuration and the correlation signal was

detected by CCD1 (PGR Scorpion, SCOR-20SOM). The modal decomposition was performed

by displaying the transmission functions of equations (4) and (5) on SLM2 subsequently, and

recording the correlation signal in the Fourier plane at CCD1, which yields the modal powers

ρ2
l and phases 1φl , and hence the optical field (equation (1)), the Poynting vector (equations (8)

and (9)) and the OAM density (equation (10)). Note that displaying the single transmission

functions in sequence, using the flexibility of the SLM, allows a large number of modes to be

tested, hence allowing the characterization of optical fields with high spatial frequencies. The

number of modes is limited for practical reasons by the measurement time and beam stability,

and the weakness of the correlation signal, which needs to be distinguished from noise, in the

New Journal of Physics 15 (2013) 073025 (http://www.njp.org/)
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Figure 3. Characterization of pure Laguerre–Gaussian modes. (a)–(d)

Reconstructed intensity with transverse Poynting vectors, reconstructed phase,

theoretical OAM density and measured OAM density, respectively, of an LG0,1

mode beam. (e)–(h) Same for the LG1,0 beam. OAM densities in N s m−2. Insets

in (a) and (e) depict measured beam intensities, respectively.

case of too many modes. For the following experiments, we decomposed the beam into as many

as 30 modes (three hologram patterns for each mode; see equations (4) and (5)) with a total

measurement time of about 10 s. The temporal effort can be reduced significantly by combining

them in sequence measurements with the well-known angular multiplexing approach.

4.2. Results

To verify the procedure as described in sections 2 and 3, Laguerre–Gaussian beams of known

OAM density (calculable using equations (8) and (10)) were generated, which served as

a reference to the modal decomposition results. Thereby, we decomposed the beam into a

broad mode spectrum each time, pretending to not know which beam we were investigating.

Since all Laguerre–Gaussian sample beams were generated with linear polarization, one

decomposition experiment was enough to determine the OAM density of each beam and the

Stokes measurement according to equation (7) was not necessary.

As a first example, a pure Laguerre–Gaussian mode LG0,1 was generated with SLM1, where

the last-mentioned index indicates the order of the helical phase and the topological charge

[6, 45]. To measure the mode content of this beam, Laguerre–Gaussian mode patterns with p

ranging from 0 to 2 and l ranging from −4 to 4 were displayed subsequently on SLM2 and

the correlation signals were measured. Accordingly, the purity of the LG0,1 mode amounts

to 99.6% of relative mode power. Additionally, the intermodal phases were determined by

displaying previously stated mode patterns in superposition with the LG00 mode (equation (5)),

which served as the reference mode. Using equation (1), the optical field was reconstructed

from the measured modal amplitudes and phases. Figure 3 depicts the results of the beam

characterization: figure 3(a) shows the reconstructed intensity (equation (2)), which reveals

New Journal of Physics 15 (2013) 073025 (http://www.njp.org/)
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the typical donut shape with an intensity minimum in its center indicating phase singularity.

As an inset, the directly measured intensity (near field) reveals very good agreement with the

reconstruction. Regarding the phase reconstruction of the beam (equation (3)) in figure 3(b), the

helical phase structure is clearly visible, proving the presence of phase singularity in the beam

center.

Applying the procedure of section 3 to the beam under investigation, the Poynting vector

and OAM density are derived. In figure 3(a), the transverse components of the Poynting vector

are depicted as an arrow plot on top of the reconstructed intensity, revealing the spiralling nature

for a beam with an azimuthal phase structure [47, 48]. Figures 3(c) and (d) illustrate theoretical

and measured OAM densities for the beam under test. Both densities agree very well (a 2D

correlation coefficient of 99%) and resemble the intensity of the beam, which can be viewed

as a characteristic of Laguerre–Gaussian beams and is a logical consequence of equations (9)

and (10). Hence, similar to the intensity distribution, the OAM density is zero at the position of

the phase singularity and increases to a ring-shaped maximum. Remarkably, the OAM density

is exclusively positive. However, this fact can be easily understood, considering that the z-

component of the OAM density is proportional to the ϕ-component of the Poynting vector, and

hence to the azimuthal index l (here l = +1), provided the beam carries a helical phase [43].

Moreover, it becomes clear that our presented technique is capable of measuring the OAM

density quantitatively. Here, the maximum is found to be 2.04 × 10−22 N s m−2.

The results of figure 3 show that a beam having a helical phase structure has a non-

zero OAM density distribution, which mainly follows the intensity distribution. However,

Laguerre–Gaussian beams with an azimuthal index l = 0 will have a vanishing ϕ-component of

the Poynting vector Pϕ [43], and consequently a vanishing OAM density. To prove this relation,

a Laguerre–Gaussian mode LG1,0 was generated and characterized analogously to the previous

experiment. The corresponding results are depicted in figures 3(e)–(h). Again, reconstructed and

measured beam intensities correlate very well (figure 3(e)). The reconstructed phase distribution

in figure 3(f) reveals the typical circular phase jump of π between the inner and outer beam parts.

Figures 3(g) and (h) picture the measured and calculated OAM densities, which are both zero,

which is reasonable, since the beam does not contain any azimuthal phase component.

Thus far the investigated beams have been single Laguerre–Gaussian modes. However,

even more interesting with regard to the conservation of momentum and topological charge

are mode superpositions [45, 46]. By way of example, we examined a superposition of two

Laguerre–Gaussian beams LG0,1 + LG0,−2 e−iπ/3 with an intermodal phase shift of 1φ = −π/3.

The results are depicted in figure 4. Reconstructed and measured intensities both reveal the

three-lobe structure formed by the interference of the two modes (figure 4(a)). The reconstructed

phase distribution (figure 4(b)) unveils four singularities: one in the beam center of topological

charge l = +1, and three symmetrically surrounding the center with an azimuthal separation of

120◦, each having a charge of l = −1. The positions of the singularities are visible from the

arrow plot of the transverse Poynting vector in figure 4(a) as well, which illustrates that the

Poynting vector spirals around four rotation centers depicting the singularities (marked with

red dots). It is interesting to note that in contrast to the total angular momentum, the number

of singularities and the total topological charge are not conserved when combining two OAM-

carrying beams [45, 46]. The interference creates new features: whereas the separate beams

contain one singularity each, with charges +1 and −2, respectively, the combined beam exhibits

four singularities and the total topological charge is −2. Hence both the number of singularities

and the total charge are not additive.

New Journal of Physics 15 (2013) 073025 (http://www.njp.org/)
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Figure 4. Characterization of a Laguerre–Gaussian beam LG0,1 + LG0,−2 e−iπ/3.

(a) Reconstructed intensity and transverse Poynting vectors (red dots mark the

position of the phase singularities). (b) Reconstructed phase. (c) Theoretical

OAM density. (d) Measured OAM density. OAM densities in N s m−2. The inset

in (a) depicts the measured beam intensity.

Figure 5. Rotation of the beam intensity (a) and of the OAM density (b)

of the superposition LG0,1 + LG0,−2 ei1φ while changing the intermodal phase

difference 1φ = 0 . . . 2π yielding a rotation of 120◦. Rotation in full resolution,

see movie 1 in the supplementary data (available from stacks.iop.org/NJP/15/

073025/mmedia).

Figures 4(c) and (d) depict the measured and calculated OAM densities, which correlate

well by 92% (2D correlation coefficient). Since the azimuthal indices of the involved modes are

of positive and negative sign (l = 1 and −2), the resulting OAM density exhibits positive and

negative values as well. Moreover, the structure of the OAM density resembles the triangular

symmetry of the intensity distribution with maxima in the vicinity of the phase singularities.

A generalization of the previously studied beam is achieved by introducing an arbitrary

phase shift between the two modes LG0,1 + LG0,−2 ei1φ . As the intermodal phase difference is

varied from 0 to 2π by changing the phase pattern on SLM1, the beam rotates by 120◦ as

visible in figure 5, where 1φ was changed in steps of π/4. The full resolution video (steps of

π/20) can be viewed in figure 5 (movie 1). At each step in the intermodal phase, a complete

modal decomposition was performed to measure the OAM density. Accordingly, it can be

seen that the beam intensity rotates in common with the OAM density. Regarding the phase

structure, the three singularities of charge −1 rotate around the singularity in the center with

topological charge +1. Figure 6 depicts the measured position of all four singularities as a

function of intermodal phase difference 1φ yielding a threefold helix around a static central

line, as determined by a tracking routine from the measured phase distributions. Projecting the

singularity movement onto the x–y plane (inset in figure 6), it becomes clear that the three outer

New Journal of Physics 15 (2013) 073025 (http://www.njp.org/)



10

Figure 6. Measured movement of the four phase singularities as a function of

the intermodal phase shift 1φ in the superposition LG0,1 + LG0,−2 ei1φ . The inset

depicts the top view.

Figure 7. Characterization of a superposition of five Laguerre–Gaussian modes

LG0,0 + LG1,1 eiπ/4 + LG2,2 eiπ/3 + LG2,0 eiπ/2 + LG0,2 eiπ . (a) Reconstructed inten-

sity. (b) Reconstructed phase. (c) Theoretical OAM density. (d) Measured OAM

density. OAM densities are in N s m−2. The inset in (a) depicts measured beam

intensity.

singularities do not move on a circle, but more on a curve resembling a contour line stretched

around the three intensity lobes of the beam.

A more complicated example, depicting an arbitrary mode superposition, is shown in

figure 7, where five Laguerre–Gaussian modes have been superposed, LG0,0 + LG1,1 eiπ/4 +

LG2,2 eiπ/3 + LG2,0 eiπ/2 + LG0,2 eiπ , each with a distinct intermodal phase, yielding an

asymmetric beam profile, and a phase distribution that contains four singularities. Again, it

can be seen that the total topological charge is not additive, as is the number of singularities.

The uncertainty of the OAM measurements can be inferred from the uncertainty in the

measurement of modal amplitudes and phases, which are known from statistical evaluations to

amount to 1% of total power and to 5◦ in terms of the modal phase. Accordingly, the OAM error

depends on the number of modes and on the mode fields involved in the superposition, yielding

a value for the above cases of about 0.2 × 10−22 N s m−2, averaged over the beam diameter.

New Journal of Physics 15 (2013) 073025 (http://www.njp.org/)
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Figure 8. Experimental setup for measuring the OAM density of a fiber beam.

HeNe: helium–neon laser; L: lens; MCF: multicore fiber; QWP: quarter-wave

plate; P: polarizer; BS: beam splitter; CGH: computer-generated hologram;

CCD1,2: CCD cameras. Insets depict the modes and a cross section of the fiber.

5. Investigation of fiber beams

The comparison of the measured OAM densities with those expected for the artificially

generated reference beams proved that the presented technique yields accurate results regarding

shape and absolute scale. Hence, the method can be applied to unknown laser beams, for which

no reference can be provided. Suitable examples are beams emerging from optical multimode

fibers, which have been studied to generate controllable OAM states [49, 50]. Instead of

programming modes and mode superpositions on a separate SLM for beam generation, the

optical field is here created naturally by multimode interference inside the fiber, generally

yielding complex phase and polarization properties.

5.1. Experimental setup

Correspondingly, the experimental setup was changed according to figure 8. As a beam source, a

multimode fiber with 19 hexagonally arranged cores embedded in a common cladding material

(single core diameter 2.2 µm, core-to-core distance 5.5 µm, single core numerical aperture

NA = 0.108) and guiding ten transverse modes was seeded with the fundamental Gaussian

beam of a helium–neon laser (λ = 633 nm). The modes of the fiber and a microscope image

of its end facet under white light illumination are illustrated in figure 8 as insets. The fiber

output was relay imaged (4f imaged) to the correlation filter, which in this experiment was a

static binary amplitude-only computer-generated hologram (CGH), as used by Kaiser et al [35],

and necessitating a different coding technique [39]. Since the fiber under test generally creates

fields with spatially varying polarization, we measured all the Stokes parameters of the beam as

described by equation (7), employing a quarter-wave plate and a polarizer, yielding complete

information on the vector field including amplitude, phases and polarization. As in the previous

experiments with Laguerre–Gaussian beams, a 2f setup behind the CGH (previously SLM)

enabled the correlation measurement with a CCD camera (CCD1). Again, a beam splitter in

front of the hologram and a second CCD camera (CCD2) provided direct recording of the beam

intensity.

5.2. Results

Figure 9 illustrates an example of a fiber beam consisting of 10% LP0,1, 4% LP1,1,e, 2%

LP1,1,o, 39% LP2,1,e, 31% LP2,1,o, 5% LP0,2, 4% LP3,1,e and 2% LP3,1,o. As outlined by

New Journal of Physics 15 (2013) 073025 (http://www.njp.org/)
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Figure 9. Characterization of a fiber beam consisting of a superposition of

ten modes of a multicore fiber (10% LP01, 4% LP11e, 2% LP11o, 39% LP21e,

31% LP21o, 5% LP02, 4% LP31, 2% LP31). (a) Measured near-field intensity.

(b) Reconstructed phase structure of the x-component of the field. (c) Recon-

structed phase structure of the y-component of the field. (d) Measured OAM

density. The inset in (a) depicts measured beam intensity.

figure 9(a), the reconstructed beam intensity reveals good agreement with the direct intensity

measurement. Note that both intensities represent the sum of intensities recorded in the x-

and y-polarization directions as selected with the polarizer (cf figure 8). Figures 9(b) and (c)

depict the reconstructed phase distributions in the x- and y-directions, containing multiple phase

singularities and phase steps. The reconstructed OAM density, illustrated in figure 9(d), reveals

many hot spots that are located at the positions of the single cores. This is reasonable, since the

OAM density is proportional to the gradients of the field in the x- and y-directions [45], which

are largest at the interfaces of the cores with the common fiber cladding. Hence, dipole-like

OAM structures appear at the core positions. Apparently, the OAM density is much larger than

in the previous cases, of the order of 1 × 10−11 N s m−2. This is a logical consequence of the

much smaller dimension of the beam, which is roughly extended to within a diameter of 25 µm.

6. Summary and conclusion

In summary, we have demonstrated a novel measurement system to quantify the OAM density

of light. The technique is based on correlation filters to perform a modal decomposition

with subsequent reconstruction of the optical field, which allows one to derive the Poynting

vector and the OAM density using a simple relationship. The method stands out due to its

easy setup, necessitating only an appropriate hologram, a lens and a single point detector.

Laguerre–Gaussian beams of different orders were generated with an SLM and served as

reference beams of known OAM density to validate the technique. Both measured and

theoretically expected OAM densities are in very good agreement, hence proving the accuracy

of the technique, yielding measurement fidelities of up to 99%. As an application case, the

method was used to characterize a vector beam emerging from a multimode optical fiber. In

consequence, the correlation filter method is easily applicable to scalar and vector fields and

allows the characterization of the OAM density in an easy and fast manner. Accordingly, the

presented technique depicts a versatile tool in many OAM-based applications, such as optical

communication and particle manipulation.
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