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We present the reconstruction of a laser beamwavefront from itsmode spectrum and investigate in detail
the impact of distinct aberrations on the mode composition. The measurement principle is presented on a
Gaussian beam that is intentionally distorted by displaying defined aberrations on a spatial light
modulator. The comparison of reconstructed and programmed wavefront aberrations yields excellent
agreement, proving the high measurement fidelity. © 2013 Optical Society of America
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1. Introduction

Naturally, every laser beam gathers a certain amount
of aberration during its propagation. Possible reasons
are imperfect optical elements or the inhomogeneity
of the propagation medium itself, usually the atmos-
phere. Corresponding studies of inhomogeneous and
turbulent media [1,2] have been considered signifi-
cant in application fields such as terrestrial observa-
tion [3] and communication [4], but also in fields like
microscopy [5] and ophthalmology [6], which require
high-resolution imaging and rely on precise wavefront
estimation. Bymeans of adaptive optics the measured
wavefronts are corrected, which yields an enhanced
beam quality and therefore, e.g., an improved spatial
resolution. Such closed-loop approaches have not
only been reported in astronomy and microscopy
but also found application in micromanipulation [7].
In terms of free space communication, beams carrying
orbital angular momentum and the impact of
atmospheric-turbulence-induced aberrations on their

propagation are of particular interest [8,9]. Different
wavefront measurement techniques exist, including
ray tracing [10], pyramid sensors [11], interferometric
approaches [12,13], the widely used Shack–Hartmann
sensor [14], nonlinear approaches for high-intensity
light pulses [15], the application of multiplexed holo-
grams to detect a set of selected Zernike modes [16],
and the use of correlation filters [17].

In this work we demonstrate the reconstruction of
a laser beam wavefront from its mode spectrum and
systematically investigate the influence of defined
wavefront distortions on the modal composition of
the beam. As will be shown, each aberration yields
a characteristic distortion of the mode spectrum
similar to a fingerprint. The modal decomposition
of the beam is performed using correlation filters,
which enable a wavefront reconstruction that stands
out from other techniques due to its high spatial
resolution, increased measurement area, and large
measureable wavefront slope, while maintaining the
capability for real-time measurements. As a vivid
example we distorted a Gaussian beam with various
Zernike aberrations that are programmed on a spatial
lightmodulator (SLM) successively and demonstrated
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the impact on the mode spectrum. The excellent
agreement of measured and programmed aberra-
tions indicates the reliability and high fidelity with
which the wavefront can be reconstructed and
emphasizes the relevance of the technique as a
diagnostic tool in the fields of microscopy, micro-
manipulation, and free space communication.

The paper is organized as follows. Section 2 out-
lines the basics of the modal decomposition and its
application to reconstruction of the wavefront,
Section 3 demonstrates the impact of aberrations on
the modal power spectrum, and Sections 4 and 5
present the experimental setup and the measure-
ment results, followed by the conclusion in Section 6.

2. Wavefront Reconstruction by Modal Decomposition

Every monochromatic laser field U exp�iωt� with an-
gular frequency ω can be considered as the superpo-
sition of a number of transverse modes. Consider, for
example, the decomposition into a set of Laguerre–
Gaussian modes of free space (time dependence
omitted):

U�r� �
X
p;l

ρp;lup;l�r� exp�iϕp;l�; (1)

where r � �x; y� denotes the spatial coordinates, up;l
is the Laguerre–Gaussian mode with radial index p
and azimuthal index l at its waist position (z � 0)
[18], and ρ2p;l and ϕp;l are its power and phase (rela-
tive to a reference mode), respectively. Finding the
modal powers ρp;l and phases ϕp;l from a given set
of orthogonal modes is the purpose of the modal de-
composition approach [19]. The knowledge about
the above parameters enables one to recover the
optical field in amplitude and phase, and finally to
reconstruct the wavefront W by minimizing the
integral [20]:

ZZ
jPj

���� Pt

jPj − ∇tW

����2dA → min; (2)

where t marks transverse components, ∇t � �∂x; ∂y�0,
dA is the surface element, and P is the Poynting
vector distribution of the beam. P is directly related
to the optical field U [17]:

P�r� � ε0ω

4
�i�U∇tU� −U�∇tU� � 2kjUj2ez�; (3)

where ω is the angular frequency, ε is the permittiv-
ity, ε0 is the permittivity of vacuum, k � 2π∕λ is the
wave number, and ez is the unit vector in z direction.

The reconstruction of the optical field (and conse-
quently of the Poynting vector distribution and wave-
front) is done using the correlation filter technique
[19], the core details of which we outline here for
the benefit of the reader. Accordingly, a computer-
generated hologram that acts as a matched filter
correlates the laser beam under investigation with
a given mode set. The result of such an inner product

measurement then appears as an intensity value
I � ∬ T��r�U�r�d2r on the optical axis in the Fourier
plane of the hologram, where T denotes the trans-
mission function of the hologram, and “�”marks com-
plex conjugation [21]. The hologram transmission
function necessary to measure the power content
of one mode takes the form

Tp;l�r� � u�
p;l�r�: (4)

Using this transmission function, the correlation sig-
nal behind the hologram appears to be Iρp;l ∝ ρ2p;l,
where the modal powers ρ2p;l are normalized to unit
power by

P
p;lρ

2
p;l � 1. To also measure the relative

phases of the modes up;l to a chosen reference field
uref , the transmission function is changed to contain
a phase-dependent superposition of mode and refer-
ence field:

Tcos
p;l �r� � �u�

ref �r� � u�
p;l�r��∕

���
2

p
;

Tsin
p;l �r� � �u�

ref �r� � iu�
p;l�r��∕

���
2

p
: (5)

Using such transmission functions, the far-field
intensity on the optical axis becomes dependent on
the relative phase ϕp;l to the reference field with
power ρ2ref :

Isinp;l ∝ ρ2ref � ρ2p;l � 2ρrefρp;l sin ϕp;l;

Icosp;l ∝ ρ2ref � ρ2p;l � 2ρrefρp;l cos ϕp;l: (6)

Accordingly, the relative phase ϕp;l can be cal-
culated by

ϕp;l � − arctan

"
2Isinp;l − Iρp;l − Iρref
2Icosp;l − Iρp;l − Iρref

#
; (7)

where Isinp;l and Icosp;l depict the intensity signals from
the inner product (phase) measurements. Thereby,
the reference field in Eq. (5) is arbitrary but should
be a mode that is contained in the beam with a rea-
sonable amount of power (>5% of total power) to
yield meaningful results for the phase measurement.
Physically, correlation filters can be implemented
using phase-only SLMs [22] or solid amplitude-only
filters [19] by employing special coding techniques to
transfer the complex-valued transmission function to
a phase-only [23] or an amplitude-only function [24],
respectively. When all the modal powers and phases
are measured, the optical field, Ponyting vector,
and wavefront can be reconstructed according to
Eqs. (1)–(3).

3. Distortion of the Modal Spectrum

For the aberration we consider a phase distortion to
the initial field Ui of the kind

U � Ui exp�iπbZnm�; (8)
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where Znm is the Zernike polynomial of radial order n
and azimuthal order m [25], and b is the aberration
strength in the form of a simple weighting factor.
Since Laguerre–Gaussian modes represent a com-
plete set in free space and follow the same azimuthal
symmetry as the Zernike polynomials, they are an
appropriate choice as basis set for decomposition.
Consider, for example, the distortion of a fundamen-
tal Gaussian beam by the aberration of defocus and
its decomposition into the set of Laguerre–Gaussian
modes, as seen in Fig. 1. The decomposition of the
unaberrated beam [Figs. 1(a) and 1(b), no wavefront
curvature added] yields a simple mode spectrum
with 100% fundamental mode content. However,
when such a beam [Fig. 1(d)] is aberrated with defo-
cus [Fig. 1(e)], its modal spectrum becomes distorted,
whichmeans that modes other than the fundamental
one appear, yielding a fundamental mode power
ρ20;0 < 1 [Fig. 1(f)]. Thus, each aberration not only dis-
torts the wavefront or far-field intensity, but it also
influences the modal power spectrum ρ2p;l and phase
spectrum ϕp;l, which means that additional modes
appear that solely result from the aberration. More-
over, the fundamental mode content ρ20;0 ≤ 1 can be
considered here as a quantity very similar to the
Strehl ratio [25], which is often used in optical turbu-
lence and adaptive optics, and which also simplifies
the impact of aberrations into one scalar number by
comparing the perturbed and unperturbed on-axis
intensity values.

Figure 2 depicts the expected fundamental mode
response as a function of the strength b of different
Zernike aberrations. As expected, with increasing
aberration strength, the relative fundamental mode
content decreases from 1 to 0, but with different
slopes for the specific aberrations. Apparently, coma
(Z31) and spherical aberration of third order (Z40)
yield the fastest drop in fundamental mode content,
whereas increasing the strength of trefoil (Z33) only
leads to a gradual decrease. The reason for this
dependence is simply found in the different shapes
of the aberrations. While all Zernike aberrations
are normalized to unit power within a defined radius
(which was chosen to be the same for all aberrations
in Fig. 2), the overlap with a fundamental Gaussian

mode differs, yielding a stronger impact of those
aberrations that have a greater overlap.

4. Experimental Setup

To measure the influence of defined Zernike aberra-
tions on a laser beam, we used an experimental setup
as outlined in Fig. 3. The beam of a helium–neon
laser (10 mW power, 633 nm wavelength) was
expanded and collimated [ f �L1� � 15 mm, f �L2� �
125 mm] to approximate a plane wave when illumi-
nating the first SLM (SLM1, Pluto Holoeye, 1920 ×
1080 pixels, 8 μm pixel pitch, reflective). Using
complex amplitude modulation [23], we generated
a fundamental Gaussian beam (waist radius
w0 � 0.25 mm) and superimposed it with the aberra-
tions stated in Fig. 2. Therefore, the definition radius
of the Zernike aberrations (Zernike radius) was
chosen to be 2.5 ×w0 to avoid deterioration of the
beam intensity in the near field, which potentially
occurs due to the limited definition region of the
Zernike polynomials. The aberration strengths were
chosen such that all aberrations yielded a compa-
rable impact on the beam, e.g., in terms of decrease
in fundamental mode content. The plane of SLM1
was relay imaged [4f -imaged, f �L3� � f �L4� �
500 mm] onto a second SLM (SLM2, same specifica-
tions as SLM1), which was used to perform the
modal decomposition of the aberrated beam. An
aperture placed in the Fourier plane of SLM1 acted
as a filter to separate the desired (first diffraction
order) from the undiffracted light (zeroth diffraction
order). A camera was placed in the Fourier plane
[f �L5� � 300 mm] of SLM2, enabling us to detect

Fig. 1. Decomposition (a)–(c) of an ideal fundamental Gaussian
beam and (d)–(f) of the same beam aberrated with defocus. NF,
near field intensity; W, wavefront; ρ2, modal power spectrum.

Fig. 2. Simulated relative fundamental mode content ρ20;0 as a
function of aberration strength b. Insets depict the shapes of
the corresponding aberrations.

Fig. 3. Schematic of the experimental setup to modally decom-
pose differently aberrated Gaussian beams. He–Ne, helium–neon
laser; L1–5, lenses; M, mirror; SLM1;2, spatial light modulator
(actually reflective); A, aperture; CCD, camera.
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the modal power and phase spectrum by recording
the intensities Iρp;l, I

sin
p;l , and Icosp;l when displaying the

transmission functions Tρ
p;l, T

sin
p;l , and Tcos

p;l . Since the
SLM can be dynamically addressed, we displayed all
of the transmission functions sequentially, one after
the another. Accordingly, the temporal measurement
effort was in the range of a few seconds but can be
increased to real time by using multiplexed holo-
grams [19]. For the reference field we chose the
fundamental mode uref � u0;0, since it is expected
to keep the highest mode content in the range of
investigated aberration strengths.

5. Results

To test the wavefront reconstruction procedure de-
scribed in Section 2, we generated a fundamental
Gaussian beam, distorted it with Zernike aberra-
tions of different orders, and decomposed the aber-
rated beams into the set of Laguerre–Gaussian
modes. Therefore, every aberration leads to a charac-
teristic distortion of the mode spectrum. As an exam-
ple, Fig. 4 depicts the decomposition results for an
aberration of tilt. The chosen aberration strength
of b � 1 yields a drop in fundamental mode power
to 55%, as shown in Fig. 4(a), and consequently a
dispersion of the power to other modes, especially
to modes of neighboring l values: up;�1 (18%). Small
mode power is also dispersed among modes of higher
l value (jlj > 2) and higher p value (p > 0) with
powers <3%. Whereas the shape of the mode spec-
trum is characteristic for the kind of aberration,
the exact mode power levels depend on the chosen
aberration strength, e.g., the fundamental mode con-
tent strongly decreases with increasing strength
(Fig. 2). The wavefront distortion affects not only
the modal power spectrum but also the spectrum
of relative phases as shown in Fig. 4(b). The exact
phase shift between the different higher order
modes is necessary to reconstruct the wavefront

aberration correctly. Figures 4(c) and 4(d) show the
theoretically expected and measured (reconstructed)
wavefront in units of 10 μm. It can be seen that both
wavefronts are in excellent agreement regarding
shape and absolute scale. A more quantitative com-
parison is achieved using the two-dimensional cross-
correlation coefficient [26], which ranges between 0
(no correlation) and 1 (complete correlation), yielding
a value of 0.99 for tilt. The spatial resolution of the
reconstructed wavefront is 200 × 200 pixels in the
depicted range. However, this value can be increased
significantly and is only dependent on the resolution
with which the modes for decomposition can be
calculated.

A second example is given in Fig. 5. Here, astigma-
tism (Z22) was induced by SLM1 with an aberration
strength of b � 3. From Fig. 5(a) it is evident that
this yields a degradation in the fundamental mode
content to 58%, which is similar to the previous case
of tilt. Due to the normalization of the Zernike aber-
rations to unit power within the Zernike radius and
the subsequently smaller overlap with the Gaussian,
a higher aberration strength is needed in comparison
to tilt to yield a similar effect on the mode spectrum.
As is visible in Fig. 5(a), the spectrum is similar to
the tilt spectrum, but since the azimuthal index of
astigmatism m is 2, and only modes of jlj � N ×m
occur (N � 0; 1; 2;…, p ≥ 0, similar to higher har-
monics), there are gaps in the spectrum, where jlj is
odd. The exclusive response of modes with jlj � N ×m
is reasonable, since both Laguerre–Gaussian modes
and Zernike polynomials obey the same azimuthal
dependence. Including the phase spectrum [Fig. 5(b)],
the wavefront was reconstructed [Fig. 5(d)], agreeing
well with the theoretically expected wavefront (corre-
lation 0.99) depicted in Fig. 5(c). From the previous
examples it becomes evident that only multiples of
the aberration’s azimuthal index appear in the mode

Fig. 4. Modal decomposition of a Gaussian beam aberrated
with tilt. (a) Modal power spectrum, (b) modal phase spectrum,
(c) theoretically expected wavefront, and (d) measured wavefront.

Fig. 5. Modal decomposition of a Gaussian beam aberrated
with astigmatism. (a) Modal power spectrum, (b) modal phase
spectrum, (c) theoretically expected wavefront, and (d) measured
wavefront.

20 July 2013 / Vol. 52, No. 21 / APPLIED OPTICS 5315



spectra as l values of the modes. Accordingly, for
radially symmetric aberrations where the azimuthal
indexm � 0, only modes of up;0 are expected. Figure 6
depicts the results for the two aberrations of defocus
(Z20) and spherical aberration of the third order (Z40),
where we chose aberration strengths of b � 2 and
b � 1, respectively, to yield a similar impact on the
mode spectrum. For both cases, the modal spectra
[Figs. 6(a) and 6(c)] reveal a decay toward higher
order modes with p ≥ 0 and l � 0. The measured
wavefronts are shown in Figs. 6(b) and 6(d), revealing
the typical shape for these kinds of aberrations.

The comparison of all measured wavefront aberra-
tions with the theoretically expected deformations
are summarized in Table 1, employing the two-
dimensional correlation coefficient, revealing very
good agreement for all investigated aberrations.
The impact of each individual aberration can be
observed from the different aberration strengths b
necessary to yield a reduction in fundamental mode
content to a percentage value ρ20;0.

As an additional, independent proof that the SLM
produced the aberrations as intended, we placed the
camera in the Fourier plane (far field) of the first
SLM (Fig. 7), where the aberrations become evident

also in the intensity distribution. Two examples are
shown in Fig. 8, depicting the impact of tilt and tre-
foil on the far-field intensity. As expected, the funda-
mental Gaussian beam is merely shifted in the case
of tilt, as indicated by a black cross (optical axis) in
Figs. 8(a) and 8(b), depicting the theoretical andmea-
sured far field. When programming trefoil on SLM1,
the far-field intensity is strongly distorted, taking on
a triangular shape. Again, the theoretical [Fig. 8(c)]
and measured [Fig. 8(d)] far fields are in excellent
agreement.

6. Conclusion

In conclusion, we presented a detailed investigation
of the impact of different wavefront aberrations
(Zernike aberrations) on the mode spectrum of a
laser beam. We could show that each aberration
leads to a very characteristic distortion of the modal
power and phase spectrum, similar to a fingerprint.
The knowledge about the mode powers and relative
phases was used to reconstruct the wavefront of the
beam quickly, in high spatial resolution, and with
measurement fidelities reaching 99%. Accordingly,
we consider our approach to be a versatile tool
for wavefront diagnostics in numerous applications,
such as microscopy, micromanipulation, and free
space communication.

Fig. 6. Modal decomposition of a Gaussian beam aberrated with
(a), (b) defocus and (c), (d) third order spherical. (a) Modal power
spectrum, (b) reconstructed wavefront, (c) modal power spectrum,
and (d) reconstructed wavefront.

Fig. 7. Experimental setup for measuring the far field of differ-
ently aberrated Gaussian beams. He–Ne, helium–neon laser; L1–3,
lenses; M, mirror; SLM1, spatial light modulator; CCD, camera.

Fig. 8. Theoretical and measured far fields FFth and FFm of a
fundamental Gaussian beam aberrated with (a), (b) tilt and (c),
(d) trefoil.

Table 1. Summary of Results, Stating Aberration Strength b,
Corresponding Relative Fundamental Mode Power ρ20;0, and the
Correlation Coefficient between the Theoretically Expected and

Measured Wavefronts (Zernike Polynomials Znm )

n (radial) m (azimuthal) b ρ20;0 (%) C�Wth;Wm�
1 1 1 55.4 0.99
2 0 2 42.1 0.99
2 2 3 58.4 0.99
3 1 0.8 51.0 0.87
3 3 12 59.4 0.92
4 0 1 47.7 0.99
4 2 1.5 54.8 0.97
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