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Abstract

This paper details the evaluation and enhancement of the vertex-centred

finite volume method for the purpose of modelling linear elastic structures

undergoing bending. A matrix-free edge-based finite volume procedure is

discussed and compared with the traditional isoparametric finite element

method via application to a number of test-cases. It is demonstrated that the

standard finite volume approach exhibits similar disadvantages to the linear

Q4 finite element formulation when modelling bending. An enhanced finite

volume approach is proposed to circumvent this and a rigorous error analysis

conducted. It is demonstrated that the developed finite volume method is

superior to both standard finite volume and Q4 finite element methods, and

provides a practical alternative to the analysis of bending-dominated solid

mechanics problems.
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1. Introduction

Since the 1960s, the finite element method has mainly been used for

modelling the mechanics of solids [1]. The finite volume method [2] has tra-

ditionally been more dominant in the field of fluid mechanics but has become

increasingly popular for use in solid mechanics. Both schemes can be consid-

ered as methods of weighted residuals where they differ in the choice of the

weighting function. The finite element Galerkin method uses shape functions

as the weighting functions, while the finite volume method results by choos-

ing the weighting function as unity. Finite element methods are typically

formulated in a total Lagrangian or undeformed configuration. In contrast,

finite volume methods are traditionally based on an Eulerian or updated

mesh configuration, which is not optimal for solid mechanics problems.

Many studies have been conducted over the last two decades on the appli-

cation of the finite volume method to linear elastic structures [3, 4, 5, 6, 7, 8].

It has also been extended to incompressible material deformation analy-

sis [9, 10] and problems involving material non-linearities [11, 12]. Finite

volume methods incorporating rotational degrees of freedom in addition to

the displacement degrees of freedom have been presented in [10, 13]. A

comparison between the finite volume and finite element method for geomet-

rically non-linear solid mechanics was done by Fallah et al. [14], in which

they conclude that the accuracy of the finite volume method is comparable

to the finite element method on similar meshes. On the other hand, Vaz Jr.

et al. [15] state that the finite element formulation provides higher accuracy
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for displacement solutions.

It is well known that the linear finite element formulation suffers from

sensitivity to element aspect ratio or shear locking when subjected to bend-

ing [16]. Fallah [8] and Wheel [6] present a locking-free finite volume approx-

imation to Mindlin-Reissner plates for both cell-centred and vertex-centred

formulations. However, using solid elements, Wenke and Wheel [13] present

results that do indicate shear locking with the displacement-based vertex-

centred finite volume approach and show that this is overcome by introduc-

ing additional rotational degrees of freedom. In this paper we present a new

displacement-based finite volume method and show that it does not suffer

from locking.

At the commencement of this study, a stable and robust in-house fluid-

flow solver based on the compact edge-based finite volume approach [17, 18],

is available. This study was undertaken to investigate whether the same

edge-based vertex-centred finite volume approach could be easily extended

to accurately model the mechanics of solids. There are distinct advantages

in applying an edge-based approach. It is applicable to arbitrary element

shapes and is computationally efficient. It is also particularly well suited to

distributed memory parallel hardware architectures.

The governing equations together with the constitutive relations are pre-

sented in the next section. A description of the standard vertex-centred finite

volume discretisation procedure, as well as a new hybrid finite volume ap-

proach is given in Section 3. This is followed by a detailed description of the

numerical solution procedure in Section 4. In Section 5, we apply the two

finite volume approaches to a number of test-cases and compare the results
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with those from the standard Galerkin finite element method. An in-depth

error analysis of the finite volume methods is shown in Section 6 and finally

some conclusions are made.

2. Governing Equations

Consider a homogeneous isotropic elastic solid. The governing equations

for the solid undergoing linear elastic motion, in the absence of any body

forces, may be written in strong form as follows:

∂σij

∂xj

= ρai, (1)

where σij is the stress tensor, ρ is the density and ai is the acceleration.

2.1. Constitutive equations

In order to solve the elastic boundary value problem, Equation (1), a

relationship between stress and displacement is required. This relation is ob-

tained indirectly through the strain. Assuming a linear constitutive relation,

the stress tensor, σij , is related to the strain tensor, εij, by

σij = Cijklεij , (2)

where C is the fourth order elasticity tensor. For convenience, we can

represent the stress and strain tensors as vectors and the fourth order elas-

ticity tensor as a matrix. Furthermore, assuming an isotropic, hyperelastic

St-Venant-Kirchoff material model, Equation (2) can be rewritten as
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(3)

where b is a constant defined as

b =
E(1 − ν)

(1 + ν)(1 − 2ν)
(4)

and E is the Young’s modulus and ν is the Poisson’s ratio of the material.

Considering only two-dimensional cases, two possibilities exist to simplify

the analysis. These are conditions of plane stress and plane strain. The plane

stress condition exists when the body is very thin, i.e. in the limit where

the third dimension approaches zero. Under such conditions Equation (3)

simplifies to:
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. (5)

The plane strain condition exists when the body is very thick, i.e. in

the limit where the third dimension approaches infinity. Equation (3) now

becomes:
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. (6)

Finally, to close the governing equations, the relationship between strain

and the displacement field, ui, is given by

εij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

, (7)

where the nomenclature is as previously defined.

2.2. Boundary conditions

For a unique solution to the governing equations, appropriate boundary

conditions are to be prescribed. The boundary of the solid domain is split

into two parts: ∂Vu where the displacement up
i is prescribed and ∂Vt where

the surface traction τp
i is prescribed:

ui = up
i on ∂Vu (8)

σijnj = τp
i on ∂Vt (9)

where nj is the outward pointing unit normal vector.

3. Spatial Discretisation

For the purpose of this work we use a vertex-centred edge-based finite

volume method. In this method, control volumes are constructed by joining

edge centres and element centres to form a dual mesh and the unknown
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variables are stored at nodes or vertices of the original mesh. This approach

utilises edge-based data-structures and is preferred for this work due to its

increased efficiency compared to element-based approaches [19, 20].

Consider the governing equation, Equation (1). Assuming the body

forces, fi, to be negligible, expressing the acceleration, ai, as the rate of

change of velocity, vi, casting the equation into integral or weak form by

integrating over an arbitrary spatial subdomain, Vm, and applying the diver-

gence theorem of Gauss gives

ρ
d

dt

∫

Vm

vidV =

∮

Am

σij · njdA, (10)

where Am is the surface enclosing Vm and nj = (n1, n2) is the outward

pointing unit-vector normal to A.

In the standard edge-based vertex-centred finite volume method, the de-

pendent variables are stored at nodes around which control volumes are

constructed. In 2D, these control volumes are constructed by joining the

midpoints of edges with element centroids and in such a way that only one

node lies within each control volume. The set of surfaces forming the control

volumes are referred to as a dual-mesh. This is shown schematically for a

node m in Figure 1 [17]. In the figure, Vm is the control volume associated

with node m. Its bounding surface Am is composed of a number of surfaces

which are defined based on their associated edges. For example, Amn is the

surface segment intersecting the edge Υmn which connects nodes m and n.

The surface integrals in Equation (10) are now calculated in an edge-wise

manner, i.e. the surface integral is expressed as the sum over all the edges

connecting the control volume:
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Figure 1: Schematic of the construction of a dual-mesh

ρ
d

dt

∫

Vm

vidV =
∑

Υmn∩Vm

σij · Cj:mn +
∑

ΥB
mn∩Vm

σij · Bj:mn (11)

where Cmn is the edge-coefficient for an internal edge Υmn and Bmn the

edge-coefficient for edges that lie on the boundary of the domain, denoted

by AmB
in Figure 1. An internal edge-coefficient is defined as the area of the

bounding surface of a particular edge in a control volume multiplied by the

outward pointing unit-vector normal to its face; therefore

Cj:mn =
∑

Amnt∈Amn

nj:mnt
Amnt

, (12)

where Amnt
is a segment of the surface Amn and nj:mnt

is the unit-vector

normal to Amnt
. For the edge Υmn shown in Figure 1, the edge-coefficient is

comprised of two surfaces t = 1 and t = 2.

Boundary edge-coefficients are computed in a similar way to their internal

edge counterparts:
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Bj:mn =
∑

Amn
Bt ∈AmnB

nj:mn
Bt
Amn

Bt
(13)

where nj:mnBq is the outward pointing unit-vector normal to the boundary

surface segment AmnBq . For the case shown in Figure 1, Υmp is a boundary

edge and AmpB is the domain boundary surface associated with this edge.

Therefore, for a 2D domain as above, t is always equal to 1 in Equation (13).

If following the standard edge-based finite volume method [17], the dis-

placement gradients are evaluated numerically at the nodes or vertices. There-

fore, referring to Figure 1 and following from Gauss’s divergence theorem,

the displacement gradients for node m are given by:

∂ui

∂xj

∣

∣

∣

∣

m

=
1

Vm

∮

Am

ui · njdAm =
1

Vm

∑

Υmn∩Vm

ui:mn · Cj:mn (14)

where ui:mn is the linearly-interpolated displacement at the face:

ui:mn ≈
1

2
(ui:m + ui:n). (15)

In the edge-based procedure, the stresses are calculated at the faces of

the dual-cells using a compact stencil [21, 22]. The displacement gradients

at the faces are therefore given by:

∂ui

∂xj

∣

∣

∣

∣

mn

≈
ui:n − ui:m

|l̄|

lj
|l̄|

+
1

2

(

∂ui

∂xj

∣

∣

∣

∣

m

+
∂ui

∂xj

∣

∣

∣

∣

n

)
∣

∣

∣

∣

normal

(16)

where l̄ is the edge-length, lj is the j component of the vector from node m

to n and |normal indicates the component in the direction normal to the edge.

The strains evaluated using Equation (7) and these displacement gradi-

ents are referred to as node-based strains. Finally, the stresses, required to

evaluate the integrals in Equation (11), are computed using Equation (2).

9



3.1. Proposed hybrid finite volume method

As is clear from the above, with the standard vertex-centred method,

strains (displacement gradients) are evaluated at the nodes or vertices. As

will be shown in this paper, this results in unwanted inaccuracies when mod-

elling beams under bending. An alternative would be to evaluate strains at

element centres, similar to the finite element method, as proposed in [23]. In

this case, displacement gradients for element M in Figure 2 are calculated

as:

∂ui

∂xj

∣

∣

∣

∣

M

=
1

VM

∑

ΥM∩VM

(

ui:MN · nj:MNAMN

)

(17)

where AMN is the surface segment between elements M and N and ui:MN is

the linearly-interpolated displacement of this surface (note that in 2D ui:mn

and ui:MN are identical):

ui:MN ≈
1

2
(ui:m + ui:n). (18)

m

n

M

N

VM

VN

AMN

ΥM

Figure 2: Schematic of a mesh showing the calculation of element-based

gradients
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The displacement gradients at the faces are obtained by averaging their

values between the two connecting elements:

∂ui

∂xj

∣

∣

∣

∣

mn

≈
1

2

(

∂ui

∂xj

∣

∣

∣

∣

M

+
∂ui

∂xj

∣

∣

∣

∣

N

)

. (19)

The strains evaluated using these displacement gradients are referred to

as element-based strains.

On evaluation of the element-based strain finite volume method, it was

found to suffer from odd-even decoupling on structured meshes. This is

because displacements appear only in the combination (ui:m + ui:n). An

improved hybrid finite volume method to remedy the odd-even decoupling

is therefore proposed. This method uses element-based strains for the shear

components, but node-based strains for the normal components. Therefore,

Equation (19) is used for the displacement gradients in εij with i 6= j and

Equation (16) in εij with i = j. Note that this is similar to the selective

integration approach [16] used in the finite element method to eliminate

spurious modes, where different Gauss quadrature integration rules are used

for the shear and normal strain contributions to the stiffness matrix.

4. Solution Procedure

In this work, a matrix-free approach is employed for solving the governing

equations. This is more common in computational fluid dynamics, but is

equally applicable to structural mechanics and the procedure is described

below.

The temporal term in Equation (11) is discretised using a dual-timestepping

solution procedure [24, 25], such that second-order temporal accuracy is

achieved and the equations are solved in a matrix-free iterative process.
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This dual-timestepping procedure is independent of the spatial discreti-

sation strategy employed, viz. finite volume or finite element. For the finite

volume method in this work, Equation (11), the spatial terms are grouped

together and the equation re-written as follows:

ρVm

dvi

dt
= RHSi (20)

where RHS denotes the discretised spatial terms, the subscript m indicates

the node number and i the component in the x1- or x2-direction.

Now, a pseudo-time temporal term is added to the left-hand-side of the

equation and the real-time temporal term added as a source term to the

right-hand-side of the equation. Equation (20) becomes

ρ
dvi

dτ
Vm = RHSi − ρ

dvi

dt
Vm. (21)

Equation (21) is solved explicitly until pseudo-steady state is reached,

i.e. dvi

dτ
= 0. This makes Equations (20) and (21) equivalent and means that

the actual governing equations are solved implicitly but without the need for

matrix inversion.

Since the accuracy of the pseudo-time temporal term is of little conse-

quence, as it becomes zero upon convergence, it is discretised to first-order

accuracy while the real-time temporal term is discretised to second-order

accuracy, giving

ρ
vτ+∆τ

i − vτ
i

∆τ
Vm ≈ RHSi − ρ

3vτ+∆τ
i − 4vn

i + vn−1
i

2∆t
Vm (22)

where ∆t is the real-timestep size and ∆τ the pseudo-timestep size.

To introduce the primary variable, displacement, into the equation, we
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simply note that velocity is the temporal rate of change of displacement, ui,

dui

dt
= vi. (23)

Discretising the displacement equation using the same approach as for

velocity above, gives

uτ+∆τ
i − uτ

i

∆τ
≈ vτ+∆τ

i −
3uτ+∆τ

i − 4un
i + un−1

i

2∆t
. (24)

The solution procedure involves solving for velocity vi and displacement

ui in an iterative fashion. In order to ensure stability for all cases, a second-

order accurate single-step procedure [26] is employed as follows:

1. At timestep n + 1, loop over all nodes i and set uτ
i = un

i and vτ
i = vn

i .

2. Calculate a projected displacement by discretising Equation (23) as

follows:

uτ
i = uτ

i + ∆τ

(

vτ
i −

3uτ
i − 4un

i + un−1
i

2∆t

)

. (25)

3. Using uτ
i , compute the strain field using Equation (7) and the stress

field using Equation (2).

4. Solve for vτ+∆τ
i explicitly using the discretised form of the equilibrium

equations, Equation (22).

5. Update the displacement at τ +∆τ using the latest velocity vτ+∆τ
i and

the acceleration, calculated in step 3, i.e.

uτ+∆τ
i = uτ

i + ∆τ

(

vτ+∆τ
i −

3uτ+∆τ
i − 4un

i + un−1
i

2∆t

)

+

1

2
∆τ 2 1

ρVm

(

RHSi|uτ
i
− ρ

3vτ+∆τ
i − 4vn

i + vn−1
i

2∆t
Vm

)

. (26)

6. The residuals of the equilibrium equation are calculated, Resi = (vτ+∆τ
i −

vτ
i )/∆τ .
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7. The overall residual is calculated from the root mean square of that at

each node, therefore Res =
√

∑n

i (Resi)2/n, where n is the number of

nodes.

8. If the residuals are greater than the convergence tolerance, Steps 2 to

5 are repeated.

9. If the residuals are less than the convergence tolerance, vτ+∆τ
i ≈ vτ

i ,

and the real-timestep is terminated. Therefore, vn+1
i = vτ+∆τ

i and

un+1
i = uτ+∆τ

i . The next timestep is entered by proceeding to Step 1.

The dual-timestepping procedure, described above is explicit in pseudo-

time, which means it is a conditionally stable scheme and a limit exists on

the pseudo-timestep size ∆τ . The procedure is implicit in real-time, thus the

scheme is stable for any choice of the real-timestep size ∆t.

A stable solution process exists if ∆τ < ∆τcr, where ∆τcr is the critical

timestep size [26] defined by the following expression:

∆xi

∆τcr
=

√

K

ρo

+

√

G

ρo

(27)

where ∆xi is the effective mesh spacing in the i-direction and K and G are

the bulk and shear modulus,

K =
E

3(1 − 2ν)
, (28)

G =
E

2(1 + ν)
. (29)

5. Results and Discussions

The accuracy of the proposed finite volume method is evaluated via appli-

cation to 2D test problems with increasing degree of complexity. The results

are compared against linear and higher-order finite element formulations.
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5.1. Uniaxial tension

The first test problem considered was that of a 2D body in uniaxial ten-

sion, as shown in Figure 3. The solid has a Young’s modulus of E = 210

GPa, Poisson’s ratio ν = 0.3 and a length and width of 1 mm. Plane strain

was assumed in the analysis. The mesh consisted of a single cell.

The normal stress, σ11, is plotted against tip displacement, c, in Fig-

ure 4. The finite volume and finite element formulations give exactly the

same results; the σ11 stress increases linearly with an increase in c for small

displacements.

5.2. Simple shear

A 2D body subjected to the deformation

x1 = X1 + cX2 (30)

x2 = X2, (31)

which results in the body undergoing simple shear as shown in Figure 5, was

considered next. The same geometry, mesh and material properties as the

previous case, were used.

Figure 3: Solid body in uniaxial tension
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Figure 4: Comparison of σ11 stress for uniaxial tension

Both the σ11 and σ12 stress components are plotted against tip displace-

ment, c, in Figure 6. Again, all the finite volume and finite element formu-

lations give the correct results; the linear elasticity formulation predicts zero

X1

X2

Figure 5: Solid body in simple shear
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normal stress components and the shear stress, σ12, increases linearly with

an increase in c.

5.3. Pure bending

The next test-case considered was that of a thick beam in pure bending,

Figure 7. The beam was clamped at one end and subjected to a moment at

the free end. The material properties used were a Young’s modulus E = 210

GPa and Poisson’s ratio ν = 0. The length l = 6 mm, height h = 1 mm and

the plane stress assumption were used.

The analytical solution for the tip displacement of the beam can be de-

rived from first principles [27] and is given by

u1 =
Mx1x2

EI
(32)

u2 = −
Mx2

1

2EI
, (33)
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Figure 6: Comparison of σ11 and σ12 stress for simple shear
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where M is the bending-moment at the free end and I is the moment of

inertia of the cross-section of the beam. Due to the known sensitivity of

linear methods to element aspect ratio, meshes with varying aspect ratios

(Figure 8) were used to analyse this problem. The element aspect ratio

is defined as the ratio of the element length to its height. Note that the

number of elements in each mesh were chosen so that by keeping the total

number of elements constant, varying aspect ratios could be obtained. The

free end is treated as a surface traction boundary and the bending-moment,

M , is introduced by applying consistent nodal loads at each node along this

boundary such that global equilibrium is satisfied.

The resulting tip displacements when using the finite volume and linear

four-node (Q4) finite element formulations are shown in Figure 9. For this

type of problem, it is well documented that the Q4 finite element formu-

lation suffers from shear locking [16], i.e. when subjected to pure bending,

Q4 elements produce a shear strain contribution in addition to the expected

bending strain. This parasitic shear strain absorbs strain energy and to com-

pensate the displacements decrease or the structure stiffens or locks. This

shear locking effect is magnified when the aspect ratio (ratio of the element

MX1

X2

Figure 7: Cantilever beam in pure bending
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(a) Aspect ratio = 1 (b) Aspect ratio = 4

(c) Aspect ratio = 9 (d) Aspect ratio = 36

Figure 8: Meshes with varying element aspect ratios used for analysing a beam in pure bending

19



0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

Aspect ratio

D
is

pl
ac

em
en

t

 

 

FEM: Q4
FVM
FEM: Q8
Analytical

Figure 9: Tip displacement as a function of element aspect ratio for a beam

in pure bending

length to its height) is increased, i.e. as the elements become long and thin,

the structure becomes stiffer and results in decreasing displacements. This

effect can clearly be seen in the figure. As shown in Figure 9, the standard

finite volume method also suffers from this ailment. The higher-order eight-

node (Q8) finite element formulation is locking-free and is able to predict the

exact tip displacement for this problem, also shown in Figure 9.

However, using the proposed hybrid finite volume method it can be seen

(Figure 10) that this formulation is completely locking-free, which is a re-

markable quality for a linear method. It is therefore superior to both the stan-

dard vertex-centred finite volume method and the Q4 finite element method.
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Figure 10: Tip displacement as a function of element aspect ratio using the

hybrid finite volume method

5.4. Cantilever beam in bending

The final test-case analysed was that of a thin cantilever beam subjected

to a tip load at the free end, as shown in Figure 11. The beam has a

Young’s modulus of 0.2 MPa and Poisson’s ratio of zero. A combination

of both bending and shear deformation effects are present in the beam. The

analytical solution is given by [27]:

u1 =
P

EI

(

− Lx1x2 + c2x2 +
1

2
x2

1x2 −
1

3
x3

2

)

(34)

u2 =
P

EI

(

1

2
Lx2

1 −
1

6
x3

1

)

(35)

where P is the magnitude of the tip load, L is the length of the beam and

2c is the thickness of the beam.
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A meshing strategy similar to the previous case was employed to investi-

gate aspect ratio sensitivity. The calculated tip displacement resulting from

both finite volume methods, as well as linear four-node (Q4) and higher-order

eight-node (Q8) finite element methods are shown in Figure 12. The locking

effect is again clearly evident with the standard vertex-centred finite volume

and Q4 finite element formulations. In contrast, with the hybrid method,

although the results are initially inaccurate for small element aspect ratios,

the accuracy now improves with an increase in aspect ratio as expected, since

the structure does not stiffen or lock. The Q8 finite element method offers

exact accuracy in all cases.

For the purpose of the numerical investigation, a constant element aspect

ratio of 20/3 was used and meshes of increasing refinedness generated by

successively doubling the number of cells in both directions. A plot of the

logarithm of the error of tip displacements vs. the logarithm of the mesh size

is shown in Figure 13. The negative of the gradient of this curve gives the

rate of convergence: 2.0 for the hybrid formulation and 1.9 for the vertex-

4 cm

0.06 cm

P

Figure 11: Thin cantilever beam subjected to a concentrated tip load
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Figure 12: Tip displacement as a function of element aspect ratio for a thin

cantilever beam subjected to a concentrated tip load

formulation. Though both finite volume methods tend to second-order ac-

curacy, the hybrid formulation achieves this on a considerably coarser mesh

while resulting in significantly smaller errors. To develop a more fundamen-

tal understanding of this, the next section details a formal error analysis of

the two methods.

6. Error Analysis: Beams Subjected to Bending

To understand the difference in accuracy between the vertex-centred and

hybrid finite volume formulations, a detailed analytical error analysis and

comparison were conducted on both formulations and the results evaluated

on modelling beams under bending.

23



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

log(Mesh size)

lo
g(

E
rr

or
)

 

 

FVM: Hybrid
FVM: Nodal

1st order2nd order

Figure 13: Convergence rate of displacements

6.1. Analytical analysis

Consider again the governing equation, Equation (1). Since we are only

interested in the spatial accuracy, we neglect the temporal term and consider

only the steady-state problem, i.e. ai = 0. The equation simplifies to:

∂σij

∂xj

= 0. (36)

Numerical error is introduced by the discretisation, which can be ex-

pressed by:

∂σij

∂xj

=
1

Vm

(

∑

Υmn∩Vm

σij · Cj:mn +
∑

ΥB
mn∩Vm

σij · Bj:mn

)

+ Errori:m. (37)

The exact form of this Errori:m term may be determined analytically. For

a Poisson’s ratio of zero, which was used for the problems in the previous
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section, the stress-strain relationship, Equation (2), simplifies to:

σij = Eεij. (38)

The strain-displacement relationship for the small displacement case is:

εij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

. (39)

Substituting Equation (38) and Equation (39) into Equation (37) gives

an equation expressed in terms of displacements, from which the numerical

errors can be determined.

In this work only structured equi-spaced meshes are considered for the

solid, which further simplifies the analysis. Consider first the vertex-centred

formulation for the case of an internal (non boundary) node (Figure 14(a)).

Substituting the expressions for the displacement gradients, Equation (16),

and expanding each term using Taylor series expansions about the node, the

(a)

(b) (c)

∆x1

∆x2

Figure 14: Schematic of the mesh indicating an internal, boundary and corner

node
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discrete expression for the leading error-term is given by:

Errori = −
E

2

(

1

6

∂4ui

∂x4
i

∆x2
i +

1

12

∂4ui

∂x4
k

∆x2
k +

1

6

∂4uk

∂x3
i ∂xk

∆x2
i +

1

6

∂4uk

∂xi∂x3
k

∆x2
k

)

(40)

with

i = 1; k = 2 for the x1-momentum equation

i = 2; k = 1 for the x2-momentum equation.

Similarly, for a boundary node (Figure 14(b)) the leading-order error

terms for the tangential and normal components of the momentum equations

respectively, are:

Errort = −
E

2

(

1

3

∂3ut

∂x3
n

∆xn + (−1)p 1

2

∂3un

∂xt∂x2
n

∆xn + (−1)p 1

3

∂3un

∂x3
t

∆x2
t

∆xn

+

1

6

∂4ut

∂x4
t

∆x2
t

)

(41)

Errorn = −
E

2

(

(−1)p 1

2

∂3ut

∂xt∂x2
n

∆xn

)

(42)

where subscripts n and t denote coordinates normal and tangential to the

boundary respectively, p = 1 for the top and right boundaries and p = 2 for

the bottom and left boundaries.

Finally, for a corner node (Figure 14(c)) the leading-order error term is:

Errori = −
E

2

(

(−1)p ∂2uk

∂x2
i

∆xi

∆xk

)

(43)

with

i = 1; k = 2 for the x1-momentum equation
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i = 2; k = 1 for the x2-momentum equation

p = 1 for the top-left and bottom-right corners

p = 2 for the top-right and bottom-left corners.

Two important conclusions can be derived from the leading-order error

terms for the standard vertex-centred formulation above. Firstly, the trunca-

tion error is of order O(∆x2
i )+O(∆x2

k) at internal nodes, O(∆xn)+O(
∆x2

t

∆xn
) at

boundary nodes and O( ∆xi

∆xk
) at corner nodes. Therefore, second-order rate of

convergence is expected for internal nodes but only first-order for boundary

nodes and zero-order for corner nodes. This correlates with the results in Fig-

ure 13: the number of boundary and corner nodes compared to internal nodes

decreases as the mesh gets finer and the scheme tends towards a second-order

rate of convergence. In addition, since the coefficients of the leading-order

error terms at internal nodes are fourth-order derivatives, the formulation

will be exact at internal nodes for a displacement field described by a cubic

polynomial. However, at boundary nodes the formulation can only represent

quadratic fields exactly and similarly only linear fields at corner nodes.

Using the same approach for the hybrid formulation, but substituting

Equation (19) for the displacement gradients in εij with i 6= j and Equa-

tion (16) in εij with i = j, the leading-order error term at the internal node

(Figure 14(a)) is:

Errori = −
E

2

(

1

6

∂4ui

∂x4
i

∆x2
i +

1

12

∂4ui

∂x4
k

∆x2
k +

1

6

∂4uk

∂x3
i ∂xk

∆x2
i +

1

6

∂4uk

∂xi∂x3
k

∆x2
k +

1

4

∂4ui

∂x2
i ∂x2

k

∆x2
i

)

(44)

where the nomenclature is as previously defined.
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For a boundary node (Figure 14(b)):

Errort = −
E

2

(

1

3

∂3ut

∂x3
n

∆xn + (−1)p 1

2

∂3un

∂xt∂x2
n

∆xn + (−1)p 1

3

∂3un

∂x3
t

∆x2
t

∆xn

+

(−1)q ∂3ut

∂x2
t ∂xn

∆x2
t

∆xn

+
1

6

∂4ut

∂x4
t

∆x2
t

)

(45)

Errorn = −
E

2

(

(−1)p 1

2

∂3ut

∂xt∂x2
n

∆xn + (−1)q 1

2

∂3un

∂x2
t ∂xn

∆xn

)

(46)

where q = 1 for the left and right boundaries and q = 2 for the bottom and

left boundaries and the rest of the symbols are as previously defined.

Finally, for a corner node (Figure 14(c)) the leading-order error term is:

Errori = −
E

2

(

(−1)p ∂2uk

∂x2
i

∆xi

∆xk

−
∂2ui

∂xi∂xk

∆xi

∆xk

)

. (47)

Again these results correlate with those obtained from the numerical anal-

ysis (Figure 13): as the meshes get finer, the number of internal nodes is

significantly more than boundary and corner nodes and both schemes tend

towards second-order accuracy. The truncation errors of the hybrid formula-

tion are compared with that of the vertex-centred formulation in Table 1. As

can be seen in the table, the truncation errors are of the same order for both

formulations. Furthermore, based on the coefficients of the leading-order

error terms, the hybrid formulation indicates the same order of accuracy

as that of the vertex-centred formulation. However, the hybrid formulation

is composed of error terms that oppose each other, which may explain the

greater accuracy. These will be analysed on specific test-cases next.

6.2. Application to beam in bending

For the pure bending test-case considered in the previous section, the

analytical solution for the tip displacement of the beam is given by Equa-

tions (32) and (33). Since it is a quadratic displacement field, the hybrid
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Vertex-centred FVM Hybrid FVM

Internal node O(∆x
2
i ) / O(∆x

2
k) 2nd-order O(∆x

2
i ) / O(∆x

2
k) 2nd-order

Boundary node O(∆xt) / O(∆x2
n

∆xt
) 1st-order O(∆xt) / O(∆x2

n

∆xt
) 1st-order

Corner node O( ∆xi

∆xk
) zero-order O( ∆xi

∆xk
) zero-order

Table 1: Order of accuracy of the vertex-centred and hybrid formulations

Vertex-centred FVM Hybrid FVM

Internal node 0 0

Boundary node 0 0

Corner node M
2I

∆x1

∆x2
0

Table 2: Errors of vertex-centred and hybrid formulations for a beam in pure

bending

FVM’s superiority over the Q4 FEM and vertex-centred FVM is an interest-

ing finding. As shown above, both the hybrid and vertex-centred formula-

tions should contain error terms at the corners. To understand this difference

in accuracy, the exact errors are obtained by substituting the analytical so-

lution into the expressions for the errors above. These are summarised in

Table 2.

The error expressions in Table 2 confirm the numerical results obtained

for the beam in pure bending test-case (Figure 10). The errors for the hy-

brid formulation cancel out at the corner nodes and the exact solution is

obtained. However, with the vertex-centred formulation the error remains.

Furthermore, this error scales as ∆x1

∆x2

, i.e. the error increases with an increase
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Vertex-centred FVM Hybrid FVM

Internal node 0 0

Boundary node (top/bottom):

x1-momentum (−1)p+1
(

1
3

P
I
∆x2 + 1

6
P
I

∆x2

1

∆x2

)

(−1)p+1
(

1
3

P
I
∆x2 + 1

6
P
I

∆x2

1

∆x2

)

+ (−1)p 1
4

P
I

∆x2

1

∆x2

x2-momentum 0 0

Boundary node (right):

x1-momentum 0 0

x2-momentum − 1
12

P
I
∆x1 + 1

3
P
I

∆x2

2

∆x1
− 1

12
P
I
∆x1 + 1

3
P
I

∆x2

2

∆x1

Corner node (right):

x1-momentum 0 0

x2-momentum (−1)p Pc
I

∆x2

∆x1
(−1)p Pc

I
∆x2

∆x1

Corner node (left):

x1-momentum (−1)p PL
2I

∆x1

∆x2
0

x2-momentum (−1)p Pc
I

∆x2

∆x1
(−1)p Pc

I
∆x2

∆x1

Table 3: Errors of vertex-centred and hybrid formulations for a cantilever beam subjected to a tip load

in aspect ratio. This explains the shear locking effect observed above.

A similar approach can be followed to determine the exact errors of the

two formulations for the cantilever beam subjected to a concentrated tip load

(Figure 11). Substituting the analytical equations (Equations (34) and (35))

into the error expressions yields the leading-order error terms as shown in

Table 3, with the nomenclature as previously defined.

The results in Table 3 show that for this test-case, the difference between

the two formulations is in the x1-momentum equation at the left corners of

the beam. The vertex-centred formulation contains an error term that again
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scales as ∆x1

∆x2

. This, again, explains the sensitivity to aspect ratio or shear

locking effect present with the formulation. The corresponding error term

for the hybrid formulation is zero. These analytical expressions correspond

with the numerical results as shown in Figure 12; the hybrid finite volume

method is not sensitive to large element aspect ratios, which results in more

accurate solutions.

7. Conclusions

An edge-based vertex-centred finite volume method to model linear elastic

structures was investigated and compared with the traditional finite element

method in this work. Both formulations predict the analytical result for a

simple tensile and simple shear test-case. When applied to a beam in bending,

the finite volume formulation exhibits the undesirable characteristic of shear

locking or sensitivity to element aspect ratio, similar to the Q4 finite element

formulation. The structure becomes stiffer as the aspect ratio is increased.

To circumvent the locking deficiency, an enhanced hybrid finite volume

formulation which uses both node- and element-based strains was proposed.

It was shown to not stiffen or lock when the element aspect ratio increases,

which is viewed as a significant improvement. A rigorous error analysis was

presented, showing that both the vertex-centred and hybrid formulations

have rates of convergence that tend towards 2, but the shear locking mech-

anism is overcome by the hybrid approach, which results in a considerably

more accurate formulation.
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