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The Effects of Segmentation-Based Shadow

Removal on Across-Date Settlement Type

Classification of Panchromatic QuickBird Images
F. P. S. Luus, F. van den Bergh, and B. T. J. Maharaj

Abstract—Settlement classifiers for multitemporal satellite im-
age analysis have to overcome numerous difficulties related
to across-date variances in viewing- and illumination geome-
try. Shadow anisotropy is a prominent contributing factor in
classifier inaccuracy, so methods are introduced in this study
to enable minimum-supervision classifier design that mitigate
the effects of shadow profile differences. A segmentation-based
shadow detector is proposed that utilises a panchromatic segment
merging algorithm with parameters that are robust against
dynamic range variances seen in multitemporal imagery. The
proposed shadow detector improves on the settlement classifica-
tion accuracy achieved by fixed threshold detection paired with
shadow removal in the presented case-study. The relationship
between shadow detection accuracy and settlement classification
accuracy is investigated, and it is shown that shadow removal
produces greater settlement accuracy improvements for across-
date experiments specifically.

Index Terms—Image texture analysis, image segmentation,
feature extraction, urban areas, remote sensing.

I. INTRODUCTION

MULTITEMPORAL satellite data includes imagery from

different dates and times such that varying viewing-

and illumination geometry manifests across the images due to

the different acquisition modes and conditions. These differ-

ences must be accounted for when doing minimal-supervision

settlement type classification, as it can severely degrade classi-

fication accuracy. A primary assumption in pattern classifica-

tion is that of relative feature constancy, but in remote sensing

this feature invariance is not guaranteed due to the varying

nature of satellite-borne image acquisition.

The high resolution QuickBird satellite has a 30 degree off-

nadir wide accessible ground swath, which gives it the ability

to acquire images from very different azimuth angles. So

images of the same area may look completely different in some

respects due to the viewing geometry variances. In addition,

the seasonality and time of day during acquisition determine

the sun elevation and solar illumination angle of the landscape.

This may produce bidirectional spectral reflectance effects
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and varying shadow profiles across multitemporal imagery.

Shadowing is an example of one of the illumination effects that

presents with more adverse variance in multitemporal imagery,

but it is that well defined presentation that makes it possible

to do shadow detection and masking for calculated feature

invariance.

There are strong directional variations in urban surface

features [1] potentially resulting in very different viewing-

and illumination geometries in multitemporal imagery. To

accurately model viewing- and illumination geometry, detailed

augmenting information such as digital surface models and

multi-angle imaging data is a requirement. Topographic cor-

rection of surface reflectance was done by Li et al. [2], and

terrain illumination correction was performed by Wu et al. [3]

with shadow and occlusion detection using digital surface

models. The viewing angle effects on spectral response and

discrimination of urban land-cover types were investigated

with multi-angle spectroradiometer data by Huang et al. [4].

Working with such augmenting information is troublesome,

as data availability is a prime concern and a further dimension

of complexity is added to the analysis. The approach outlined

in this research is based on the high resolution digital imagery

product only, without the need for augmenting metadata. The

onus is thus on the efficacy of the artificial intelligence used

to extract accurate information from imagery, regardless of

surface and shading anisotropy.

Pattern classification relies on differential measures charac-

terizing the distinct natures of every class, and texture features

have been found [5] to be an appropriate measure of settlement

type patterns. The texture-based approach will be extended in

this study, with consideration toward illumination geometry

invariance. By removing shadows a major component of

illumination variance can be addressed. Shadow detection is

the initial step in the shadow removal process, and fixed

intensity thresholding is the dominant panchromatic detection

method found in the literature [6].

Most shadow detection techniques are based on the rich

information provided by multispectral imagery, especially the

shadow property of maintained relative color but reduced

intensity (retinex theory) [7]–[9]. A morphological shadow

index, based on the spectral-structural characteristics of shad-

ows, was proposed by Huang and Zhang [10] to automatically

indicate the presence of shadows in high-resolution imagery

through the local extraction of dark structures within a range

of sizes in different scales and directions.

Accurate multispectral shadow detection was performed by
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Makarau et al. [11] in a supervised setting by modeling the

relationship between direct sunlight and scattered light using

a blackbody radiator model. Digital surface models were also

used to perform a line-of-sight analysis with solar position

and elevation to determine the shadow profile [12]. There is

a lack of sophisticated panchromatic-only shadow detectors

in the literature. Effective intensity thresholding was used by

Wei et al. [6] by choosing the lowest intensity class from

unsupervised clustering by histogram-peak selection.

Panchromatic shadow detection is a prime focus in this

work, in order to supplement the thin base of available meth-

ods. Unsupervised panchromatic segmentation with a novel

merging algorithm is proposed in this research, with the aim

of post-segmentation shadow detection through both threshold-

based and supervised object selection. For the novel segmenta-

tion algorithm a simple graph cut method is described, which

requires only panchromatic information and does not require

markers or segment seeds to maintain linear computational

complexity in the number of image pixels [13]. The graph

cut algorithm is bespoke for high-resolution panchromatic

segmentation and it uses the localized dynamic range to

actively reduce the merging threshold in a way that preserves

fine structural detail.

An object-based panchromatic shadow detector is con-

tributed, which does supervised selection of shadow objects

based upon panchromatic-only properties such as the standard

deviation and mean of the object segment intensity. The su-

pervised detector is compared against an unsupervised object-

based shadow detector that classifies segments with intensities

less than a fixed threshold as shadow. The comparison is

performed in terms of both shadow detection accuracy and

settlement classification accuracy with shadow removal.

The second step of shadow removal is to either do shadow

correction or shadow masking. Gamma correction, linear-

correlation correction and histogram matching are popular

shadow correction techniques. Shadow detection using fixed

thresholding on a multispectral object-segmented image was

done by Liu and Yamazaki [14], and linear-correlation shadow

correction was then performed on the shadow areas. Basic

shadow correction using global histogram matching is com-

pared in this study against fine correction that relies on region

growing and localised histogram matching.

Shadow masking removes shadow areas from the texture

feature calculations without the need for image correction. The

settlement classification performance with shadow masking

under fixed thresholding detection and shadow segmentation

is also investigated. Shadow removal with detection based

on fixed intensity thresholding was previously studied by the

authors [15], and the research is extended here to include

segmentation-based methods for improved shadow detection.

The primary objective of the main experiment is to deter-

mine the efficacy of shadow removal in improving across-date

settlement classification accuracy, and to investigate the re-

lationship between shadow detection accuracy and settlement

classification accuracy improvements. The experimental input

includes at least two high-resolution panchromatic images of

the same area without metadata, acquired on different dates

with significant shadow profile differences, and a small set

of ground truth shadow masks for the image of each date.

The ground truth shadow masks cover part of each settlement

type to give a fully representative shadow mask sample to the

supervised segment-based shadow detector.

Shadow detection comparisons are performed between a

fixed threshold pixel-based detector, an unsupervised segment-

based detector, and a supervised segment-based detector. The

shadow removal methods that are compared include shadow

masking, basic shadow correction and fine shadow correction.

For settlement classification two texture features are compared,

namely LBP and GLCM features. The novel contributions of

the study include the panchromatic segmentation-merging al-

gorithm, the unsupervised and supervised segmentation-based

shadow detectors, and the statistical analysis of the relationship

between shadow detection accuracy and settlement classifica-

tion accuracy improvements.

The methodology of the settlement type classification ex-

periment is outlined in Section II, and the shadow detection

algorithms and shadow-mitigation methods are explained in

Sections III and IV, respectively. A description of the study

area is given in Section V and the exact experimental setup is

defined in Section VI. The results of the settlement classifica-

tion and shadow detection accuracy experiments are given and

interpreted in Section VII, and concluding remarks are shared

in Section VIII.

II. METHODOLOGY

The effects of varying shadow profiles on across-date set-

tlement classification accuracy are determined by removing

shadows before calculating the settlement features. The ap-

proach to across-date shadow removal is discussed in the next

two sections, where specifics on the implementation of shadow

detection and removal are given. An outline of the modified

feature calculations is depicted in Figure 1.

shadow 
mask

image

le

Fig. 1. The shadow invariant approach to settlement feature calculation.

Gray-level co-occurrence matrix (GLCM) [16] and local

binary pattern (LBP) [17] texture features have been shown

to be the best performing features for settlement type classifi-

cation [5]. Texture features are sensitive to spurious differences

in viewing- and illumination geometry [18], hence the decision

to investigate the effects of shadow removal with the use of

GLCM and LBP features in this work.

To characterise the effect of differing shadow profiles on

across-date classification accuracy, a comparison is made with

shadows intact and with shadows removed. For statistically

significant improvements in accuracy the hypothesis is pro-

posed that shadow differences cause significant across-date

differences in texture features of the same settlement class.
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III. SHADOW DETECTION

Shadow areas caused by the occlusion of sunlight have to

be identified before shadow-effect mitigation methods may be

applied. A literature review on object-based shadow detection

and segmentation-merging methods is conducted in this sec-

tion to serve as background for the segmentation-based shadow

detection algorithm design. A basic approach to panchromatic

segmentation is described and it is then shown how a refined

merging algorithm can improve the segmentation result. The

segmentation algorithm is then employed in a shadow detector,

followed by a review of fixed threshold pixel-based detection

which is used as benchmark.

A. Object-based shadow detection

Object-based shadow detection is thus refined in this

study for suitable use with the limited information provided

by panchromatic-only imagery. Object-based image analysis

splits an image into objects based on heterogeneity criteria,

which yield the dual advantages of region-based methods,

namely a reduction in the number of segments and that those

primitives carry more information. Segmentation is conducted

by progressively merging neighbouring primitives according

to a given predicate, until a homogeneity criterion is met for

all resulting segments.

Region-merging algorithms and multiscale image segmenta-

tion algorithms are popular foundational procedures of object-

based image analysis in which homogeneous image object

primitives are obtained [19]. Region-merging algorithms have

been based on spatio-temporal similarity [20], statistical prop-

erties [21], [22], and graph properties [23], [24]. The merging

algorithms proposed by Peng et al. [25] and Sun et al. [26]

rely on colour information and semi-supervised methods to

perform multispectral object segmentation.

The different cut criteria in graph theory that have been

proposed for merging include the minimum cut [27], nor-

malized cut [28], and the ratio cut [29]. The graph cut

methods produce a desired segmentation through the global

optimization of a cost function, but the optimization processes

are often computationally inefficient for the large data of

remote sensing [30]. In this study a fast graph-based merging

algorithm is proposed that gives robust segmentations in spite

of the dynamic range variations seen in multi-date imagery.

Multiscale segmentation algorithms have been used in re-

mote sensing image analysis, including watershed segmenta-

tion, multiresolution segmentation [31], hierarchical segmen-

tation [32], and mean-shift segmentation [33]. Huang and

Zhang [34] proposed an adaptive mean-shift segmentation

algorithm for clustering remote sensing images in both spatial

and spectral domains with an adaptively chosen bandwidth.

A salient factor in multiscale segmentation algorithms is the

determination of an appropriate merging scale, which influ-

ences the amount of over- or under-segmentation that results.

The choice of the scale parameter is difficult as it depends on

the underlying data and the desired granularity for the specific

application. This issue is addressed in this work by reducing

the sensitivity of the segmentation on the scale or merging

parameter during region-merging.

Watershed segmentation is an efficient first step for object-

based shadow detection, but an over-segmentation is normally

produced where merging is required to reduce the number

of segments for an accurate account of the image objects.

In the case of the merging of a watershed segmentation,

compensation is required to enforce finer structural detail by

preventing bleed resulting from a graph cut merging algorithm

used by Li et al. [35] as well as Pun and An [36]. This complex

segmentation should be done in the absence of markers, to

eliminate the marker density parameter [37], which is hard

to control without a priori information for settlements with

varying characteristics.

B. Basic segmentation

The input image matrix I is filtered with horizontal and

vertical Sobel edge-emphasizing filters producing two cardinal

gradient images Ix and Iy , respectively. A final gradient mag-

nitude image is then calculated as Ig =
√

Ix ◦ Ix + Iy ◦ Iy ,
where the entry-wise Hadamard product is denoted by ◦.
Topographic distance is used to obtain an initial watershed

segmentation from the gradient magnitude image Ig , according

to the algorithm of Meyer [38] with 8-connected neighbour-

hoods. An example of the initial segmentation obtained with

the watershed algorithm is shown for different dates d1 and

d2 in Figure 2.

(a) d1-image (b) d1-watershed (c) d2-image (d) d2-watershed

Fig. 2. Watershed segmentation of two images of the same formal settlement
acquired on different dates d1 and d2.

The watershed segmentation reduces the number of graph

components involved in the calculation of the final segmen-

tation, but a further merging of the watershed segments is

required due to a typical over-segmentation produced by

the watershed algorithm. As with multiscale segmentation

algorithms [31], [32] a merging parameter is used in this study

to dictate the amount of over-segmentation after merging.

The basic segmentation discussed in this part of the paper

is later contrasted with a more robust segmentation that uses a

secondary merging parameter to reduce the sensitivity of the

segmentation to the primary merging parameter.

Let the No watershed segments be represented by vertices

n1, n2, · · · , nNo
of a directed graph G, which will be used

by the merging algorithm. For each vertex ni the graph

forms a directed edge lij to each 8-connected neighbouring

segment nj (from neighbourhood set N (ni)) that shares a

segment border with ni. Let the mean pixel intensity of

a segment ni be given by µY (ni), then a simple merging
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criterion is |µY (lij)| = |µY (ni) − µY (nj)| ≤ α(λ). When

the merging criterion is met for an edge lij then the segments

ni and nj should be combined. Here α(λ) = λYmax is an

intensity difference threshold calculated in terms of a merging

parameter λ and the maximum intensity Ymax as determined

by the image bit-depth. The merging parameter λ determines

the amount of under- or over-segmentation and in that sense a

parallel is drawn to the scale parameter as found in multiscale

segmentation algorithms.

By removing edges with |µY (lij)| > α(λ) a potentially

reduced graph G∗ is obtained, which may then consist of

several smaller graphs G∗i that represent the remaining merged

segments. The vertices of a subgraph G∗i are to be combined

into a single segment n∗

i to form part of the merged segmenta-

tion. For a small difference threshold and merging parameter

of λ = 0.039 a still over-segmented merge is obtained in

Figure 3. In Figures 3, 4 and 6 the merged segment borders

are overlayed as red lines in d1-merged and d2-merged, and

every segment is replaced by its mean pixel intensity in d1-avg

and d2-avg.

(a) d1-merged (b) d1-avg (c) d2-merged (d) d2-avg

Fig. 3. Basic merging with a merging parameter of λ = 0.039.

Doubling the difference threshold with a merging parameter

of λ = 0.078 produces a less over-segmented merge for d1
as shown in Figure 4, but there is a large discrepancy which

results in a more under-segmented merging for d2. This is

caused by a difference in the dynamic range of the across-

date images due to varying acquisition modes, illumination

differences determined by the solar illumination angle and sun

elevation, and the effects of histogram matching.

(a) d1-merged (b) d1-avg (c) d2-merged (d) d2-avg

Fig. 4. Basic merging with a larger merging parameter of λ = 0.078.

Algorithm 1 Proposed segmentation-merging algorithm

1: function SEGMENTMERGE(λ, γ,G)
2: G∗ ← {n1, n2, · · · , nNo

}
3: for i← 1 to No do

4: k ← mink(|µY (lik)|)
5: if |µY (lik)| ≤ α(λ) then
6: G∗ ← {G∗, lik}
7: for j ← argj N (ni) do
8: if |µY (nk)− µY (nj)| ≤ β(γ) then
9: G∗ ← {G∗, lij}

10: return G∗

C. Proposed merging algorithm

A further difference threshold β(γ) = γYmax and a sec-

ondary merging parameter γ is introduced in the proposed

merging algorithm to reduce the α-sensitivity of the resultant

segmentation. The effect of the difference threshold α(λ)
can be reduced by selecting only the neighbour nk with

the smallest intensity difference for inclusion in the merged

segment, based on the α-criterion. If a remaining neighbour

nj has an intensity close to that of the smallest differing

neighbour nk, i.e. when |µY (nk) − µY (nj)| ≤ β(γ), then
nj will be merged with the base segment ni. The proposed

merging algorithm is outlined in Algorithm 1.

A poor choice for λ will then have a lesser effect on the

final merging, especially when the smallest difference between

the smallest differing neighbour nk and the base segment

ni is less than a proper threshold α(λgood). In that instance

of |µY (lik)| ≤ α(λgood) the difference threshold α(λ) is

effectively replaced by α(λgood) and the quality of the merging

then depends on the secondary threshold β(γ). An example of

a reduced graph G∗ is shown in Figure 5a), which consists of

Nm disconnected subgraphs G∗
1
,G∗

2
, · · · ,G∗Nm

that form the

merged segments n∗

1
, n∗

2
, · · · , n∗

Nm

as shown in Figure 5b).

The merged segments are counted as vertices n∗

i of the

resultant merged graph Gm. In Figure 5a) the green and blue

edges met the α-criterion and β-criterion, respectively, and are

retained in the reduced graph.

(a) reduced graph (b) merged segmentation

Fig. 5. The reduced graph G∗ and the corresponding merging with the
proposed algorithm with λ = 0.078 and γ = 0.039.

The efficacy of the proposed merging algorithm with sec-

ondary threshold β(γ) is made clear in the comparison be-

tween Figures 4 and 6, where the same primary constraint
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α(λ) = λYmax with λ = 0.078 is used. The proposed algorithm
produces an acceptable merging for both dates with no notable

over-segmentation or under-segmentation, especially in the

shadow areas. The secondary constraint of β(γ) = γYmax with

γ = 0.039 and the difference ordering of the connected edges

in the proposed algorithm make the exact choice of λ less

critical.

(a) d1-merged (b) d1-avg (c) d2-merged (d) d2-avg

Fig. 6. The proposed merging with λ = 0.078 and γ = 0.039.

The selection of merging parameters and thresholds is still

an intractable problem [32], made difficult by the fact that

the segmentation purpose dictates the desired segmentation

result. While an assisted selection of the values of λ and γ

is thus still required in this work, a method is contributed

to reduce sensitivity of the segmentation result to the specific

choice. This is achieved through a direct query of the localized

dynamic range, which is used to reduce the primary merging

threshold. Fine detail can then be preserved by preventing

possible bleeding due to a merging threshold that may be too

large for the scene.

D. Segmentation-based detection

In object-based image analysis the extracted objects are

characterised by distinctive features, and in the case of the

merged panchromatic segmentation the mean pixel intensity

µY (n
∗

i ) and standard intensity deviation σY (n
∗

i ) of every

segment n∗

i are used as basic features. Basic segmentation-

based shadow detection would then declare a segment n∗

i as

shadow when µY (n
∗

i ) ≤ ξYmax. This is used as a benchmark

to evaluate a supervised segment-selection approach against.

According to the low-intensity property of shadows an in-

tensity ratio of ξ = 0.2 has been used to decide whether a

segment belongs to a shadow area. This value has been found

to produce good results for the considered dataset, since it is

a choice rooted in principle shadow fundamentals.

Given a binary ground truth shadow mask, a segment is

classified as shadow when at least half of the pixels in

the segment belong to a ground truth shadow area. Then

a classifier may be trained for supervised detection using

features µY (n
∗

i ) and σY (n
∗

i ) with the corresponding binary

ground truth classification for a segment n∗

i . Specifically, a

multi-layer perceptron (momentum rate of 0.2, learning rate

of 0.3 and 500 training epochs) is trained with a small set of

ground truth shadow masks covering every date and settlement

type. The perceptron has two input nodes, one for each basic

shadow segment feature, and two output units for the binary

shadow classification. A single hidden layer is used with two

units and unipolar sigmoid activation functions are employed

in the network.

The supervised detector then comprises the proposed seg-

mentation algorithm, a merged segment feature calculator and

a trained classifier. A new image may be segmented and seg-

ment features can then be classified as non-shadow/shadow by

the classifier. Examples of shadows detected by this supervised

detector are shown in Figure 7 for the three main settlement

types discussed in Section V. The difference in the shadow

profiles of d1 and d2 are significant, primarily due to the

seasonal variation of the two acquisitions.

(a) FSB : d1 (b) d1-shadow (c) FSB : d2 (d) d2-shadow

(e) FS : d1 (f) d1-shadow (g) FS : d2 (h) d2-shadow

(i) OIS : d1 (j) d1-shadow (k) OIS : d2 (l) d2-shadow

Fig. 7. Supervised shadow detection examples (shown in orange) paired with
original images for the three main settlement classes FSB, FS, and OIS.

A prominent weakness of segment-based detection is a

higher omission error rate due to entire segments being

wrongly classified as non-shadow, when a threshold-based

detector would commit at least part of the segment to the

shadow mask. This omission is visible in Figure 7 where

some shadow areas remain undetected with the segment-based

shadow detector. When part of a lighter structure falls within

shadow area it is likely to be classified as non-shadow due

to the higher segment intensity. This situation has a greater

probability of occurring as the building heights increase and

the shadows become long enough to block sunlight that would

have otherwise illumed adjacent structures.

The prevalence of high-reflection surfaces in the image

will influence the shadow ommission rate, and in general

a larger intensity variance within the shadow areas will

cause greater confusion during shadow detection. While the

proposed shadow detector performs well with the smaller

structures of urban areas, a refined approach will be required

to accurately handle the shadows of medium- and high-rise
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buildings. The merging algorithm may be maintained, but

additional intelligence is needed to decide whether parts of

a structure falls within the shadow of another structure or not.

The shadow detector has a linear computational complexity

in the number of image pixels, but the exact complexity is

dependent on the image content, which dictates the complexity

of the segmentation computation. An unoptimized Matlab im-

plementation of the supervised segment-based shadow detector

maintained an average computational speed of 8000 pixels per

second per thread on a 2.8 GHz Intel i7 computer for all data

set polygons for both dates.

E. Fixed thresholding pixel-based shadow detection

A rudimentary shadow mask is obtained with a global

intensity threshold to serve as a benchmark to measure the

proposed segmentation-based detector against in this study.

Multi-date images are histogram matched before a common

fixed intensity threshold is used to classify pixels with lesser

intensity as shadow. The accuracy of the threshold-based

shadow masks depends on the specified threshold, therefore a

range of experiments are performed over a varying threshold

interval of 0% to 40% of the maximum intensity value as

determined by the image bit-depth. Shadow intensities may

vary in different parts of the same scene and a shadow

area may form a gradient with intensities both less than

and exceeding the fixed threshold. These limitations of fixed

thresholding lead to shadow classification inaccuracies and

may be addressed with an object-based approach involving

segmentation.

IV. SHADOW REMOVAL

A shadow mask is provided by the shadow detector, and in

this study two approaches for reducing the impact of shadows

on settlement type features are investigated, namely shadow

masking and correction.

A. Shadow masking

Modified texture feature calculations are performed with

shadow masking, where pixels belonging to a shadow area are

ignored during feature determination. For GLCM calculations

each pixel pair is skipped when one of its pixels falls within the

shadow mask, effectively removing some off-diagonal entries

in the co-occurrence matrix that would have resulted if the

shadows were included. The shadow masking variant for LBP

features are similarly obtained by avoiding pattern placement

in locations where the central pixel would fall within the

detected shadow mask.

B. Shadow correction

Shadow correction modifies the input images before feature

calculation, so no adaptation of the GLCM and LBP algo-

rithms is required in the case of correction. Basic shadow

correction adds to every shadow pixel the intensity difference

between the global intensity mean µY (G) and the correspond-

ing shadow region intensity mean µY (n
∗

i ). The two-pixel wide
transition edge outside each shadow region is then locally

median filtered in a five-pixel window [39] to suppress the

transition gradient.

Apart from basic correction a fine shadow correction al-

gorithm is also investigated that takes the most frequently

occurring intensity value in the two-pixel wide edge outside of

the transition edge instead of the global mean when performing

the histogram matching. Here the intensity difference between

this outer edge intensity value and the corresponding shadow

region intensity mean µY (n
∗

i ) is added to each shadow pixel.

The transition median filtering is also performed after this

histogram matching as with the basic shadow correction. The

fine shadow correction blends the lifted shadows better than

with basic correction and it addresses the situation where

shadows are surrounded by surfaces of distinctly different

intensities.

The across-date differences in shadow profiles are depicted

in Figures 8, 9 and 10 for different settlement types. The

uncorrected images for the different acquisition dates d1 and

d2 are denoted by d1-image and d2-image, and the shadow

corrected images are given by d1-corrected and d2-corrected.

The shadow correction has been performed with the refined

algorithm and shadow masks detected with a fixed threshold

of 0.25Ymax.

(a) d1-image (b) d1-corrected (c) d2-image (d) d2-corrected

Fig. 8. Formal settlement (FS) and its corresponding shadow corrected
images for different acquisition dates.

(a) d1-image (b) d1-corrected (c) d2-image (d) d2-corrected

Fig. 9. Formal settlement with backyard shacks (FSB) and its corresponding
shadow corrected images for different acquisition dates.

V. DATA DESCRIPTION

Three prominent settlement types were considered as shown

in Figures 8, 9 and 10, namely formal settlements (FS),

formal settlements with backyard shacks (FSB) and ordered
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(a) d1-image (b) d1-corrected (c) d2-image (d) d2-corrected

Fig. 10. Ordered informal settlement (OIS) and its corresponding shadow
corrected images for different acquisition dates.

informal settlements (OIS). Formal settlements have perma-

nent residential structures positioned in a planned manner,

while formal settlements with backyard shacks have residential

structures accompanied by smaller shacks. Ordered informal

settlements have permanent and semi-permanent residential

structures ordered in a planned manner. In addition there is

a non-builtup class (NBU) that includes natural vegetation,

to test the separability between non-builtup areas and urban

land-use types.

The study area is the 2.7×9.3 km section of Soweto

(Gauteng, South Africa), a subtropical highland of which

two 0.6×0.6 m resolution panchromatic QuickBird images

were captured on 18 October 2005 (d1, early summer, rain

season) and 30 May 2006 (d2, early winter). There are no-

table viewing- and illumination geometry differences between

the two images, especially in the shadow profiles where d2
exhibits longer shadows due to the Northern Hemisphere being

inclined toward the Sun. Figure 11 shows the latest acquisition

of the study area and the area selections of the land-use classes

are indicated.

Representative polygon pairs of each settlement type were

extracted in an assisted manner for both dates, most of which

form spatially adjacent selections of the same settlement class

for the purposes of creating separate training and testing sets.

Training and testing data sets are denoted by A and B,

respectively, and the data sets are used interchangeably for

either training or testing purposes.

The 11-bit panchromatic QuickBird scenes were converted

to 8-bit images to enable visual inspection after each step and

to simplify the texture feature calculations. The number of

GLCM co-occurrence matrix entries is reduced by a factor

of 26 with this change in bit-depth, and LBP features remain

largely unaffected since the intensity modification is a mono-

tonic transformation. Across-date polygon pairs were then

histogram matched and square image tiles with representative

dimensions of 120×120 m were obtained from every polygon.

VI. EXPERIMENTAL SETUP

The purpose of the experiments in this study is to determine

and compare the shadow detection accuracy of the various

shadow detectors, and also to measure the change in settle-

ment classification accuracy for the different shadow removal

algorithms.

A. Settlement classification accuracy

A distinction is made between same-date and across-date

experiments based on the hypothesis that shadow removal in

the case of differing shadow profiles with across-date exper-

iments will have a greater effect on settlement classification

accuracy. For two-date experiments with area separation there

are 4 possible same-date experiments and 8 different across-

date experiments, as shown in Figure 12.

The scenery of a specific date is divided into two parts,

namely areas A and B, to provide separate training and

testing data in order to reduce classifier overfitting. The area

separation is performed in terms of whole polygon selections,

which are depicted in Figure 11, with the aim of obtaining

an approximately equal number of samples for both areas.

The same area selections are used for images from other

dates, so that an area is the identical set of polygon locations

for all dates, but the actual image is then obtained from the

specific date. Areas A and B are used interchangeably as either

training or testing datasets to allow for more experiments to

be performed.

Fig. 12. The separation of same-date ( ) and across-date ( ) experiments.

Data sets consist of particular texture features and the corre-

sponding ground truth settlement type classification associated

with every extracted tile. The training data sets (Ad1
and Ad2

)

have 55, 148, 70, and 133 tiles respectively for the FS, FSB,

OIS and NBU settlement types. The testing data sets (Bd1
and

Bd2
) contain 50, 120, 67, and 113 tiles for the FS, FSB, OIS

and NBU classes, respectively. The training and testing data

sets are also used respectively as testing and training data sets,

while area separation between training and testing data sets is

always maintained for same-date experiments.

Texture features are calculated per labelled tile, either using

GLCM or LBP features. In the case of shadow masking the

modified texture features are used where pixels falling inside

the shadow masks are omitted during feature calculation. The

first 13 of Haralick’s GLCM features [16] are used with

a window sized to the tile dimensions of 200×200 pixels.

GLCM pairs are taken in all cardinal and ordinal directions

with ℓ1-norms of 1 and 2, respectively. The 10 basic patterns

are used to calculate the LBP features [17] employing an 8-

point circle with radii of 1, 4 and 8 to produce a total of 30

features.

A multi-layer perceptron is used as classifier with texture

features as input and with the four discrete type classes FS,

FSB, OIS and NBU as output. The number of input units of

the perceptron is equal to the number of texture features (13

for GLCM and 30 for LBP), and the number of output units
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Fig. 11. The study area of Soweto, acquired on 30 May 2006, with polygon selections of the various land-use classes.

is determined by the number of classes, i.e. 4. The number

of units in the single hidden layer is calculated as the sum

of the number of attributes and classes, divided by two. The

perceptron activation functions are unipolar sigmoids and for

each experiment a momentum rate of 0.2, learning rate of 0.3

and 500 training epochs are used.

For the same-date experiments a perceptron trained on one

area will be tested on the other area of the same date. The

8 possible across-date experiments are depicted in Figure 12,

where a perceptron trained on one area of a date will always

be tested on an area of the other date. Every one of the 4 same-

date and 8 across-date experiments is performed 10 times, with

perceptron network weights initialized to a different random

seed every time.

B. Shadow detection accuracy

The shadow detection accuracy is measured with the Jaccard

similarity coefficient [40] (also known as the Jaccard index)

using a representative sample of ground truth shadow masks

over all settlement types for both dates. This similarity index

measures the ratio of the intersected area to the area of the

union between a detected shadow mask and the associated

ground truth mask. The compared shadow masks are more

similar if the Jaccard index is higher and a Jaccard index of

1 means that the compared shadow masks are exactly the

same. The Jaccard index has been used in remote sensing

research to measure the detection difference between change

detectors [41], and unlike the Yule coefficient [42] it can

measure absolute difference in the case of zero intersect.

The shadow detection accuracy is measured firstly to assess

how similar a detected mask is to a human interpretation of

the shadows via the ground truth shadow masks. The inherent

lack of object distinction in panchromatic imagery, and the

gradient presentation of shadows cause a substantial subjec-

tivity even in the human treatment of shadow selection. This

ambiguity that complicates all panchromatic shadow detection

methods, means that there is no absolute ground truth, but

the human-aided benchmark is set nonetheless to provide a

point of reference. The detection accuracy is measured for

every specific threshold value of the fixed threshold detector,

as well as for the basic and supervised segmentation-based

shadow detectors.

VII. RESULTS AND DISCUSSION

The performance of the various shadow removal algorithms

in improving settlement classification accuracy is given in this

section. A statistical study is performed to determine shadow

detection accuracy and its effect on settlement classification

accuracy, and a discussion and interpretation of the results are

delivered.

A. Settlement classification accuracy

The settlement classification accuracy with GLCM and

LBP features are recorded for a range of threshold values

used by a fixed thresholding shadow detector as shown in

Figure 13. The mean accuracy of the 4 same-date experiments

and the mean accuracy of the 8 across-date experiments are

used in Figure 13, where every experiment accuracy is the

mean accuracy of 10 repetitions, as explained in the previous

section. Shadow masking, basic shadow correction and fine

correction are the shadow removal algorithms paired with the

fixed thresholding detector, and the same-date and across-date

results are recorded separately.
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Fig. 13. Settlement classification accuracy comparison for fixed thresholding.

The case of no shadow removal occurs at a fixed threshold

of 0, and it is noted that the same-date experiments achieve

a higher classification accuracy than the across-date experi-

ments. Features calculated from the same-date scenery have
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greater similarity than across-date features, where viewing-

and illumination geometry distortions are introduced, so a

reduced across-date classification accuracy is expected.

From Figure 13 it is clear that settlement classification

accuracy benefits significantly more from across-date shadow

removal than same-date shadow removal. Shadow masking

in the case of LBP features has however improved same-

date classification accuracy with statistical significance in 3

out of the 4 possible experiments at a fixed threshold of

0.2Ymax. There was a statistically significant improvement in

7 out of the 8 across-date experiments with LBP and shadow

masking, which decreased to 5 significant improvements when

fine correction was used.

No significant same-date improvements were witnessed with

GLCM, but in the across-date experiments the shadow mask-

ing and fine correction posted 5 and 3 statistically significant

improvements, respectively. In Table I it is seen that GLCM

improved the most with shadow masking to reach an accuracy

of 90% (κ=0.86) at a fixed threshold of 0.35Ymax. Of the fixed

threshold methods the across-date settlement classification

accuracy improvement with LBP was the greatest for shadow

masking as well, where a value of 86.53% (κ=0.81) was

attained at the threshold 0.2Ymax.

TABLE I
SHADOW DETECTION AND SETTLEMENT CLASSIFICATION ACCURACIES

GLCM LBP
Jaccard Same- Across- Same- Across-

index date date date date

No removal 0.00 92.11 85.94 92.34 83.69

Fixed masking 92.30 90.00 93.67 86.53
Basic corr. 0.45 92.12 86.23 92.36 83.81
Fine corr. 92.38 87.40 92.37 85.56

Segmented 0.29 90.87 88.02 93.28 86.11
Supervised 0.45 91.28 84.25 93.98 88.62

The unsupervised segmentation-based shadow detector re-

sults are found in the ‘Segmented’ row in Table I, and

the proposed supervised detector results in the ‘Supervised’

row. The basic segmentation-based detector achieved 5 and

4 statistically significant improvements out of 8 experiments

in both of the across-date GLCM and LBP experiments

with shadow masking, respectively. The proposed supervised

segmentation-based detector with LBP features and shadow

masking performed better than any of the fixed threshold

shadow removal methods, with accuracies of 93.98% (κ=0.92)

and 88.62% (κ=0.84) in the same-date and across-date exper-

iments, respectively. Three of 4 same-date experiments and 7

out of 8 across-date experiments were improved with statistical

significance in that case.

The supervised segmentation-based detector with GLCM

features did not improve with shadow masking, however. This

is likely due to the higher shadow omission error rate of

supervised shadow detection. The irregular shadow detection

omissions that result can influence all GLCM feature values

while affecting only a small subset of LBP patterns when

centered in shadow area, which may explain the discrepancy

in performance between GLCM and LBP features. Additional

shadow segment features may be added to reduce the omission

rate of the supervised shadow detector, such as segment shape

properties.

An across-date classification of the study area as imaged

on d1 was performed with supervised segmentation-based

shadow removal and GLCM features, where the classifier was

trained with all of the d2 data. A mean accuracy of 89.1%

was achieved after 10 experiments, of which a classification

instance is depicted in Figure 14, which was obtained with

majority voting from redundant tile cover of each polygon.

The classification results are relatively accurate for the FSB,

OIS and NBU classes when compared to Figure 11, but there

is confusion between the FS class and the FSB and OIS classes

primarily due to the small formal settlement training data size.

There is also an underlying similarity between the FS and FSB

classes that is hard to separate based on the texture features

that were used.

Shadow differences are significantly aggravated in the case

of taller buildings, and the shadow mask has the potential

to occupy a relatively large portion of the image area. This

might occur at lower solar elevations and shadow masking

would then be a poor choice of shadow removal due to

the large area that would have to be masked. Alternatively,

shadow correction would retain all of the image area for

texture calculation, at the expense of the inaccuracies caused

by posterization.

Differing viewing angles may also cause significant changes

in the texture of scenes with medium- and high-rise buildings,

and paired with the shadow differences a loss in settlement

classification accuracy is expected with texture features. The

amplified anisotropy of land surfaces with tall buildings re-

quires a specialized approach, but for the relatively flat texture

of the considered settlement types the texture features perform

well.

B. Shadow detection accuracy

The shadow detection accuracies of the fixed thresholding

detector and the basic and supervised segmentation-based de-

tectors were measured in terms of the Jaccard similarity coeffi-

cient with ground truth shadow masks. The fixed thresholding

detector in its working threshold range as well as the proposed

supervised detector improved the basic segmentation-based

shadow detection accuracy from 0.29 to 0.45 as indicated in

Table I.

Given that the basic segmentation-based detector in con-

junction with shadow masking was able to improve the set-

tlement classification accuracy in the across-date GLCM and

LBP tests as well as in the same-date LBP tests, despite a

significantly lower Jaccard index, indicates that this measure of

shadow detection accuracy is a poor predictor of the settlement

accuracy improvement.

Another interpretation of this result is that a significant

increase in the similarity measure cannot clearly predict an

equally significant increase in settlement classification accu-

racy, at least not for shadow detection algorithms operating

in qualitatively different modes. The relationship between

shadow detection accuracy and settlement classification accu-

racy has been more closely examined for the fixed threshold

detector and the results are given in Figures 15 and 16.
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Fig. 14. A second image of the study area, acquired on 18 October 2005, with a thematic classification using training data from another date.
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Fig. 15. The relationship between shadow detection accuracy and settlement
classification accuracy for GLCM features.

To clearly discern the relationship between detection and

classification accuracy the correlations of the same-date and

across-date experiments are compared. For both the fixed

threshold detection with GLCM and LBP experiments the

same-date regression slopes are smaller for all shadow removal

algorithms, as shown in Figures 15 and 16. This means that

there is a stronger correlation for across-date experiments

where a more accurate shadow mask improves settlement

accuracy by a greater amount than would typically be seen

in same-date improvements. It is expected that across-date

experiments would benefit more from shadow removal and

this is observed in the distinct difference between same-date

and across-date correlations.
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Fig. 16. The relationship between shadow detection accuracy and settlement
classification accuracy for LBP features

The Pearson’s correlation coefficients (denoted by ρ) of the

same-date and across-date data points for fixed thresholding

paired with the various shadow removal algorithms are shown

in Table II. A Pearson’s correlation coefficient measures the

linear dependence between two variables and is defined as the

covariance of the two variables divided by the product of their

standard deviations. The correlation coefficient ranges from

−1 to 1, where a value of 1 implies that a linear equation can

perfectly describe the relationship between the two variables.

A linear relationship where one variable increases as another

decreases is characterized by a correlation coefficient of −1.
When the value is 0 then there is no discernible linear

relationship between the two variables.

The statistical significance of each correlation was also

determined in terms of a p-value calculated using the Student’s

t-distribution for a transformation of the correlation. A p-

value is the probability of obtaining a test statistic at least as

extreme as the one actually observed, assuming that the null

hypothesis is true. The null hypothesis here is that there is no

correlation between shadow detection accuracy and settlement

classification accuracy, i.e. ρ = 0, formulated with the aim

of rejecting the null hypothesis to show that there is in fact

correlation between the variables.

A p-value less than a small significance level of 0.05 would

imply that the probability of observing a correlation given

the null hypothesis is less than 5%, which would constitute

strong evidence against a zero correlation. In that case it can be

stated that the observed correlation is probably not zero with

statistical significance at a significance level of 0.05. Apart

from the across-date shadow masking experiments showing

statistically significant correlations at a significance level of

0.05, the rest of the correlations are not significant due to the

small number of samples.

With the emphasis placed on the null-hypothesis test of

equal correlation for the same-date and across-date samples

of a specific shadow removal algorithm, it is seen that there is

a relatively small probability ∆ p-val of obtaining correlation

differences at least as extreme as were observed, given that

the null-hypothesis is true. The ∆ p-val is a notation used

here to refer to the p-value of the test statistic that measures

the correlation difference between same-date and across-date

experiments. The ∆ p-val is calculated according to the cor-
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TABLE II
CORRELATION COEFFICIENTS AND STATISTICAL SIGNIFICANCE

GLCM LBP

Same- Across- Same- Across-
date date date date

Fixed Masking
ρ -0.25 0.67 0.16 0.63

p-val 0.46 0.02 0.64 0.04
∆ p-val 0.05 0.02

Basic corr.
ρ -0.19 -0.14 -0.36 -0.11

p-val 0.58 0.68 0.28 0.74
∆ p-val 0.29 0.14

Fine corr.
ρ 0.06 0.26 -0.04 0.23

p-val 0.84 0.44 0.90 0.49
∆ p-val 0.08 0.06

related correlation coefficients case given by Meng et al. [43],

where the Jaccard similarity coefficient is the shared variable

between the same-date and across-date samples.

At a significance level of 0.1 it can be seen in Table II

that the fixed thresholding masking and fine correction shadow

removal algorithms for both GLCM and LBP features pro-

duced a significant correlation difference between same-date

and across-date experiments. This supports the hypothesis that

more accurate shadow removal produces greater improvements

in settlement classification accuracy in the case of across-date

experiments with notable shadow profile differences between

the training and testing data sets.

VIII. CONCLUSION

Effective feature variance occurs during across-date set-

tlement type classification due to differences in viewing-

and illumination geometry. The purpose of this study was

to introduce calculated feature invariance by detecting and

removing shadow differences that cause detrimental variation

in texture features, and to test its efficacy in improving

settlement type classification accuracy. An improved shadow

detector was described as a segmentation-based algorithm with

both unsupervised and supervised detection options, and it was

shown that settlement type classification improved more than

with a fixed threshold detector when LBP texture features were

used.

The relationship between shadow detection accuracy and

increases in settlement type classification accuracy was inves-

tigated experimentally and statistically. It was observed that

there is a definite stronger trend with across-date classification

where more accurate shadow removal resulted in a typically

larger improvement in the measured settlement accuracy com-

pared to same-date experiments. These results support the

theory that it is the shadow removal specifically that improves

classification accuracy, and that while increases in same-date

accuracies were witnessed, the main benefit lies in across-date

classification situations.

A minimal-supervised multitemporal classifier may then be

trained on scenes from one date, and with the calculated

feature invariance classify scenes from other dates with sig-

nificantly improved accuracy when shadow removal is used.

Future research may consider transductive classification and

other domain adaptation methods, in order to compensate

for the complex acquisition differences observed in remote

sensing scenarios.
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detection in complex urban environments from multispectral satellite
imagery,” International Journal of Remote Sensing, vol. 33, no. 7, pp.
2152–2177, 2012.

[9] L. Lorenzi, F. Melgani, and G. Mercier, “A complete processing chain
for shadow detection and reconstruction in VHR images,” Geoscience

and Remote Sensing, IEEE Transactions on, vol. 50, no. 9, pp. 3440–
3452, 2012.

[10] X. Huang and L. Zhang, “Morphological building/shadow index for
building extraction from high-resolution imagery over urban areas,”
Selected Topics in Applied Earth Observations and Remote Sensing,

IEEE Journal of, vol. 5, no. 1, pp. 161–172, Feb. 2012.

[11] A. Makarau, R. Richter, R. Muller, and P. Reinartz, “Adaptive shadow
detection using a blackbody radiator model,” Geoscience and Remote

Sensing, IEEE Transactions on, vol. 49, no. 6, pp. 2049–2059, June
2011.

[12] G. Tolt, M. Shimoni, and J. Ahlberg, “A shadow detection method for
remote sensing images using VHR hyperspectral and LIDAR data,”
in Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE

International, July 2011, pp. 4423–4426.

[13] A. X. Falcão, P. A. V. Miranda, and A. Rocha, “A linear-
time approach for image segmentation using graph-cut measures,”
in Proceedings of the 8th international conference on Advanced

Concepts For Intelligent Vision Systems, ser. ACIVS’06. Berlin,
Heidelberg: Springer-Verlag, 2006, pp. 138–149. [Online]. Available:
http://dx.doi.org/10.1007/11864349 13

[14] W. Liu and F. Yamazaki, “Object-based shadow extraction and correction
of high-resolution optical satellite images,” Selected Topics in Applied

Earth Observations and Remote Sensing, IEEE Journal of, vol. 5, no. 4,
pp. 1296–1302, 2012.

[15] F. P. S. Luus, F. van den Bergh, and B. T. J. Maharaj, “The effects
of shadow removal on across-date settlement type classification of
QuickBird images,” in Geoscience and Remote Sensing Symposium

(IGARSS), 2012 IEEE International, July 2012, pp. 6196–6199.



12

[16] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for
image classification,” Systems, Man and Cybernetics, IEEE Transactions

on, vol. 3, no. 6, pp. 610–621, Nov. 1973.
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[41] M. İlsever, U. Altunkaya, and C. Ünsalan, “Pixel based change detection

using an ensemble of fuzzy and binary logic operations,” in Geoscience

and Remote Sensing Symposium (IGARSS), 2012 IEEE International.
IEEE, 2012, pp. 6185–6187.

[42] P. L. Rosin and E. Ioannidis, “Evaluation of global image thresholding
for change detection,” Pattern Recognition Letters, vol. 24, no. 14, pp.
2345–2356, 2003.

[43] X. Meng, R. Rosenthal, and D. Rubin, “Comparing correlated correlation
coefficients,” Psychological Bulletin, vol. 111, no. 1, pp. 172–175,
January 1994.

F.P.S. Luus received his B.Eng. and M.Eng. de-
grees from the University of Pretoria, South Africa,
in 2007 and 2011, respectively. He is currently
pursuing a Ph.D. degree in electronic engineering
(machine learning) at the University of Pretoria,
South Africa. His research interests include artificial
intelligence, wireless communications and remote
sensing.

F. van den Bergh received the M.Sc. degree in
computer science (machine vision) and the Ph.D. de-
gree in computer science (particle swarm optimiza-
tion) from the University of Pretoria, South Africa,
in 2000 and 2002, respectively. He is currently a
principal researcher at the Council for Scientific and
Industrial Research. His research interests include
automated feature extraction from high-resolution
satellite images, as well as automated change de-
tection. He maintains an active interest in particle
swarm optimization and machine learning.

B.T.J. Maharaj received his M.Sc. Engineering
from the University of Natal, M.Sc. in Operational
Telecommunications from University of Coventry
and Ph.D. in Electronic Engineering from Univer-
sity of Pretoria. He holds the SENTECH Chair
in Broadband Wireless Multimedia Communications
and is currently the Head of the Department in
Electrical, Electronic and Computer Engineering at
the University of Pretoria, South Africa. His research
interests are in MIMO channel modeling, cognitive
radio and optimization techniques.


