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Abstract 
Multi-decadal regional climate projections are assimilated into a statistical model in order to produce an 

ensemble of mid-summer maximum temperature for southern Africa. The statistical model uses atmospheric 

thickness fields (geopotential height differences between the 500 and 850 hPa levels) from high-resolution 

reanalysis data as predictors in a perfect prognosis approach in order to develop linear equations which 

represent the relationship between atmospheric thickness fields and gridded maximum temperatures across 

the region. The statistical model is found to be able to replicate the increasing maximum temperature trends 

of the driving regional climate model. Since dry-land crops are not explicitly produced by climate models but 

are sensitive to temperature extremes, the effect of these projected maximum temperature trends is assessed 

on dry-land crops over multiple decades by employing a statistical approach similar to the one introduced for 

maximum temperatures.  
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Introduction 1 
Global climate change has been confirmed and recently 2 
such changes have also been manifested across southern 3 
Africa (IPCC 2007). Modelling efforts to simulate these and 4 
future changes have subsequently increased and 5 
international programmes have been established in order to 6 
produce, among other outcomes, reliable high-resolution 7 
regional projections over multiple decades. These modelling 8 
efforts are being focused on both regional climate models 9 
and on statistical downscaling methods (e.g. Maraun et al 10 
2010). At the Council for Scientific and Industrial Research 11 
the regional modelling capability established there has been 12 
developed around the conformal-cubic atmospheric model 13 
(CCAM; McGregor 2005) and extensively reported on (e.g. 14 
Malherbe et al 2013a). This paper introduces a unique 15 
statistical downscaling method that assimilates an ensemble 16 
of high-resolution CCAM output over multiple decades and 17 
is applied to maximum temperatures and dry-land crop 18 
yield.  19 

 20 
Data and Method 21 
The CCAM has been configured for a number of 22 
applications, including weather and seasonal climate 23 
prediction, multi-decadal projections and high-resolution 24 
reanalysis (Engelbrecht et al 2011). Recently a 30-year 25 
period of 0.5° resolution 6-hourly data from 1979 to 2008 26 
were produced by providing the CCAM at 6-hourly 27 
intervals with NCEP reanalysis data.  Seasonal (3-month) 28 

averages of this CCAM-based reanalysis data set were 29 
subsequently calculated and used here as predictors for 30 
perfect prognosis statistical downscaling (Maraun et al 31 
2010). Specifically, the predictors are the CCAM reanalysis 32 
DJF thickness fields as represented by the geopotential 33 
height differences between the 850 and 500 hPa levels. The 34 
predictand in the perfect prognosis equations are gridded 35 
UEA CRU TS3.1 (Mitchell and Jones 2005) DJF maximum 36 
temperatures. The perfect prognosis equations are created 37 
by the canonical correlation analysis (CCA) option of the 38 
Climate Predictability Tool (CPT). The predictor domain is 39 
the area between the equator and 45°S, and between 15°W 40 
and 60°E; the predictand domain is between 12°S and 35°S, 41 
and 11°E to 41°E. CCAM multi-decadal simulations of 42 
regional climate for the period 1961 to 2100 at the same 43 
horizontal resolution as the CCAM-reanalysis set were 44 
performed by forcing the CCAM with the bias-corrected 45 
sea-surface temperature (SST) and sea-ice output of a 46 
number of different coupled global climate models used in 47 
AR4 of the IPCC (CSIRO, GFDL20, GFDL21, MIROC, 48 
MPI and UKMO). All six of these projections were for the 49 
A2 SRES emission scenario.  50 
 51 
The developed statistical relationships between the 52 
thickness fields and predictands are assumed to remain valid 53 
under future climate conditions and also that the large-scale 54 
structure, variability and trends of the fields are well 55 
characterized by the CCAM. The CCA perfect prognosis 56 



29
th

 Annual conference of South African Society for Atmospheric Sciences     

(SASAS) 2013 
http://sasas.ukzn.ac.za/homepage.aspx 

 

2 
 

equations are subsequently used to simulate the DJF 57 
maximum temperature fields over 139 years from 1961/62 58 
to 2099/00 and for each of the six CCAM-AR4 projections 59 
in order to produce an ensemble of statistically 60 
post-processed projections. The statistically projected DJF 61 
maximum temperature data averaged over the 30-year 62 
period from 1961/62 to 1990/91 are compared with 63 
averaged CRU maximum temperatures over the same 64 
period in order to calculate an estimate of the bias of each of 65 
the six projections. Bias adjustment is subsequently applied 66 
over the entire 139-year period and for each simulation.  67 
 68 
Fig. 1 shows the area-averaged ensemble mean of both the 69 
raw CCAM-AR4 and perfect prognosis maximum 70 
temperature bias-adjusted projections. A second-order 71 
polynomial is applied to both time series. A close 72 
resemblance between the two projections is evident which 73 
provides evidence that the perfect prognosis statistical 74 
model is a skillful representation of raw model output. This 75 
result is particularly encouraging since atmospheric 76 
thickness fields and not the CCAM’s maximum temperature 77 
projections are used as predictors in the perfect prognosis 78 
equations.   79 
 80 

 81 
Fig. 1. Area-averaged ensemble mean (from six bias corrected 82 
projections) of both the raw CCAM-AR4 output and perfect 83 
prognosis DJF maximum temperatures. Simulations for each year 84 
and for fitted polynomials are presented. 85 
 86 
Since one of the assumptions in a perfect prognosis 87 
approach is that the model(s) providing the predictor data is 88 
(are) perfect, the statistical downscaling presented here does 89 
not necessarily improve on raw model output, nor does it 90 
present higher resolution projections here since both the 91 
CRU grid and the raw output are at the same resolution. 92 
Take note that our reason for developing statistical 93 
post-processing procedures that may be able to replicate the 94 
output from a regional climate model serves the main 95 
purpose of developing the capability of producing multiple 96 
decade projections of variables not explicitly simulated by 97 
models but whose variation may be strongly linked to 98 
climate variations. For this purpose insight into the spatial 99 
description of the extent to which the statistical 100 

post-processing is replicating the raw model output may be 101 
useful. Further insight into the ability of the perfect 102 
prognosis approach to replicate the raw model output is 103 
presented in Fig. 2. 104 
 105 

 106 
Fig. 2. Ensemble mean 30-year climates of the raw CCAM (left 107 
panels) and of the perfect prognosis (right panels) DJF maximum 108 
temperatures. 109 
 110 
The present-day climates of both systems (top panels of Fig. 111 
2) are in strong agreement. However, differences are evident 112 
over the 2070/71 to 2099/00 period (bottom panels of Fig. 113 
2), especially over the western-central and over the far 114 
northern parts where the statistical method respectively 115 
simulates DJF maximum temperature climates too warm 116 
and too cold relative to the raw CCAM data. Strong 117 
agreement is found for the eastern Highveld of South Africa 118 
where the maize production districts of Witbank are located. 119 
The perfect prognosis post-processing presented here is 120 
subsequently applied to Witbank dry-land maize yields. 121 
Maximum temperatures may be considered as a proxy for 122 
dry-land maize production since droughts are most often 123 
associated with summer seasons of intense heat. Higher 124 
than normal temperatures and more sunshine hours are both 125 
factors that will increase yield stress and will consequently 126 
result in lower yield figures. This notion is demonstrated in 127 
Fig.3 that shows the 5-year-out cross-validation results 128 
obtained by using DJF 850-500 hPa thickness fields of the 129 
CCAM reanalysis as a predictor of Witbank’s detrended 130 
maize yield in a principal component regression (PCR) 131 
model (Malherbe et al 2013b). The Spearman’s rank 132 
correlation between the 29-year simulated and observed 133 
yields is 0.39 (p<0.02). The PCR model is subsequently 134 
applied to dry-land crops by using the DJF 850-500 hPa 135 
thickness simulations of the six CCAM-AR4 projections as 136 
predictors over 139 years. Bias adjustment on the simulated 137 
yields is performed similar to the adjustment procedure 138 
explained above for maximum temperatures but with a 139 
maize yield present-day climate period of 1981 to 2009. Fig. 140 
4 shows the bias-adjusted dry-land maize yields at Witbank 141 
together with one standard deviation error bars and fitted 142 
second-order polynomial.  143 
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 144 
Fig. 3. Observed vs. simulated dry-land maize yield index obtained 145 
by using CCAM reanalysis DJF 850-500 hPa thickness fields as 146 
predictors in a PCR model. 147 
 148 
The statistical procedure presented here is simulating a 149 
reduction in dry-land maize yield over the Witbank area of 150 
about two standard deviations by the end of this century – a 151 
substantial reduction in crop yield associated with the 152 
projected increase of mid-summer maximum temperatures. 153 
Such a reduction in crop yield seems realistic since the 154 
dry-land maize may need more water to keep up with 155 
increased evapotranspiration associated with increased 156 
maximum temperatures.  157 
 158 

 159 
Fig. 4. Perfect prognosis projected ensemble mean of Witbank 160 
dry-land maize yields. Simulations for each year and for a fitted 161 
polynomial are presented, as well as 1-standard deviation error 162 
bars. 163 
 164 
Conclusion 165 
The notion of developing statistical procedures to 166 
objectively simulate commodities such as dry-land crops 167 
over multiple decades was investigated in this paper. First it 168 

was shown that perfect prognosis applied to regional 169 
climate model outputs is able to capture the models’ upward 170 
trends in maximum temperatures over southern Africa 171 
during mid-summer. The simulation of crop yields over the 172 
eastern Highveld was subsequently performed and it was 173 
found that yields may be reduced by as much as two 174 
standard deviations by the end of this century. This result is 175 
of course based on the assumption that the maize cultivars 176 
are not genetically enhanced. Notwithstanding, the 177 
procedure may at least be able to provide guidance to policy 178 
makers responsible for action plans to mitigate and adapt to 179 
the impacts of increasing temperatures on dry-land maize 180 
yield. 181 
 182 
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