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Abstract—The theory of accreting structures is a new and fast developing branch of analytical mechanics basing on the theory of partial 

differential and integral equations. In the present paper the authors analyze qualitative properties of accreting rods subjected to 

longitudinal vibrations. This problem is described it terms of the linear classical, Rayleigh-Love and Rayleigh-Bishop models. It is 

assumed that the rod is fixed at one end and free at the other end and its length is increasing. For solution of this problem we make a 

special change of variables which transforms the original equations into new non-autonomous equations. It is shown that these equations 

are hyperbolic and possess several interesting and important properties. First of all, the amplitudes of vibration of the rod are growing 

with time. For example, if the rod length is increasing proportionally to time the amplitudes are also growing proportionally to time. 

Secondly, if a particular mode is excited it excites other modes. In this case the mechanism of the modes excitation is asymmetric, which 

means that the low frequency modes possess higher amplitudes compared to the higher frequency modes. The physical explanation of 

these phenomena is proposed and discussed. 
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INTRODUCTION 

 The word “accreting” means growing of a body in one or several dimensions. For example, let us consider the longitudinally 
vibrating rod, which is fixed at its left end and free at the right end, and assume that its length is increasing from the free end. 
Dynamics of this model is investigated in the present paper. There exist many different models describing the longitudinal vibration 
of slender rods. In the simplest case the lateral effects are neglected at the longitudinal vibration and the dynamics of such rod is 
described in terms of the wave equation. This is the classical model of the longitudinal vibration of the rod. In the more advanced 
Rayleigh–Love model the effect of lateral inertia of the longitudinally vibrating rod is taken into consideration. This model is 
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described by the equation with mixed partial derivative of the fourth order. Another, the Rayleigh–Bishop model takes into account 
both lateral inertia and shear stresses effects and described by equations with mixed and x – derivatives of  the fourth order. 
Development of these three models of the accreting longitudinally vibrating rods is described in the present paper. The boundary 
conditions of the accreting rods are described by the non-conventional time dependent expressions. For conversion of the boundary 
problems to the conventional formulations a special transformation is introduced. The tradeoff of this approach is a substantial 
sophistication of the equations of motion of the rods which become non-autonomous with variable coefficients. The corresponding 
partial differential equations are transformed into the systems of ordinary differential equations by the Kantorovich method. This 
method is demonstrated on the classical model of the vibrating rod which is accreting proportionally to time. The infinite system of 
ordinary differential equations describing the dynamics of this rod is truncated and solved numerically. It is shown that this rod 
demonstrates the resonance behaviour and increases its amplitude proportionally to time. To explain this behaviour we analyze the 
modelling equation of the Euler type which describes the dynamics of an insulated vibrating mode. It is shown that this equation has 
an exact solution which qualitatively describes the mode behaviour, i.e. the amplitude of vibrations is growing proportionally to time. 

 

EQUATIONS AND BOUNDARY CONDITIONS OF THE ROD  

 DESCRIBED BY THE CLASSICAL MODEL  

 

In the classical case the longitudinal motions of the vibrating rod its dynamics is described by the wave equation: 
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where    ,u u t x  is longitudinal displacement of the rod,  ,F t x  is exciting force and 2 Ec  is speed of the wave 

propagation. It is assumed that the left end of the rod is fixed and its right end is free. The process of the rod growth is realized by 

means of deposition of the material of the rod on its right end. Hence, the boundary conditions are: 
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where   is a small parameter proportional to the speed of growth of the rod. 

To represent the boundary value problem (1)   (2) in the standard form it is necessary to use transformation    , ,t x y : 

; 1t xy ft      (3) 

In new parameters  , y  equation (1) is as follows: 
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case boundary conditions (2) becomes: 
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In the particular case   f  (linear growth of the rod) equation (4) is: 
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where the classical linear differential hyperbolic operator is: 
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THE RAYLEIGH-LOVE MODEL OF VIBRATING ROD 

 

Original equation of the vibrating rod in this model is: 
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where 
2

2 pIa
S


 ,   is the Poisson ratio, pI  is the polar moment of inertia and S is area of the cross-section of the rod. 

Transforming equation (8) by (3) we obtain:  
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where 
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THE RAYLEIGH-BISHOP MODEL OF VIBRATING ROD 

 

Original equation of the vibrating rod in this model is: 
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where 
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 , G  is the shear modulus of elasticity and   is the mass density of the rod.  

Transforming equation (11) by (3) we obtain:  
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where 
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   SOLUTION OF EQUATION (4) OF THE ROD  

IN THE CLASSICAL MODEL 

 

The numerical solution is obtained using the Galerkin-Kantorovich method with base functions 
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boundary conditions (5). The following representation of solution is used: 
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where  mC  are unknown functions of time. Furthermore we assume that in equation (4)  , 0F y   (free vibrations). Let us 

substitute expression (14) into equation (4), multiply it by 
 2 1
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, where 1,2, ,n N , and integrate the result over 

y  in the limits from 0 to 1. As a result we obtain the system of coupled ordinary differential equations: 
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(15) 

where 1,2, ,m N  and 
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Let us consider a particular case of the linear growth  f    of the rod. In this case the system of ordinary differential 

equations (15) is rewritten as follows (we restrict our consideration by 4N  ): 
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   MODELLING EQUATION FOR THE VIBRATING ROD 

 

It follows from system (17) that for all modes the following modelling equation could be composed: 
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This equation belongs to the Euler type of ordinary differential equation and its general solution is : 

   1 21 cosln1 sinln1W C C            (19) 

where  
2

1   . From solution (19) one can conclude that amplitude of linear vibration of the linearly growing undamped 

rod grows proportionally to time  . 

 

 NUMERICAL ANALYSIS 

 

For the purposes of numerical analysis of the linearly growing rod we composed the truncated system of 10N   ordinary 

differential equations of type (17). The initial conditions correspond to deformation of the rod on the first form of the corresponding 

non-growing rod of the unit length:  
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Solution of equations for the first four modes is shown in Fig. 1 - 4. 



 
 

Figure 1. Resonant behavior of vibration of the classical rod  

at the first mode (solution of the modelling equation) 

 

 

 
 

 
Figure 2. Resonant behavior of vibration of the classical rod 

 at the second mode 
 

 
 

 
Figure 3. Resonant behavior of vibration of the classical rod 

 at the third mode 
 



 
 

 
Figure 4. Resonant behavior of vibration of the classical rod 

 at the fourth mode 
 

Further the similar solutions with initial conditions (20) were performed for 4 10N  . It was found that solutions for the first 

four modes are visually indistinguishable from solutions in Fig. 1 - 4. Moreover, the graph of solution (19) of modelling equation 

(18) with initial conditions  0 1, 0 0dWW
d  is visually indistinguishable from the plot in Fig. 1. Results of numerical 

analysis of equations (8) and (11) of the Rayleigh-Love and Rayleigh-Bishop models obtained by the described method of 

transformation of the original partial differential to the systems of the ordinary differential equations demonstrate the qualitative 

similarities with the classical model. 

 

CONCLUSIONS 

 

In this article, the problem of vibration of growing rod is considered. Three different models: linear classical, Rayleigh-Love 

and Rayleigh-Bishop models are analyzed. It is assumed that the rod is fixed at one end and free at the other end and its length is 

increasing. It is demonstrated that these equations are hyperbolic and the amplitudes of vibration of the rod are growing with time. 

In a particular case, if the rod length is increasing proportionally to time the amplitudes are also growing proportionally to time. 

Further investigation demonstrates the second interesting effect: if a particular mode is excited it excites other modes and the 

mechanism of the modes excitation is asymmetric: the low frequency modes have higher amplitudes in comparison with the higher 

frequency modes. 
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