Exact Solutions and Numerical Simulation of Longitudinal Vibration of the Rayleigh-Love Rods with Variable Cross-Sections

M. Shatalov ${ }^{\text {a,b,c }}$, I. Fedotov ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, Tshwane University of Technology, P.O.Box X680, Pretoria 0001, South Africa
Email: shatalovm@tut.ac.za (corresponding author), fedotovi@tut.ac.za

${ }^{\mathrm{b}}$ Material Science and Manufacturing, Council for Science and Industrial Research (CSIR)
P.O. Box 395, Pretoria 0001, South Africa

Sensor Science and Technology (SST) of CSIR
mshatlov@csir.co.za
${ }^{\text {c D Department of Mathematics and Applied Mathematics, University of Pretoria }}$

Pretoria 0002, South Africa

Abstract-Exact solutions of equations of longitudinal vibration of conical and exponential rod are analyzed for the RayleighLove model. These solutions are used as reference results for
checking accuracy of the method of lines. It is shown that the method of lines generates solutions, which are very close to those that are predicted by the exact theory. It is also shown that the
accuracy of the method of lines is improved with increasing the number of intervals on the rod. Reliability of numerical methods is very important for obtaining approximate solutions of physical and technical problems. In the present paper we consider the Rayleigh-Love model of longitudinal vibrations of rods with conical and exponential cross-sections. It is shown that exact solution of the problem of longitudinal vibration of the conical rod is obtained in Legendre spherical functions and the corresponding solution for the rod of exponential cross-section is expressed in the Gauss hypergeometric functions. General solution of these problems is expressed in terms of the Green function. For numerical solution of the problem we use the method of lines. By means of this method the partial differential equations describing the dynamics of the Rayleigh-Love rod are reduced to a system of ordinary differential equations. For checking of accuracy of the numerical solution we chose special initial conditions, namely we assume that initial longitudinal displacements of the rod are proportional to one of eigenfunction of the system and initial velocities are zero. In this case vibrations of every point of the rod are harmonic and their amplitudes are equal to the initial displacements. Periods of these vibrations, obtained by the method of lines, are estimated and compared with the theoretically predicted eigenvalues of the rod, thus giving us estimations of accuracy of the numerical procedures.

Keywords-Longitudinal vibration of rods, variable cross-section, exact solution, method of lines.

InTRODUCTION

Reliability of numerical methods is very important for obtaining approximate solutions of physical and technical problems. That is why it is necessary to test these solutions whenever it is possible using exact solutions, obtained for some special cases. This is especially important for the class of dynamical problems described by the hyperbolic partial differential equations, which have always been considered as challenging problems for numerical methods. In the present paper we consider the Rayleigh-Love model of longitudinal vibrations of rods with conical and exponential cross-sections. It is shown that exact solution of the problem of longitudinal vibration of the conical rod is obtained in Legendre spherical functions and the corresponding solution for the rod of exponential cross-section is expressed in the Gauss hypergeometric functions. For numerical solution of the problem we use the method of lines. By means of this method the partial differential equations describing the dynamics of the Rayleigh-Love rod are reduced to a system of ordinary differential equations. For checking of accuracy of the numerical solution we chose special initial conditions, namely we assume that initial longitudinal displacements of the rod are proportional to one of eigenfunction of the system and initial velocities are zero. In this case vibrations of every point of the rod are harmonic and their amplitudes are equal to the initial
displacements. Periods of these vibrations, obtained by the method of lines are estimated and compared with the theoretically predicted eigenvalues of the rod, thus giving us estimations of accuracy of the numerical procedures.

EXACT SOLUTION OF EQUATIONS OF THE CONICAL ROD

Let us consider a rod of length and assume that its physical parameters such as mass density (ρ), modulus of elasticity (E) and Poisson ratio (η) are constant, but radius of cross-section is variable and depends on longitudinal coordinate ${ }^{(x)}$ of the rod: $r=r(x)$. In this case area of crosssection of the rod $(S=\boldsymbol{S}(x))$ and its polar moment of inertia $\left(T_{p} \Longrightarrow P_{p}(x)\right)$ are also variable. In the case of circular cross-
 longitudinal vibration [1] for longitudinal displacement $u(x, t)$ is as follows:

$$
\begin{align*}
& \rho(x) \frac{\partial^{\prime}(x t)}{\partial^{2}}-a^{2} \frac{\partial}{\partial}\left[I_{p}(x) \frac{\partial^{2} u(x, t)}{\partial^{2} \partial x}\right] \\
& E_{\frac{\partial}{\partial}}^{\partial}\left[s(x) \frac{\partial(x, t)}{\partial x}\right]=F(x, t) \tag{1}
\end{align*}
$$

Let us consider a steady-state vibration $\boldsymbol{z}(x)=\boldsymbol{x})$ $\left(i^{2}=-1\right)$. In this case the corresponding to (1) homogeneous equation is:

$$
\begin{align*}
& A^{2}\left\{S(x) U(x)-3 \frac{d}{d x}\left[I_{p}(x) \frac{d(x)}{d x}\right]\right\} \\
& +E^{\frac{d}{d x}}\left[S(x) \frac{d(x)}{d x}\right]=0 \tag{2}
\end{align*}
$$

If the generatrix of conical surface of the rod is described by equation $\rightarrow \mathcal{A}$, where ${ }^{\prime}$ is coordinate of the pole of the cone, $\bar{x}=x-x_{p}$, then $(x)=\left\{\mathcal{x}^{2}\right.$

where $c=\sqrt{E / \rho}$ - speed of wave propagation in cylindrical rod in accordance with the classical theory, and $\mu=\frac{\eta k \omega}{c \sqrt{2}}$ is the wavenumber of the conical rod which has dimension m^{-1}. Introducing new dimensionless variable $z=\mu \bar{x}$ and considering new function $V(z)=U\left(\frac{z}{\mu}\right)$ we transform (3) to equation:

which could be further transformed by means of transformation $V(z)=\frac{\boldsymbol{W}(z)}{z}$ to the form:

or

where

$$
\sigma=\frac{1}{2}+\sqrt{\frac{9}{4}+\frac{2}{(n k)^{2}}}
$$

Equation (6) is the Legendre equation which has solution

\& PG SE

where $P_{\sigma}(z), Q_{\sigma}(z)$ are Legendre functions of the first and second kind and $\overline{C_{1,2}}$ are arbitrary constants. In original variables solution of the problem of the Rayleigh-Love longitudinal vibration of the conical rod is rewritten as follows:

where $C_{1,2}=\frac{\bar{C}_{1,2}}{\mu}$

EXACT SOLUTION OF EQUATIONS OF THE EXPONENTIAL ROD

Let us now consider the Rayleigh-Love rod with the exponential generatrix so that radius of its cross-section is $x(x)=x=e^{x}$ In this case area of cross-section is ($)$ = and polar moment of inertia $I_{p}(x)=\frac{\pi K^{4} e^{40 x}}{2}$ In this case equation (2) is transformed to the following form:

where $\chi=\frac{1}{2}\left(\frac{\eta k \omega}{c}\right)^{2}$
. Exact solution of equation (9) could be obtained by means of it transformation to the Gauss hypergeometric equation in two steps. At the first step we make transformation $\lll)^{\beta}$, where ${ }^{\beta}$ is constant, which will be specially selected further. After this transformation equation (9) is rewritten as

At this stage we make a choice of β so that $\left.\beta^{2}+2 \boldsymbol{\beta}+\left(\frac{\omega}{c}\right)^{2}=0 \quad \beta_{1,2}=\alpha-1 \pm \sqrt{1-\left(\frac{\omega}{\alpha c}\right)^{2}}\right]_{\text {and }}$
we make an arbitrary choice of the sign, so we assume

At the second step we change variable $x \longrightarrow$ so that $z=\chi e^{2 \alpha x}$ and introduce function $W(z)=V\left[\frac{1}{2 \alpha} \ln \left(\frac{z}{\mu}\right)\right]$. In the new variables equation (10) is represented as follows:

where ${ }^{\beta}$ is calculated by formula (11).
Equation (12) could be rewritten in the standard Gauss hypergeometric equation form:

where
 $\underset{\text { and }}{c=1+} \frac{\beta}{\alpha}=\left[1+\sqrt{1-\left(\frac{\omega}{\alpha}\right)^{2}}\right]$

Solution of equation (13) is

where $2 R_{1}(a l a c ;)$ is the Gauss hypergeometric function with parameters ${ }^{a}, b, c$ and argument z and $\overline{C_{1,2}}$ are arbitrary constants.

In the original variables solution (14) could be rewritten as follows:

$$
\begin{align*}
& U(x)=C_{1} \cdot e^{-\alpha\left[1-\sqrt{1-\left(\frac{\omega}{a x}\right)^{2}}\right] \cdot x} \\
& \cdot{ }_{2} F_{1}\left(\frac{1}{2}\left[-1+\sqrt{1-\left(\frac{\omega}{a c}\right)^{2}}\right], \frac{1}{2}\left[3+\sqrt{1-\left(\frac{\omega}{a c}\right)^{2}}\right] ;\left[1+\sqrt{1-\left(\frac{\omega}{a c}\right)^{2}}\right] ; \mu \cdot e^{2 \alpha x}\right) \\
& +C_{2} \cdot e^{-o\left[1+\sqrt{1-\left(\frac{\omega}{a x}\right)^{2}}\right] \cdot x} \\
& \cdot{ }_{2} F_{1}\left(\frac{1}{2}\left[3-\sqrt{1-\left(\frac{\omega}{a c}\right)^{2}}\right], \frac{-1}{2}\left[1+\sqrt{1-\left(\frac{\omega}{a c}\right)^{2}}\right] ;\left[1-\sqrt{1-\left(\frac{\omega}{a c}\right)^{2}}\right] ; \mu \cdot e^{2 \alpha x}\right) \tag{15}
\end{align*}
$$

where $C_{1}=\bar{C}_{1}$ and $C_{\mathcal{E}}=\mathcal{X}^{\mathcal{L}^{c}} \cdot \overline{\boldsymbol{C}}_{\mathrm{I}}$ are new arbitrary constants.

COMPUTATIONAL SCHEME OF THE METHOD OF LINES FOR THE ROD WITH VARIABLE CROSS-SECTION

Let us return to equation (1) and rewrite it as follows:

Next we divide the rod in $N+1$ equal intervals, so that $x_{0}=0, x_{N+1}=l$, and compose an approximate finite difference scheme for x-differentiation at an arbitrary inner point ${ }^{1},(x=12=-\lambda)$:

$$
\begin{gather*}
\frac{\partial k}{\left.\partial\right|_{x=k}}=\frac{w_{k+1}-u_{k-1}}{2 \cdot \Delta x} \\
\frac{\partial u_{k}}{\partial \psi_{x \rightarrow k}} \approx \frac{\psi_{k}-\frac{2 u_{k+1}+z_{k+1}}{\Delta^{2}}}{} \tag{17}
\end{gather*}
$$

where $\Delta x=\frac{l}{N+1}$ is length of the intervals of the rod.
Substituting (17) in (16) and regrouping terms we obtain the system of N ordinary differential equations:

where $^{J_{k}^{(1)}=\frac{\eta^{2} \cdot d I_{k}}{2 \cdot S_{k} \cdot \Delta x}, \quad J_{k}^{(2)}=\frac{\eta^{2} \cdot I_{k}}{S_{k} \cdot \Delta x^{2}}, \quad J_{k}^{(3)}=\frac{E \cdot d S_{k}}{2 \cdot \boldsymbol{\rho} \cdot S_{k} \cdot \Delta x}, ~}$ $J_{k}^{(4)}=\frac{E}{\rho \cdot \Delta x^{2}}, \quad S_{k}=S_{\left(x x_{k}\right)}, \boldsymbol{I}_{k} F_{p}\left(x_{k}\right), \quad d S_{k}=\left.\frac{d S(x)}{d x}\right|_{x=x_{k}}$, $d I_{k}=\left.\frac{d I_{p}(x)}{d x}\right|_{x=x_{k} \text { and }} f_{k}(t)=\frac{1}{\rho S_{k}} \boldsymbol{F}\left(t, x_{k}\right)$.

For the conical rod $\mathbb{P} \Rightarrow \mathbb{R}(x-x)^{2}$ (remember that ${ }^{x}$, is the coordinate of the pole of the cone),

$$
\alpha F_{2} \geq A_{2}
$$

$$
T_{1}=\sin (x=x)
$$

$c_{1}=2 \vec{x}(x-x)$

$$
h_{k}^{9}=\frac{\beta R-(x-x)}{\Delta x}
$$

$f_{k}^{(2)}=\frac{33 \cdot k^{2}\left(x_{k}-x_{p}\right)^{2}}{2 \Delta \Delta^{2}} \quad J_{k}^{(3)}=\frac{E}{\rho\left(x_{k}-x_{p}\right) \cdot \Delta x}$
$J_{k}^{(4)}=\frac{E}{\rho \cdot \Delta x^{2}}$

 $J_{k}^{(2)}=\frac{\pi \cdot \lambda^{2} \cdot e^{20 a_{k}}}{2 \cdot \Delta x^{2}} J_{k}^{(3)}=\frac{E \cdot \alpha}{\rho \cdot \Delta x}$ and $J_{k}^{(4)}=\frac{E}{\rho \cdot \Delta x^{2}}$.
 the boundary conditions. For example, for fixed ends
 (or) $\left.\frac{\partial u}{\partial x}\right|_{x=l}=0$. Derivatives at the end points are approximated as follows [4, 5]:
and hence, for free boundary conditions $\boldsymbol{u}_{0}=\frac{4 \boldsymbol{u}_{1}-\boldsymbol{u}_{2}}{3}$ (for $\left.\frac{\partial u}{\partial x}\right|_{x=0}=0 \quad, \quad$ and \quad hence, $\quad \ddot{u}_{0}=\frac{4 \ddot{u}_{1}-\ddot{u}_{2}}{3}$) and $\boldsymbol{u}_{N+1}=\frac{4_{N} \rightarrow \boldsymbol{u}_{N+1}}{3} \quad$ (for $\left.\quad \frac{\partial u}{\partial x}\right|_{x=1}=0 \quad$, and hence, $\ddot{u}_{N+1}=\frac{4 \ddot{u}_{N}-\ddot{u}_{N H}}{3}$
). For different boundary conditions the corresponding values ${ }^{\|_{1}}, u_{N+1}$ and ${ }^{i_{1}}, u_{N+1}$ could be estimated similarly.

EXAMPLES

For the conical Rayleigh-Love rod with fixed ends ($(\varnothing)=\boldsymbol{\in}(\boldsymbol{Q})$, we obtain the following characteristic system of equations (see (8)):

$$
\begin{equation*}
D(\omega)=\mathrm{dtt}\left\|\frac{P_{\sigma}\left[-n \omega x_{p} x^{2}\right]}{\left(-x_{p}\right)} \quad \frac{Q_{0}\left[-n \omega x_{p} x_{p}\right]}{\left(-x_{p}\right)}\right\| \frac{P_{\sigma}\left[\frac{n k \omega}{\sqrt{2}}\left(l-x_{p}\right)\right]}{\left(l-x_{p}\right)} \quad \frac{Q_{\sigma}\left[\frac{n k \omega}{c \sqrt{2}}\left(l-x_{p}\right)\right]}{\left(l-x_{p}\right)} \|=0 \tag{20}
\end{equation*}
$$

From this equation we calculate eigenvalues ${ }^{0}{ }^{n}$ and eigenfunctions:

$$
x(x)=
$$

Let us consider the conical rod with slope $k=0.1$. Its left end is fixed and located at $x_{0}=0 \mathrm{~m}$, right end is also fixed and
located at $x_{\mathrm{N}+\mathrm{H}}=\boldsymbol{l}=\mathbf{1}_{\mathrm{m}}$. The pole of the rod is located at $x_{p}=-0.5 \mathrm{~m}$. Modulus of elasticity of the rod is $E=10018$ Pa, mass density $\rho=8.5 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and Poisson ratio is $\eta \approx 0.33$ (for calculation the Poisson ratio was taken with eight digits after coma as 770 ensens because at this
value

$$
\sigma=\frac{1}{2} \cdot \sqrt{\frac{9,2}{4(1 / 2)^{2}}} \approx 1+116
$$

is very close to integer value $\sigma=42$, which substantially simplified calculations of the Legendre functions $P_{\sigma}(z)$ and $Q_{\sigma}(z)$. Simulation of the problem was performed in MATHCAD14 which has the built-in function $\log \left(\sigma_{3} x\right)$ for calculation of $P_{\sigma}(z)$ with integer σ. Function $Q_{\sigma}(z)$ with integer σ calculated as follows [4, 5]:

Figure 1. Eigenvalues of the Rayleigh Love (solid red line)
and classical (dotted blue line) conical rods.

Distribution of eigenvalues of the problem (equation (20)) is shown in Fig. 1 (solid line) where it is compared with the eigenvalues distribution of the rod with the same geometric and physical properties but considered in the frames of the classical theory (dotted line).

One can see that eigenvalues of the conical rod calculated according to the Rayleigh-Love theory are lower than the corresponding eigenvalues calculated according to the classical theory. Furthermore the eigenvalues considered in the frames
of the Rayleigh-Love theory have the limiting point which in this case is approximately equal to 15.438 kHz . First two eigenvalues of the Rayleigh-Love conical rod are approximately equal to the corresponding eigenvalues of the classical rod. First five eigenvalues of the Rayleigh-Love conical rod are (in the brackets we give corresponding eigenvalues of the classical conical rod): $f_{1}=\mathbf{1 . 7 0 9} \mathrm{kHz}$ $(1.715 \mathrm{kHz}), f_{2}=3388 \mathrm{kHz}(3.430 \mathrm{kHz}), f_{3}=5008 \mathrm{kHz}$ $\left.(5.145 \mathrm{kHz}), f_{4}=6546 \mathrm{kHz}(6.860 \mathrm{kHz}),\right), f_{4}=7.981 \mathrm{kHz}$ (8.575 kHz). Eigenfunctions corresponding to the first five eigenvalues are shown in Fig. 2. These eigenfunctions were plotted using exact solution (8).

Figure 2. First five eigenfunctions of the Rayleigh-Love conical rod.

Surface Plot of Rod' Vibration

U
Figure 3. Free vibrations of the Rayleigh-Love conical rod at the first mode.

Let us consider free vibrations of the Rayleigh-Love conical rod at $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{t})=0$, corresponding to initial conditions

$$
\boldsymbol{z}(x)_{t}=\mathcal{X}(x),\left.\frac{\partial u(x, t)}{\partial t}\right|_{t=0}=0 \text {. The analysis was }
$$ performed by means of expressions (20) - (21) and by means of the method of lines in which the conical rod was divided in NH I 1 equal intervals and numerical integration of the system of $N \neq$ ordinary differential equations was performed by the Adams-backward differentiation formula method with tolerance 10^{-15}. All solutions gave the similar results which are shown in Fig. $3-7$. In Fig. 3 we assumed that initial condition is proportional to the first eigenfunction

(see Fig. 2), the time integration was performed in interval

$$
t \in[, 27]
$$

$$
T_{1}=\frac{2 \pi}{\omega_{1}}
$$ and ${ }^{0} 1$ is the first eigenvalue.

Surface Plot of Rod' Vibration

U

Figure 4. Free vibrations of the Rayleigh-Love conical rod at the second mode.

Surface Plot of Rod' Vibration

U
Figure 5. Free vibrations of the Rayleigh-Love

Time interval $2 \cdot T_{1}$ is subdivided into 1000 subintervals. The Fourier analysis of the time realization shown that absolute difference between the exact eigenvalue and eigenvalue calculated by the method of lines is $\mathscr{X}_{1}=\mathrm{OCS}{ }^{\circ} \mathrm{Hz}$ which

corresponds
 to (A5) O TETS

For $\overrightarrow{A D} \boldsymbol{D}_{\text {intervals the }}$ results of solution of the system of Noe ordinary differential equation are $\boldsymbol{X}_{1}=\mathbf{O O V} \quad \mathrm{Hz}$ and Q 3 . In Fig. 4 the initial condition were taken proportional to the second eigenfunction $\mathcal{L} \rightarrow)_{\text {(Fig. 2), the time integration was performed }}$ in interval $\mathbb{C Z}]_{\text {seconds, where }}^{T_{2}=\frac{2 \pi}{\omega_{2}}}$ and ${ }^{\theta_{2}}$ is the second eigenvalue. Results of the Fourier analysis of the time realization shown that absolute

Surface Plot of Rod' Vibration

U

Figure 6. Free vibrations of the Rayleigh-Love conical rod at the fourth mode.

U
Figure 7. Free vibrations of the Rayleigh-Love conical rod at the fourth mode.
difference between the exact eigenvalue and eigenvalue calculated by the method of lines is $\mathscr{F}_{2}=0.54 \mathrm{~Hz}$ which corresponds to
 intervals the results of solution of the system of \boldsymbol{N} ordinary differential equation are $\boldsymbol{x}=\mathbf{O} \boldsymbol{B}^{\boldsymbol{E}} \mathrm{Hz}$ and (as) ORETBy were taken proportional to the second eigenfunction

(Fig. 2), the time integration was performed in the time interval $\in \in \mathbb{B}_{3}$ seconds, where $T_{3}=\frac{2 \pi}{\omega_{3}}$
and Ω_{3} is the third eigenvalue. Results of the Fourier analysis of the time realization shown that absolute difference between the exact eigenvalue and eigenvalue calculated by the method of lines is $x_{3}=1.5 \mathrm{~Hz}$ which corresponds to 5 intervals the results of solution of the system of N ordinary differential equation are $\boldsymbol{f}_{3}=\mathbf{O E s} \mathrm{Hz}$ and A5 . In Fig. 6 the initial condition were taken proportional to the second eigenfunction $\leq(x)=3$
(Fig. 2), the time integration was performed in the time interval $\mathbb{E}\left[\mathbb{Z}_{4}\right.$ seconds, where $T_{4}=\frac{2 \pi}{\omega_{4}}$ and ${ }^{0^{4}}$ is the fourth eigenvalue. Results of the

Fourier analysis of the time realization shown that absolute difference between the exact eigenvalue and eigenvalue calculated by the method of lines is $f_{4}=392 \mathrm{~Hz}$ which corresponds to
 intervals the results of solution of the system of $N=$ ordinary differential equation are $\boldsymbol{x}_{4}=\mathrm{OOS} \mathrm{Hz}$ and (45) (3)

In Fig. 7 the initial condition were taken proportional to the second eigenfunction $\mathcal{S}($ (see Fig. 2), the time integration was performed in the time interval $t \in \mathbb{2}]_{\text {seconds, where }}$ $T_{5}=\frac{2 \pi}{\omega_{5}}$
and ${ }^{0}{ }_{5}$ is the fifth eigenvalue. Results of the Fourier analysis of the time realization shown that absolute difference between the exact eigenvalue and eigenvalue calculated by the method of lines is $x_{5}=7.15 \mathrm{~Hz}$ which corresponds to
 intervals the results of solution of the system of $N=$ ordinary differential equation are $X_{5}=\mathbf{1 . 7 7} \mathrm{Hz}$ and (ast 5 ? 3 .

One can see that the results of numerical simulation by the method of lines are very close to the theoretically predicted results. Accuracy of estimations is increasing with increasing of the number of intervals of the rod's length. Hence, we can conclude that the method of line is a reliable numerical method of simulation of partial differential equations with mixed time-spatial derivatives.

Conclusions

Two exact solutions of equations of motion were derived for the case of longitudinal vibrations of the Rayleigh-Love rod. The first exact solution was obtained for the conical rod and expressed in the Legendre functions. The second exact solution was obtained for the exponential rod and expressed in the Gauss hypergeometric functions. The general solutions of the problem are formulated in terms of two alternative Green functions. The computational scheme of the method of lines was formulated for the case of the Rayleigh-Love rod with
variable cross-section. Solutions obtained using the method of lines for the conical rod are compared with the exact solutions of the problem. It was shown that the method of lines produces results which are very close to the corresponding exact solutions. It was also shown that the accuracy of the method of lines is increasing with increasing of number of intervals on the rod. The conclusion was formulated that the method of lines generates reliable and accurate results for partial differential equations with mixed time-spatial derivatives.

References

[1] I. A. Fedotov, A. D. Polyanin, M. Yu. Shatalov, "Theory of Free and Forced Vibrations of a Rigid Rod Based on the Rayleigh Model", Doklady Physics, Vol. 52, 11, 607-612 (2007).
[2] W. E. Schiesser, The Numerical Method of Lines: Integration of Partial Differential Equations, Academic Press, San Diego, (1991).
[3] W.E. Schiesser and G. W. Griffiths, A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab, Cambridge University Press, (2009).
[4] A. D. Polyanin, A. V. Manzhirov, Handbook of Mathematics for Engineers and Engineers, Chapman \& Hall/CRC Press, (2006).
[5] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Formulas, National Bureau of Standarts, Applied Mathematics Series, 55, (1964).

