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Abstract—Multidimensional embedding is a technique useful
for characterizing spectral signature relations in hyperspectral
images. However, such images consist of disjoint similar spectral
classes that are spatially sensitive, thus presenting challenges to
existing graph embedding tools. Robust parameter estimation is
often difficult when the image pixels contain several hundreds
of bands. In addition, finding a corresponding high quality
lower dimensional coordinate system to map signature relations
remains an open research question. We answer positively on
these challenges by first proposing a combined kernel function
of spatial and spectral information in computing neighborhood
graphs. We further adapt a force field intuition from mechanics
to develop a unifying nonlinear graph embedding framework.
The generalized framework leads to novel unsupervised multi-
dimensional artificial field embedding techniques that rely on
the simple additive assumption of pair-dependent attraction and
repulsion functions. The formulations capture long range and
short range distance related effects often associated with living
organisms and help to establish algorithmic properties that mimic
mutual behavior for the purpose of dimensionality reduction. In
its application, the framework reveals strong relations to existing
embedding techniques, and also highlights sources of weaknesses
in such techniques. As part of evaluation, visualization, gradient
field trajectories, and semisupervised classification experiments
are conducted for image scenes acquired by multiple sensors at
various spatial resolutions over different types of objects. The
results demonstrate the superiority of the proposed embedding
framework over various widely used methods.

I. INTRODUCTION

Airbone and space-based sensors continue to enable greater
improvement in quality image acquisition with the goal of
providing detailed information for material identification. The
images are characterized by high spectral resolution which
generates several hundred of bands capturing the electromag-
netic reflectance properties of different materials. However,
having many bands (or channels) poses several challenges
to conventional land cover studies that include classifica-
tion algorithms due to the curse of dimensionality. Other
additional challenges include the inherent nonlinear charac-
teristics that stem from bidirectional reflectance distribution
function(BRDF) [1]. BRDF often leads to variations in spectral
reflectance of different classes as a function of position in
the landscape, depending on the local topology. Furthermore,
for imagery that is acquired over coastal environments (e.g.
coastal wetlands), the variable presence of water in pixels as
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a function of position in landscape presents more sources of
nonlinearities. Recent research efforts have identified dimen-
sionality reduction and manifold learning techniques as key
for preprocessing hyperspectral images.

Notwithstanding individual differences in efficiency, accu-
racy, and application to hyperspectral images, dimensionality
reduction methods share some features including better com-
pression, better visualization, and extraction of useful classifier
input features. Widely used techniques include linear based
formulations that are easy to implement, e.g. principal compo-
nent analysis(PCA) [2], the multidimensional scaling(MDS) [3],
the local Fisher discriminant analysis (LFDA) [4], and the local
Fisher discriminant analysis (SELF) [5]. Further developments
in hyperspectral sensing have enabled the acquisition of greater
details about objects on the earth surface which poses a chal-
lenge for linear dimensionality reduction techniques. Better
information extraction can be accomplished by employing
nonlinear methods such as the maximum variance unfold-
ing (MVU) [6]- a method that computes maximum variance
embedding maps subject to preserving local distances, the
locally linear embedding(LLE) [7] - a method that represents
the relations of each neighborhood by linear coefficients that
best reconstruct each data point from its neighbors, and the
laplacian eigenmaps Laplacian(LE) [15], which draws on the
correspondence between the graph Laplacian, the Laplace
Beltrami operator on a manifold, and the connections to the
heat equation, to devise a geometrically motivated algorithm
for constructing a representation for data sampled from a low
m-dimensional manifold embedded in a higher d-dimensional
space. Both LLE, and LE solution spaces consist of the
trailing eigenvectors obtained by the eigendecomposition of
the transformed coefficient and the Laplacian matrices, re-
spectively. The assumption of linearity on the local neighbor-
hoods of data and their piecewise combination to form global
nonlinear structures was used to propose isometric feature
mapping(Isomap) [8]. As in LLE, Isomap takes as input
a high dimensional neighborhood graph whose edge weights
are computed from pairwise distances to characterize object
similarities. It then obtains a globally optimal coordinate sys-
tem for the nonlinear data through an MDS solution. Recently,
probabilistic methods have also been proposed. These include
the stochastic neighbor embedding(SNE) [12], a method that
represents each object by a mixture of widely separated low
dimensional factors capturing some of the local structure, and
establishes global formations of clusters of similar maps. The
method called student t-distribution based stochastic neighbor
embedding(tSNE) [11] has been proposed as a variant of SNE
that assumes the probability relations in the lower dimensional
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space to be inversely proportional to the distance between pairs
of maps.

Each of these techniques represents an attempt to search
for a coordinate representation that resides on the nonlinear
data manifold. Very few of the existing methods have been
successfully used in the analysis of hyperspectral data. For
example, the hybrid isometric mapping (Isomap) and locally
linear embedding(LLE), were both combined to develop an
algorithm that can handle the compression and classification
of large sample images [1]. More recently, a comparative
study was conducted to evaluate the effect of various nonlinear
manifold learning algorithms when reducing the dimension of
hyperspectral data [13]. The results obtained from these studies
highlight the performance improvement on classification tasks.
However, they also strongly suggest the inability of existing
dimensionality reduction methods to take advantage of the
disjoint class structure that exists in hyperspectral imagery.
Embedding algorithms with excessive inability to discriminate
dissimilar objects (or handle disjoint classes) can be character-
ized as suffering from the crowding problem [11]. Within the
hyperspectral context, the crowding problem can be defined
as the tendency of collapsing pixel maps towards the center
of the embedding space. This phenomenon causes embedding
algorithms to fail to establish discriminative boundaries that
are required for improved classification accuracy.

In this study, we show that the crowding of pixels can be
handled in two phases. We first propose a general embedding
framework that can be used as a platform for developing new
dimensionality reduction models. Secondly, we show that the
disjoint nature often present in hyperspectral images is key
to mitigating the crowding problem and can be encoded onto
the neighborhood graph through a combined spectral-spatial
kernel function.

The new dimensionality reduction framework is presented
as the multidimensional artificial field embedding(MAFE),
with an optimization scheme that aims to establish a min-
imum energy configuration state of the high dimensional
neighborhood graph. The framework draws on the force field
intuition from mechanics, whereby pair-dependent attraction
and repulsion functions are designed to reflect long range
and short range force effects. The functions are superposed to
generate an odd-function that invokes a pairwise interaction
force between pairs of maps in the embedding space. The
framework benefits from the design of simple embedding al-
gorithms whose objective functions are easier to differentiate.
As a second contribution, we present a novel spatially-sensitive
kernel function for computing high dimensional neighborhood
graphs. The kernel function encodes spatial details that are
essential for maintaining disjoint spectral classes in hyper-
spectral embedding applications. The final embedding algo-
rithm enables lower dimensional pixel maps with high similar
values to form segmented regions that are sensitive to spatial
details. Furthermore, we identify links to existing approaches
that includes SNE [12], tSNE [11], and the recent spherical
stochastic neighbor embedding(sSNE) [19], all methods ex-
hibiting powerful data visualization capabilities.

This paper is organized as follows: Section II provides a
brief review of the force field intuition, and subsequently

presents a general dynamic system based graph embedding
approach. Section III describes reformulations of some exist-
ing methods within the dynamic system framework. Section
IV describes the functional forms used in formulating the
new multidimensional artificial field embedding - bounded
repulsion(MAFE-BR) model. Section V describes the bilateral
kernel function for inducing spatial-sensitivity to the neighbor-
hood graph. The optimization algorithm and its properties are
presented in Section VI. Experimental results are summarized
in Section VII. Section VIII provides a discussion and future
work. Conclusions are presented in Section IX.

II. MAFE FORMULATION

Force field formulations are widely used in robotics studies,
e.g. [20]–[22] in which related models are described to study
the stability and motion planning of robots, respectively. Here
we make an analogy of objects moving in a coordinate space
and apply this framework to devise a general approach to graph
based embedding. MAFE imagines each image pixel to be
associated with a vertex of a high dimensional neighborhood
graph that has a corresponding optimal map in the lower
dimensional space. In each map, we further consider a particle
in motion whose movement determines the position of the
embedding map. Each embedding map has a dual role - both
attractive and repulsive, that is dynamically determined by the
changing distance based interactions during the optimization.
We treat the dimensionality reduction problem as a task that
requires solving N unconstrained optimization problems to
obtain the minimum-energy configuration state which yields
the graph topology that preserve neighborhood relations.

A. MAFE General Graph Embedding Framework

Let G = (E ,V) be a finite undirected graph with vertices V ,
edges E and no self loops. We designate elements of E as ideal
springs. Let S = {(wij , kij)} be the spring properties between
each vertex i and j for all {vi, vj} ∈ E , where wij is the
normalized length without compression or extension computed
for each observed pair in Y = {y1,y2, · · · ,yN}, with yi ∈
Rd, and kij = 1 is the force constant. A graph with relation
S is called a neighborhood spring graph and we can denote it
by GS .

An embedding of GS is an assignment of vertices into
a m-dimensional Euclidean space Rm (i.e. m describes a
lower dimensional space). Let Z = {z1, z2, · · · , zN}T be
the assigned embedding of GS , where zi ∈ Rm is the
position of vertex i’s map. When framed as a graph embed-
ding task, where on each vertex we imagine a particle and
the edges as representing spring force laws, the problem of
dimensionality reduction simply becomes that of establishing
a minimum energy embedding that is governed by the structure
in W = [wij ]. We hope such an embedding yields the maps
that preserve pairwise distances described by the neighborhood
graph GS .

Finding such a mapping is at the heart of every dimen-
sion reduction model, and it is the subject that we discuss
next. We first give a mechanics interpretation of the graph
embedding framework as follows: imagine the existence of a
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particle on every zi ∈ Z, that is moving with the velocity
of Z’s centroid. With the following change of notation to
denote the embedding positions as a state of a graph, we let
Z =

{
zT1 , z

T
2 , · · · , zTN

}T
be a long vector in RNm. Thus,

we only consider the motion dynamics of individual maps,
not the motion of the group. We assume that all individual
maps move simultaneously, and each map i is aware of the
position and the strength of forces that exist with positions of
all other vertices. The positions, zi’s, of individuals relative
to the group centroid can change through the rearrangement
due to pair-dependent interactions. Assuming such motion is
to change in a continuous time, the velocity as determined by
the effect of group members on each vertex i, at position zi
is described by

żi =
∑
j 6=i

F ij(zi − zj), i = 1, · · · , N (1)

where F ij(zi − zj) = (zi −
zj)
{
F ijr (‖zi − zj‖)− F ija (‖zi − zj‖)

}
describes pairwise

symmetric interactions between the ith and jth maps.
Symmetry of the function follows from the fact that if map i
is attracted to map j, then j is attracted to i. F ijr : R+ → R+

denotes the magnitude of the repulsion term, whereas
F ija : R+ → R+ represents the magnitude of the attraction
term.

B. Embedding Force Fields Function Properties

We assume that at large distances, the attraction dominates,
and at short distances, the repulsion dominates while in
between there is a unique distance at which the attraction and
the repulsion balance. A suitable candidate for F ij(zi − zj)
should obey the following embedding force field properties:

1) There is a pair-equilibrium distance εij at which
F ijr (εij) = F ija (εij), else F ija (‖zi − zj‖) > F ijr (‖zi −
zj‖) for ‖zi − zj‖ > εij or F ija (‖zi − zj‖) <
F ijr (‖zi − zj‖) for ‖zi − zj‖ < εij .

2) F ij is an odd function, i.e. F ij(−(zi − zj)) =
−F ij(zi− zj), therefore symmetric with respect to the
origin.

3) There exist pair dependent functions U ijatt → R+ → R+

and U ijrep → R+ → R+ such that

∇zi
U ijatt(‖zi − zj‖) = F ija (‖zi − zj‖)(zi − zj)

∇zi
U ijrep(‖zi − zj‖) = F ijr (‖zi − zj‖)(zi − zj)

U ijatt and U ijrep are viewed as artificial attraction and repulsion
potential energies. The combined term (zi−zj)F ijr (‖zi−zj‖)
represents the actual repulsion, whereas the term −(zi −
zj)F

ij
a (‖zi−zj‖) represents the actual attraction. The vector

(zi − zj) establishes the alignment for the interaction forces
to act along opposing directions. The functions describe the
reactive approach by potential fields in which the trajectories
of the particles motion are not planned explicitly. Instead the
interactions of every map with its neighbors is a superposition
of fields that enable its position to cope with the changing en-
vironment of other maps. We can rewrite the motion dynamics

to reflect the resultant forces on each individual map as

żi = −
∑
j 6=i

{
∇zi

U ijatt(‖zi − zj‖)−∇zi
U ijrep(‖zi − zj‖)

}
The assumption of each map moving along the negative gra-
dient implies that, to achieve a minimum-energy configuration
of a graph GS , we should choose the attraction and repulsion
potentials such that the minimum of U ijatt(‖zi − zj‖) occurs
on or around ‖zi − zj‖ = 0, whereas the minimum of
−U ijrep(‖zi − zj‖) (or maximum of U ijrep(‖zi − zj‖)) occurs
on or around ‖zi − zj‖ → ∞, and that the minimum of the
combination U ijatt(‖zi − zj‖) − U ijrep(‖zi − zj‖) occurs at
‖zi − zj‖ = εij .

The above framework can be written to represent the
reactive potentials on each individual map i as

Ui(Z) =
∑
j 6=i

{
U ijatt(‖zi − zj‖)− U ijrep(‖zi − zj‖)

}
(2)

while the total superposed potential function on GS is defined
by

U(Z) =

N∑
i=1

Ui(Z) (3)

By adapting the above functional properties, new embedding
models can simply be derived by solving the optimization
problem of the form

Z? = argmin
Z∈RNm

U(Z) (4)

With some parameter adjustments on F ij(·), the embedding
maps will thus converge to a minimum-energy configura-
tion that yields the required dimension reduced maps. The
minimum-energy configuration state is described by Z?. This
state defines the central embedding points Z? where the
pairwise repulsion and attraction forces balance. The following
section makes brief connections with existing techniques to
highlight the general nature of MAFE’s framework.

III. MAFE CONNECTIONS TO EXISTING METHODS

In this section, we present a MAFE interpretation of stochas-
tic neighbor embedding(SNE) [12] and the student-t stochastic
neighbor embedding( [11]). The MAFE interpretation of the
spherical stochastic neighbor embedding(sSNE) [19] method
follows the same approach.

A. Stochastic Neighbor Embedding

Stochastic neighbor embedding ( [12]) is a method for
preserving probabilities on lower dimensional manifolds that
are nonlinear. SNE assumes that edge weights are antisym-
metric probabilities wij (i.e. wij 6= wji) of pairs of vertices
being neighbors in the higher dimensional space. However,
our presentation focuses on the symmetric version where
wij = wji for all pairs of vertices. The high dimensional edge
weights are defined using the Gaussian functions of the form

wij =
exp{−‖yi−yj‖

2

2σi
}∑

r=1,r 6=i exp{−‖yr−yi‖2
2σi

}
(5)
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where σi is computed using a binary search method ensur-
ing that the entropy of the distribution Pi is approximately
log(k), with k being the effective number of neighbors. In the
lower dimensional space, we also assume symmetric Gaussian
probabilities ŵij (i.e. ŵij = ŵji), between observation maps.
Therefore the embedding graph weights are computed as

ŵij =
exp{−‖zi − zj‖2}∑

r=1,r 6=i exp{−‖zr − zi‖2}
(6)

Each zi ∈ Rm is the corresponding lower dimensional map
of the observation yi ∈ Rd . SNE proceeds to compute for the
maps by minimizing a sum of Kullback Leibler(KL) objective
functions∑

i

KL(Pi||Qi) =
∑
i

∑
j 6=i

wij log(
wij
ŵij

) (7)

The goal of (7) is to minimize the distortion between each of
the N high dimensional neighborhood distributions Pi’s and
their corresponding lower dimensional neighborhood distribu-
tions Qi’s. Embedding results obtained from this approach
have so far proven to be superior when compared to methods
that include locally linear embedding(LLE) [7], MDS [3], and
Isomap [8]. However, the optimization algorithm is very
unstable, and leads to a lot of experimentally defined param-
eters for attaining meaningful results. A further expansion on
(7) while ignoring terms that do not depend on ŵij , reveals
the log-sum term as a source of difficulty when computing
the gradient and increases the nonlinearity of the model. The
expansion of (7) leads to

USNE = −
∑
i,j 6=i

wij log ŵij

=
∑
i,j 6=i

wij‖zi − zj‖2 + log
∑
r 6=i

exp{−‖zr − zi‖2}

Computing the negative gradient yields the maps motion
dynamics equation

żSNE
i = −4

∑
j 6=i

(zi − zj)

{
wij −

exp{−‖zi − zj‖2}∑
r 6=i exp{−‖zr − zi‖2}

}
where (8) describes a superposition of two potential energy
functions whose gradients are given by (8). We identify
the attractive force, −wij(zi − zj), and a repulsion force
(zi−zj) exp{−‖zi−zj‖2}∑

r=1,r 6=i exp{−‖zr−zi‖2} . The interpretation of (8) follows the
intuition of MAFE, that is at longer distances, the embedding
maps start to form clusters as determined by the attraction
forces, while the repulsion forces are very negligible. As
‖zr − zi‖ → 0 for each (i, r) pair, the repulsion magnitude
dominates the interaction force vector. The convergence of the
algorithm is established when the forces balance.

B. t-Stochastic Neighbor Embedding

t-Stochastic Neighbor Embedding( [11]) is similar to SNE
except that the lower dimensional maps are assumed to be
better modeled by a Student t-distribution of degree one.
This simple modification leads to a complete improvement

of results over SNE. The improvement is due to the pair-
dependent inverse distance relation introduced by the Student
t-distribution. As such ŵij is defined as

ŵij =
(1 + ‖zi − zj‖2)−1∑

r=1,r 6=i(1 + ‖zr − zi‖2)−1
(8)

tSNE formulates its cost function as in (7) and proceed to
compute for the maps by minimizing a sum of Kullback
Leibler(KL) objective functions

N∑
i

KL(Pi||Qi) =
∑
i

∑
j 6=i

wij log(
wij
ŵij

) (9)

Computing the negative gradient yields

żtSNE
i = −4

∑
j 6=i

 wij(zi − zj)

1 + ‖zi − zj‖2
−

(zi−zj)
(1+‖zi−zj‖2)2∑
r 6=i

1
(1+‖zr−zi‖2)


This derivation demonstrates that tSNE is a special

case MAFE model. We can identify the attractive force
−(zi − zj)

wij

1+‖zi−zj‖2 , and a repulsion force (zi −
zj)

(1+‖zi−zj‖2)−2∑N
r=1,r 6=i(1+‖zr−zi‖2)−1 . The interpretation of (10) fol-

lows the intuition of MAFE, that is at longer distances the
embedding maps start to form clusters as determined by the
attraction forces, while the repulsion forces are very negligible.
As ‖zr−zi‖ → 0 for each (i, r) pair, the repulsion magnitude
dominates the interaction force vector. The convergence of the
algorithm is established when the forces balance.

IV. NEW SUPERPOSED MAFE MODEL

A. Embedding Attractive Artificial Potential

The fundamental idea behind a superposed artificial field
embedding is to treat the pair-equilibrium distances εij for
vertices in GS as attractive wells. Viewed another way, we
think of the minimum-energy configuration between maps
i and j as a sink of a potential function. Maps with high
similarities in the observed neighborhood graph are pulled (by
attraction forces) towards the common sink in the embedding
space. The attractive potential functions that we consider can
be seen as bounded from below to allow for the existence of
constant attraction effects, that is U ijatt(‖zi−zj‖) ≥ α, where
α is a positive constant ∀ ‖zi−zj‖. For this paper, we choose
attractive potentials of the form

U ijatt(‖zi − zj‖) = ξawij‖zi − zj‖p (10)

For values 0 < p ≤ 1, the pairwise attractive function is conic
in shape and the resulting attractive force field has constant
cluster formation amplitude determined from wij except at
zi = zj , where it is singular. ξa is an attraction magnitude
related parameter. Fig.2, shows the attractive potential energy
generated from equation (10) for p = 2, ξa = 1, and wij =
0.5.
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Fig. 1. Dashed lines show the function I+(z), and the solid curves show
different forms of continuous decaying functions suitable for approximating
I+(z).

B. Embedding Repulsive Artificial Potential

The basic idea in designing a repulsive potential function
U ijrep is to think of an indicator function

I+(‖zi − zj‖) =
{

0 ‖zi − zj‖ > εij
∞ ‖zi − zj‖ ≤ εij . (11)

a nonincreasing function of distance. As the distance between
pair-points increases, (11) is designed to have negligible
influence on maps (i.e. maps are in long range zone where
F ijr < F ija ). When the distance is small, the idea is to
generate a barrier force between maps (i.e. maps are in the
short range zone where F ijr > F ija ). Equation (11) best
captures this notion. However it is not differentiable. We
require its approximation by a differentiable function whose
gradient can create a repulsion force F ijr with magnitude
inversely proportional to the distance between pairs of maps
i.e. ‖F ijr (zi−zj)‖2 = 1

dist(zi,zj)
. Such approximations can be

chosen from e.g. Gaussian, Exponential, Cauchy, Hyperbolic
Tangent and Inverse distance power functions. The behavior
of such functions in approximating I+(‖zi − zj‖) is shown
in Fig.1.

1) Exponential Bounded Repulsion: The Exponential or
unnormalized Gaussian curves in Fig.1 generates a continuous
bounded approximation of (11). As the distance between maps
grows, the magnitude of the curves approaches zero while a
maximum magnitude is assigned for maps that get very close
to each other. In this study, we propose a general bounded
repulsion function of the form

Urep(‖zi − zj‖) = ξrσ exp{−‖zi − zj‖q
σ

} (12)

where ξr is the repulsion magnitude related parameter. The
Gaussian normalized version of this function appeared in (8).
For q = 2, the function has spherical symmetry as shown in
Fig.2. For values 0 < q ≤ 1, the repulsion potential field
has the shape of a harmonic function often used in modeling
obstacles in robotic path planning, while for 1 < q < 2, it has
the form of a tower centered at a point of interest.

C. MAFE-Bounded Repulsion Model
The superposed field with a bounded unnormalized Gaus-

sian repulsion is given by

U(Z) =
∑
i,j 6=i

ξawij‖zi − zj‖p − ξrσ exp{−‖zi − zj‖q
σ

}

Computing the gradient of yields the direction of motion for
each individual pixel map position is described by

żi = −
∑
j 6=i

(zi − zj)ξawijp‖zi − zj‖p−2

− ξrq‖zi − zj‖q−2 exp{−‖zi − zj‖q
σ

}
An illustration of the gradient field for a point with strong
attraction force field is shown in Fig.2. Without an attraction
term, cluster formation would not occur since all maps would
disperse from each other; whereas without repulsion, all maps
would collapse to a single point leading to what’s known as
the crowding problem.

1) Embedding Space Weights: The search for minimum
energy configuration establishes other additional properties of
interest on the neighborhood graph, i.e. the lower dimensional
space pairwise similarities w̃ij . For the model designed with
p = q = 2 in (13), the embedding neighborhood graph is
described by

w̃ij = ξawij − ξr exp{−‖zi − zj‖2
σ

} (13)

In contrast to the high dimensional pairwise weights wij’s
that are positive for all (i, j) in the observation graph, w̃ij
can be negative as determined by the magnitude of the inter-
action force between the attractive and repulsive fields. This
property establishes another point of departure by the general
MAFE based techniques from traditional nonlinear embedding
methods that enforce learning of positive lower dimensional
weights e.g. LLE, SNE, tSNE, and Isomap.

V. BILATERAL KERNEL FOR SIGNATURE SIMILARITIES

Spatial preprocessing methods are often applied to remove
noise and smooth images. These methods also enhance spatial
texture information resulting in features that improve the
performance of classification techniques. For example in [23],
nonlinear diffusion partial differential equations (PDEs) and
wavelet shrinkage were used for spatial preprocessing of
hyperspectral images, and the results obtained demonstrated
a significant improvement on classification performance. In
this study, we adapt a bilateral filtering approach to devise
a similarity function over the observed image pixels. The
traditional formulation of a bilateral filter incorporates a lin-
ear convolution kernel, K(i,j)

s = exp
{
−‖si − sj‖2

}
, which

weighs image pixel values as a function of the spatial distance
from the center pixel , and also employs a nonlinear term
K

(i,j)
y = exp

{
−(yi − yj)

TΣ−1y (yi − yj)
}

, which simply
weighs pixel values as a function of the photometric dif-
ferences between the center pixel and its neighbor pixels
[25], [27], [28]. For illustration purposes, let us define the
unnormalized similarity of pixels i and j as

w(si, sj ,yi,yj) = K(i,j)
s ·K(i,j)

y (14)
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where si denotes the spatial coordinates of pixel i, yi denotes
the photometric d-dimensional vector, with d corresponding to
the number of spectral channels. Given N hyperspectral pixels,
organized into a zero-mean data matrix Y = [y1y2 · · ·yN ] ∈
Rd×N , the sample covariance is computed as S = 1

NY Y T =
〈yyT 〉, with the angle brackets denoting the average over N
pixels. Thus, S is a d× d matrix whose diagonal components
indicate the magnitude of noise variation in each of the d
spectral channels, and the off-diagonal elements denote the
extent to which noise co-vary with each pair of spectral
bands. We make an observation that one can represent the
unnormalized kernel K as a product of unnormalized gaussian
functions, one for each pixel yi, yielding

K = exp

−1

2

N∑
j=1

(yj − yi)
TΣ−1(yj − yi)


= exp

−tr(SΣ−1)

2
+

N∑
j=1

yjΣ
−1yi −

N

2
yTi Σ−1yi


where Σ−1 is the inverse covariance matrix, and tr(B)
denotes the trace of matrix B. We could assume a zero-mean
unnormalized Gaussian noise model over the pixels, i.e. we
can simply subtract the center yi from the data, to obtain a
simplified expression as

K = exp

−1

2

N∑
j=1

yTj Σ−1yj


= exp

{−1

2
tr(Y TΣ−1Y )

}
(15)

Note that tr(Y TΣ−1Y ) = tr(Σ−1Y TY ) = Ntr(Σ−1S).
This shows that S is a sufficient statistic for characterizing the
unnormalized likelihood (herein the photometric similarity) of
data Y , and we can further write

K = exp

{−N
2
tr(Σ−1S)

}
(16)

We next consider a decomposition of the true covariance
matrix into the product Σ = EΛET , where E is the orthog-
onal eigenvector matrix and Λ is the corresponding diagonal
matrix of eigenvalues, to easily compute the covariance matrix
whose inverse is required in (16). We adapt the efficient
sparse matrix transform (SMT) approach in estimating the
covariance matrix Σ [29]. The SMT approach solves the
optimization problem, Ê = argminE∈Ω

{
|diag(ETSE)|

}
,

and set Λ̂ = diag(Ê
T
SÊ), where Ω is the set of allowed

orthogonal transforms that can be computed using a series of
Givens rotations [29]. A simple manipulation can show that
Σ−1 = ÊΛ̂

−1
Ê
T

so that we can perform unnormalized com-
putations of the photometric distances and equate K(i,j)

y = K
in the transformed space. Thus,

K(i,j)
y = exp

{
−1

2
(Ê

T
yi − Ê

T
yj)

T Λ̂
−1

(Ê
T
yi − Ê

T
yj)

}
The SMT approach to computing the covariance matrix Σ
is efficient and robust in handling the singularities of Σ.

Other approaches to computing Σ have been used in the
literature including the PCA adaptation approach [25], where
the singularity of Σ is not carefully addressed. The spectral
signature similarities are stored in a N × N matrix W =
[w(si, sj ,yi,yj)]. Each row i of W is normalized by the
sum of its elements to obtain a neighborhood probability
distribution Wi = [wij ], which is the input to the embedding
objective function.

VI. OPTIMIZATION

Given the pair-dependent interactive odd functions, the
objective function for MAFE(13) is simple to differentiate. For
its optimization, we adapt a variation of the stochastic gradient
descent [30] with common adaptive learning rate

α(t+1) = α(t) + γ1〈∇U(Z(t−1)),∇U(Z(t))〉
+ γ2〈∇U(Z(t−2)),∇U(Z(t−1))〉 (17)

where α(t) is the learning rate at iteration t, γ1 and γ2 are
the meta-learning rates. The main characteristics of this fast
learning rate adaptation scheme is that it exploits gradient-
related information from the current as well as the two pre-
vious embedding coordinates in the sequence. This provides
an enhancement on the stabilization in the values of the
learning rate, and helps the gradient descent algorithm to
exhibit fast convergence that leads to better minimum energy-
configuration. A description of the proposed algorithm is given
in Fig.1. The termination condition of the algorithm is when
∇U(Z) ≤ ε. The choices of γ1 and γ2 are not critical for
finding the minimum-energy configuration, but only affect
the rate at which we do so. Fig.3 shows smooth MAFE-BR
gradient field trajectories during optimization as compared to
both SNE and tSNE. In Fig.8, we present the convergence
rates of this optimization scheme while contrasting with the
rates obtained by the optimization methods used in SNE and
tSNE.

Algorithm 1: MAFE Adaptive Stochastic Gradient Embed-
ding
Input: Image data: Y ;
Initialize: α(1), γ1, γ2;
Output: Embedding coordinates Z = {zT

1 ,z
T
2 , · · · ,zT

N};
Compute similarity weights wij = K

(i,j)
s ·K(i,j)

y (Eqn. (17));
Z(0) ∼ N(0, 50I);
Set Z(1) = [z

(0)T
1 ,z

(0)T
2 , · · · ,z(0)T

N ]T ∈ RNm ;
while ‖∇U(Z(t))‖ > ε do

Set t = t+ 1;
Compute new coordinates using;
Z(t+1) = Z(t) − α(t)∇U(Zt);
Calculate the new learning rate from
α(t+1) = α(t) + γ1〈∇U(Z(t−1)),∇U(Z(t))〉+
γ2〈∇U(Z(t−2)),∇U(Z(t−1))〉;

end

2) Equilibrium State: We have so far been stating that the
iterative optimization in (4), or in particular (13), will converge
when all pair-equilibrium distances εij are established. We can
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make a strong theoretical argument that asserts that the motion
of maps is guaranteed to stop and that no oscillatory behavior
exists at the minimum-energy configuration state. This, we do
by letting the invariant set of the equilibrium positions to be

Ξequi =
{
Z : Ż = 0

}
.

We can show that as t → ∞, the state Z(t) converges to
Ξequi, i.e. the minimum-energy configuration of the vertices
position converges to a constant arrangement. This extends
Theorem 2 of [21] to problems of dimension reduction and
data visualization.

Theorem 1. Consider a graph embedding described
by ż(i) =

∑
j 6=i F

ij(zi − zj), i = 1, · · · , N ,
with force field function F ij(zi − zj) = (zi −
zj)
{
F ijr (‖zi − zj‖)− F ija (‖zi − zj‖)

}
. As t→∞, we have

that Z(t)→ Ξequi.

Proof: Consider the general energy function U(Z) =∑N
i=1 Ui(Z), where Ui(Z) is defined in (2). Taking the

derivative of U(Z) with respect to each zi yields

∇zi
U(Z) =

∑
j 6=i

{
∇zi

U ijatt(zi, zj)−∇zi
U ijrep(zi, zj)

}
= −żi

where we observe the negative gradient as direction of motion
in the second equality. Taking the time derivative of U(Z)
along the motion of a graph configuration yields

U̇(Z) = ∇zi
U(Z)T Ż = 2

N∑
i=1

∇zi
U(Z)T żi

= 2

N∑
i=1

{−żi}T żi

= −2

N∑
i=1

‖żi‖2 ≤ 0, ∀t.

This result shows that the motion will continue in the direction
of decreasing U(Z) to a state when all żi = 0. By invoking
the Lasalle Invariance Principle [24], we can conclude that as
t → ∞ the graph configuration state Z(t) converges to the
largest subset of the set defined as

Ξ =
{
Z : U̇(Z) = 0

}
= {Z : żi = 0} = Ξequi.

Since each żi ∈ Ξequi is an equilibrium point, Ξequi is an
invariant set and this concludes the proof.

This general result holds for any function F ij chosen based
on the embedding force field properties discussed in Section
II-A. It also extends to tSNE and SNE related formulations
with a change of objective function. This result guarantees the
convergence of the proposed algorithm. However, in practise,
the termination condition is set to a finite time optimization
of U(z).

VII. DATA SETS AND EXPERIMENTS

A. Botswana Hyperion

Hyperion data with 8 identified classes of complex natural
vegetation were acquired over the Okavango Delta, Botswana,

in May 2001, [13], [31]. The general class groupings include
seasonal swamps, occasional swamps, and woodlands. Sig-
natures of several classes are spectrally overlapped, typically
resulting in poor classification accuracies. After removing
water absorption, noisy, and overlapping spectral bands, 145
bands were used for classification experiments. We report on
Euclidean and non-Euclidean embedding results as well as
evaluation of the computed coordinates based on classification
error rates for all 8 classes.

B. Kennedy Space Center (KSC)

Airborne hyperspectral data were acquired by the National
Aeronautics and Space Administration(NASA) Airborne Vis-
ible/Infrared Imaging Spectrometer (AVIRIS) sensor at 18-m
spatial resolution over Kennedy Space Center during March
1996. Noisy and water absorption bands were removed, leav-
ing 176 features for 13 wetland and upland classes of interest.
Cabbage Palm Hammock (Class 3) and Broad Leaf/Oak Ham-
mock (Class 6) are upland trees; Willow Swamp (Class 2),
Hardwood Swamp (Class 7), Graminoid Marsh (Class 8) and
Spartina Marsh (Class 9) are trees and grasses in wetlands.
Their spectral signatures are mixed and often exhibit only
subtle differences. The results for all 13 classes including
these ”difficult” classes are reported for the embedding and
classification experiments.

C. Experiments

The experimental setup adapts the methodology used in
the dimensionality reduction tool box [26] for the existing
algorithms discussed. The setup consists of a principal com-
ponent analysis (PCA) phase to reduce the dimension of
the feature vectors to 40, from which the similarity values
are computed using a Gaussian kernel function. The PCA
dimension is experimentally set to suppress noise and speed
up computation for the existing algorithms. In contrast, the
proposed MAFE-BR algorithm achieves high quality results
from a faster optimization scheme that does not include a PCA
step. Additional comparison results are included to compare
MAFE-BR and MAFE-BR-PCA to highlight the robustness
of the proposed bilateral similarity kernel. Experiments are
conducted using the model from equation (13) with a choice of
p = q = 2, establishing a quadratic attraction and a spherical
Gaussian repulsion model. Visualization results are obtained
by mapping to a 2-dimensional space, with classification
results generated for a varying lower dimensional feature
space. Land cover label information for each pixel is only
used to identify clusters hence the semi-supervised nature of
the proposed embedding scheme. There is no consensus as to
how should one evaluate a dimensionality reduction algorithm,
a choice is often made depending on the application task. We
further analyze the quality of the embedding representations by
performing a 1NN classification measure on the data. A 1NN
classifier is chosen simply because it ensues as an unbiased
measure for comparing different embedding techniques. It is
efficient, makes no assumption about class distribution and
requires no model parameters to be set. Other sophisticated
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TABLE I
EXPERIMENTAL DATA: CLASS LABELS AND NUMBER OF LABELED SAMPLES

Botswana Hyperion Kennedy Space Center

c1 Water (158) c1 Scrub (761)
c2 Floodplain (228) c2 Willow swamp (243)
c3 Riparian (237) c3 Cabbage hamm (256)
c4 Firescar (178) c4 Cabbage palm(252)
c5 Island interior (183) c5 Slash pine (161)
c6 Woodlands (199) c6 Oak (229)
c7 Savanna (162) c7 Hardwood swamp (105)
c8 Short mopane (124) c8 Graminoid marsh (431)

c9 Spartina marsh (520)
c10 Cattail marsh (404)
c11 Salt marsh (419)
c12 Mud flats (503)
c13 Water (927)

methods including support vector machines (SVM) and maxi-
mum likelihood classifiers [18] could be used for classification
even though they introduce additional bias in computing class
boundaries which may not be a fair comparison of different
embedding techniques. Additional evaluation results are also
reported for the iterative gradient based techniques including
MAFE-BR, where we compute the gradient field trajectories
to examine the stability of the embedding map.

The optimization of MAFE-BR is terminated when
‖∇U(z(t))‖ < ε, with ε = 10−5. The force field magnitude
parameters are experimentally set between 0 < ξr, ξa < 1
such that ξa > ξr (e.g. ξr = 10−3 and ξa = 10−2) to
maintain strong interaction force effects. For both tSNE and
SNE, the gradient descent algorithm is run for T = 1000
iterations, while the value of σ is set following the approaches
in [11], [12], whereby we first compute the perplexity of
the conditional distribution induced by the Gaussian kernel
determined as 2H(w), where H(w) is the entropy of the
high dimensional neighborhood distribution. Embedding maps
obtained by Isomap are based on the classical formulation
that admits the closed-form solution of an eigen-structured
problem, namely picking the leading components of variation.
LE embedding solution is also based on solving an eigenvalue
problem, but it relies on picking the trailing eigenvectors.
In constructing the high dimensional neighborhood graph for
Isomap and LE, we vary the number of neighbors from k = 1
to k = 50 and pick an optimal value of k = 15. This number
ensures that the embeddings are neither too noisy and unstable
nor does the geometry of the images exhibit a significant
collapse of embedding coordinates.

1) Gradient Field Trajectories in Embedding Space: The
motion dynamic equation in (1) serves as an approximation
to the model that captures the formation of spectral signature
manifolds. We obtain additional insights on the embedding
algorithm by exploring the gradient vector fields as each
map traverses towards the minimum configuration state of
the graph. By plotting the changing vertex positions in 2-
dimensional space, the trajectories reveal how the cluster
formation gets affected by the optimization scheme. As an
example, we consider the trajectories formed in mapping 15
hyperspectral pixels from three Botswana data classes. We ran-

domly pick five samples from the (Woodlands, Firescar, and
Island Interior) classes. Fig.3 shows MAFE-BR’s optimization
paths compared to the trajectories obtained for strategies used
in tSNE and SNE. A close-up look on the trajectories in
Fig.3(e) and Fig.3(g) shows that there is a high degree of
colliding, poor learning rate, and instabilities associated with
tSNE and SNE. This behavior is due to their objective cost
functions that incorporate log sum terms in the repulsion
potential term. Log sum term complicates the derivation of
the gradient equations, and increases the degree of system
nonlinearity. As a result, the simple optimization scheme used
in tSNE and SNE takes long to establish the equilibrium
state of the system. In contrast, the results in Fig.3(b) and
Fig.3(c) show that MAFE-BR generates smooth trajectories
with no sign of instability, i.e. no random change of gradient
vector direction. The smooth force field interaction between
the attraction and repulsion functions, and the optimization
strategy lead to a stable balance which establishes the equi-
librium state much quicker. MAFE-BR has several magnitudes
of faster convergence speed as shown in Fig.8. In addition, it
produces an embedding map where similar samples are close
neighbors while setting clear boundaries between samples
from different classes. Similar trends on gradient trajectory
results were observed for the Kennedy Space Center data.

2) Visualization and Embedding Results: A more recent
comparative study demonstrated that nonlinear dimension re-
duction methods often do better in capturing the structure of
the associated manifolds in tasks with small number of classes
than for problems with many classes [13]. This is mainly
due to the complexity of the data manifolds represented in
problems with many disparate classes. In many cases of hy-
perspectral data, similar classes of data may result in multiple
manifolds due to their spatial location. This poses a challenge
in many existing dimensionality reduction techniques that
seek to map all similar or related data onto a single cluster,
thereby increasing chances of collapsing different classes on
top of each other. This is known as the crowding problem
described in the introduction. In this section, we report on the
performance of various embedding techniques in comparison
to MAFE-BR combined with a bilateral similarity function, as
well as MAFE-BR combined with a Gaussian kernel function.
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The significant contrast between the results obtained when
using these two similarity functions points out the importance
of designing suitable kernel functions that capture geodesic
relations along the data manifold. The proposed bilateral
similarity function appears to be a strong suitable candidate
for capturing such relations in hyperspectral images.

In Fig.4(a), we show the ground references of the
Botswana data. Fig.5 shows the experimental results obtained
with MAFE-BR, SNE, tSNE, Isomap, and LE on the
Botswana data. MAFE-BR results display a radically different
and superior embedding map compared to other methods. For
example, SNE computes coordinates that seem to separate
different classes well. However, there is a significant overlap
on the Riparian and Woodlands classes, and the clusters seem
to be more spread implying large variance. On the other
hand, MAFE-BR has very tight spatial disjoint clusters, and
no overlaps on the Riparian and Woodlands classes (except
the seemingly touching boundaries for certain classes). These
are the most difficult classes to separate in this data set as
observed with the demonstration in [13]. MAFE-BR result is
the strongest in capturing the ground truth map. tSNE has
the capability to mitigate overcrowding of points, a good
clustering effect. However, it leads to significant overlap
between Riparian and Woodlands classes. In Isomap results
we see significant overlaps for dissimilar classes. LE collapses
the geometrical structure of the different features leading to
poor separation of classes.

In Fig.4(b), we show the ground references of the Kennedy
Space Center (KSC) data. Fig.7 shows the KSC embedding
results obtained by all methods discussed. The embedding of
this data set reveals a huge tendency of overcrowding and class
overlapping by LE and Isomap. Almost all classes except for
Water are not separable. tSNE and SNE representations shows
significant levels of separation with the Water, Salt Marsh,
and the Spartina Marsh classes. However, there is no visible
distinction or separability characteristics for the remaining ten
classes. In contrast, MAFE-BR constructs very compact and
spatially-driven disjoint clusters capturing the land cover cate-
gories including their locations as displayed in the ground truth
data. Furthermore, MAFE-BR has a tiling nature adaptability
when classes are very close to each other. Fig.6 contrasts
on the results obtained with MAFE-BR taking as input the
neighborhood graph generated by the bilateral similarity func-
tion versus an approach which incorporates PCA and then
computes the neighborhood graph for MAFE-BR-PCA. It is
clear from the visual representation that PCA does influence
the clusters to be well separated(increases the variance of
maps). However, the within cluster compactness (tightness)
is not preserved. The difference in the visual structures can
be attributed to the additional information that is neglected
by PCA as it retains the details corresponding to only the
largest 40 eigenvalues. In addition, one would hope that a
PCA step will enable a faster computation for the embedding
algorithm since the level of noise is reduced. However, Fig.8
shows our algorithmic runtime evaluation suggesting that there
is no benefit in computational speed when a MAFE-BR model
incorporates PCA over use of all dimensions in the samples
for generating the neighborhood graph.

3) Classification Results: Classification results are included
as further evaluation of the representations obtained by dif-
ferent embedding techniques in comparison to the proposed
MAFE-BR approach. Embedded pixel maps were randomly
sampled to generate 60% training and 40% testing samples,
with results averaged over 10 runs. All approaches were
compared on the same samples to maintain a consistent com-
parison. We have also added two more approaches: the largest
margin nearest neighbor (LMNN) [14], which is primarily
not an unsupervised dimensionality reduction method but a
classification technique based on the notion of using training
class labels of largest margin neighbors to compute a metric
for inferring the decision boundaries during testing. We also
included the local Fisher discriminant analysis(LFDA) [4], a
dimensionality reduction technique whose embedding solution
is based on solving an eigen-structure problem. During the
experimental exercise, we noted that the embedding solutions
obtained by LFDA and MDS were similar to the Isomap
solution, hence their exclusion from the presentation.

Tables II and III illustrate the 1NN semi-supervised classi-
fication performance accuracy per class. The trends observed
with a bilateral kernel(BK) neighborhood graph shows a clear
separation of classes, and as a result the representations
achieves an increased classification accuracy as demonstrated
with MAFE-BR-BK. In contrast, classification results obtained
with a MAFE-BR with a Gaussian kernel neighborhood graph
demonstrates a similar performance to SNE. By ignoring all
terms that do not depend on the embedding positions, SNE
differs from MAFE-BR only in the scaling of the repulsion
potential energy. In MAFE-BR, the potential energy function is
less nonlinear, and this leads to simple gradient equations that
are easier to derive in contrast to SNE derivations [12]. The
difference between MAFE-BR-BK and MAFE-BR classifica-
tion accuracy highlights the potential benefit that the proposed
bilateral kernel has on other algorithms including SNE and
tSNE albeit their complicated derivations.

The Botswana data classification has the following in-
sights that are consistent with the visualization maps from
the previous section: all methods seem to achieve a better
per class performance accuracy, while the lowest accuracy
results are achieved with the LE embedding representation.
Furthermore, we have the lowest accuracy per class between
class 3 (c3) and class 6 (c6) corresponding to the Riparian and
Woodlands classes, respectively. Lower classification results
on c3 and c6 are expected because these two classes are
the most difficult to separate, in consistency with the results
shown in Fig.5(similarly as demonstrated in [13], [33], [34]).
LMNN using 1NN achieves the second best results owing to
its ability to make use of class label information in learning
the Mahalanobis distance metric for 1NN classification. The
objective function for LMNN does have a force field structure in
which class label information is used to compute the optimal
metric with a goal that k-nearest neighbors always belong
to the same class (i.e. pulled closer by an attraction term)
while example samples from other classes are separated by a
large margin (i.e. pushed far by a repulsion term). In contrast
MAFE-BR’s objective function is formulated as a function
of the distance between pairs of points, and no class label
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information is used during computation of the maps. For
the KSC data classification, a similar trend is observed with
MAFE-BR-BK providing a coordinate representation from
which a higher 1NN classification performance is achieved.
The classification results achieved for class 3(c3), class 4 (c4),
class 5(c5), and class 6(c6) indicate the lowest performance
in all embedding spaces except for the solution achieved
by MAFE-BR. From the visualization result shown in Fig.7,
these classes correspond to the Cabbage Palm Hammock,
Cabbage Palm/Oak Hammock, Slash Pine, and Oak/Broadleaf
Hammock, respectively. These are all categories of very similar
upland trees. Their spectral signatures are mixed, and often
exhibit only subtle differences. However, a combination of
MAFE-BR and a spatially-sensitive bilateral similarity function
shows that even with complex mixed classes, the proposed
graph embedding algorithm does separate difficult land cover
categories with a high degree of accuracy which is reflected
in the classification results.

In Fig.9, we show the mean ± one standard error misclassi-
fication error plots as a function of the embedding dimension,
i.e. m = 1 ∼ 20. The question of how to choose the optimal
dimension of the embedding space is addressed by adapting
a manifold projection approach. A manifold projection is
based on first defining the spatial-spectral neighborhood graph
structure of the data. If each neighborhood can be projected to
an m-dimensional space within a classification tolerance, then
the intrinsic dimension of the data is m, and we can reduce the
dimension to m without losing much information. For Isomap,
MDS, LE, tSNE, and SNE the manifold projection result is
based on experimentally setting the number of neighbors in
the graph. If the size of the neighborhood is too small, then
the geometry of the data will cause important data features to
be collapsed e.g. the result of LE in Fig.5 and Fig.7. On the
other hand, if the neighborhood is too large, which creates a
large intrinsic dimension, then the manifold projections could
become noisy and unstable. In contrast, MAFE-BR-BK miti-
gates such challenges by automatically introducing a spatially
induced sparsity structure on the neighborhood graph with the
number of neighbors selected depending on the disjoint nature
of the data. Using Fig.9(b) and Fig.9(a), we can estimate the
optimal dimension for mapping of both the 145 dimension
Botswana spectral channels and the 176 Kennedy Space Center
spectral channels as m = 8. There are other methods in
the literature for estimating the embedding dimension. For
example, the virtual dimensionality method which defines
the minimum number of spectrally distinct signal sources
that characterize the hyperspectral data is introduced in [16],
and an estimation based on subspace identification can be
found in [17]. Some very promising approaches include the
local image background detection for signature-based object
detection applications [10] and the projection approach based
on local information for subspace-based detection of spectral
anomalies [9].

VIII. DISCUSSION AND FUTURE WORK

The experimental results presented demonstrate that the
disjoint characteristics inherent in hyperspectral data can be
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mapped to lower dimensional spaces by first characterizing the
spectral signature relations using a sparse matrix transformed
spatially-sensitive neighborhood graph. The graph weights are
derived from a joint spatial and photometric distance based
bilateral kernel function that improves the capability to capture
regularities and enhances the similarities within high dimen-
sional spectral signatures. The bilateral similarity function is
general in its form, and could potentially be used to benefit
existing algorithms including the ones discussed in this study.
Herein the neighborhood relations are mapped onto a low
dimensional space based on the notion of a force field graph
embedding formulation. Graph embedding is performed under
a framework that promotes representing local relations with
small distances while global relations are modeled by longer
distances. Meaningful structures emerge under the general
framework as a result of the interplay between the attraction
and the repulsion forces that exist for every pair of vertices
on the neighborhood graph. As an alternative framework
for dimensionality reduction and visualization of data, MAFE
encodes the intrinsic geometries underpinning the nonlinear
characteristics in the data, and achieves better representation as
evaluated on tasks that included visualization and classification
of various commonly studied hyperspectral imagery.

Dimensionality reduction and visualization of data often
requires a trade-off between accuracy and computational effi-
ciency. As demonstrated, encoding of similarity relations onto
a neighborhood graph does have significant outcomes on the
quality of the embeddings. Estimating the parameters of the
kernel function often is a cumbersome task and may lead to
increased computational hurdles. Even though our approach
does achieve quality visualizations and increased classification
accuracy over existing approaches, we still face the equal and
similar computational and memory demands that are O(N2),
where N is the number of observations. Such algorithmic inef-
ficiencies are common in most techniques that do not provide
closed form solutions, e.g.tSNE, SNE, Iterative-MDS.
On the other hand, spectral based algorithms (e.g.LE, LLE,
MDS) do conquer this shortcoming by providing closed form
solutions based on eigendecomposition techniques. However,
the accuracy of spectral based embeddings are very poor, as
demonstrated in our presentation.
MAFE-BR may have smooth trajectories and a faster con-

vergence, but it also introduces what we observed as dynamic
local maxima behavior during cluster formation. The forma-
tion of clusters creates local repulsions leading to local traps
for pixel maps that still need to move closer to their closest
neighbors. As such, a weak choice on the attraction potential
may lead to very poor distance preserving embeddings and
may affect the convergence of the optimization algorithm. We
are currently studying local maxima generated traps using
piecewise potential functions that vary at different distances
to increase attraction magnitudes in hope of overcoming
dynamic local repulsion forces. Additional avenues worth
investigating include developing theoretical analysis further,
an often missing component of nonlinear dimension reduction
algorithms. Further work could exploit the sparsity structure of
the neighborhood graph to prescribe an efficient optimization
framework.
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IX. CONCLUSIONS

The main goal of the study was to develop a nonlinear em-
bedding framework that preserves the neighborhood relations
of highly nonlinear and disjoint structures. As an example,
the disjoint characteristics inherent in hyperspectral data were
mapped to lower dimensional space by first characterizing the
spectral signature relations using a sparse matrix transformed
spatially-sensitive neighborhood graph. The graph weights
are derived from a joint spatial and photometric distance
based bilateral kernel function that improves the capability
to capture regularities and enhances the similarities within
high dimensional spectral signatures. Adapting a force field
intuition from mechanics, a dynamic system was derived.
In this framework, pairwise interactions of moving particles
(or maps) were assumed to determine both their positions
(embedding coordinates) and the description of the lower
dimensional space (neighborhood graph weights). We showed
that the new embedding technique has often sought after
desirable properties in preserving the local topology of spectral
channels and also reveals natural global structures, i.e. disjoint
clusters for hyperspectral imagery. The framework yields
formulations of well known state-of-the-art dimensionality
reduction techniques with very few assumptions, and could po-
tential be used to derive new embedding models. Experimental
work conducted on visualization, gradient field trajectories and
classification of images acquired by multiple sensors at various
spatial resolutions over different types of land covers indicates
that a MAFE-BR-BK embedding representation outperforms
other techniques.
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Fig. 9. Mean ± one standard error misclassification error comparison for 1-nearest neighbor classifier based on various embedding spaces while varying the
dimension. (a) Kennedy Space Center data and (b) Botswana data.


