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Abstract 
Purpose – The purpose of this paper is to introduce a unique technique to couple the two-integral boundary layer solutions to a generic 
inviscid solver in an iterative fashion.  
Design/methodology/approach –The boundary layer solution is obtained using the two-integral method to solve displacement 
thickness point by point with a local Newton method, at a fraction of the cost of a conventional mesh-based, full viscous solution. The 
boundary layer solution is coupled with an existing inviscid solver. Coupling occurs by moving the wall to a streamline at the 
computed boundary layer thickness and treating it as a slip boundary, then solving the flow again and iterating. The Goldstein 
singularity present when solving boundary layer equations is overcome by solving an auxiliary velocity equation along with the 
displacement thickness. 
Findings – The proposed method obtained favourable results when compared with the analytical solutions for flat and inclined plates. 
Further, it was applied to modelling the flow around a NACA0012 airfoil and yielded results similar to those of the widely used 
XFOIL code. 
Originality/value – A unique method is proposed for coupling of the boundary layer solution to the inviscid flow.  Rather than the 
traditional transpiration boundary condition, mesh movement is employed to simulate the boundary layer thickness in a more 
physically meaningful way.  Further, a new auxiliary velocity equation is presented to circumvent the Goldstein singularity. 
Paper type Research paper 

 
 
Nomenclature
c Artificial compressibility pseudo- 
 acoustic velocity   m.s-1 
c Chord length   m 
CD  Dissipation coefficient    
Cf      Skin friction coefficient 
d Original grid position  m 
f Body force component  N 
h Height    m 
H Shape factor  
H* Energy thickness shape factor 
H**  Density thickness 
J  Jacobian 

L           Length    m 
M Mach number   
n Unit vector normal to the boundary  
N Maximum number of nodes 
p           Pressure    N.m-2 
Re      Reynolds number based on L 
Re� Reynolds number based on �  
t Time  
u  Velocity component   m.s-1 
U Free-stream velocity  m.s-1 
V Volume flow rate   m3.s 

x Length    m 
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Greek letters 
� Under-relaxation parameter 
� Similarity parameter 
 Displacement grid position 

�
* Boundary layer thickness  m 
�

**  Density thickness 
�ij Kronecker delta 

 Difference 
� Similarity coordinate 
� Momentum thickness  m 
�

* Kinetic energy thickness  
� Dynamic viscosity   kg.m-1.s-1  
�  Density     kg.m-3  
� Shear stress   N.m-2 
	 Kinematic viscosity  m2.s-1 

 Coordinate parallel to the  

boundary layer     m 

 
Subscripts 
0 Initial value 
1,2  Variables in the x- and y-directions 

respectively 
e External flow variable 
f      Fluid 
� Free-stream value 
i, j, k Components of vector/tensor in indicial 

notation  
n Index of nodes along boundary layer 
w  Wall 
 
Superscripts 
n pseudo-(iteration) time-step 
 

 
1. Introduction 
Since the 1970s, CFD codes have been used in the aerospace industry to assist in designing and optimising aircraft 
and jet engine configurations and performance. CFD has revolutionised airfoil design by its ability to optimise 
airfoil shapes to specified requirements. Key to predicting effects such as drag or the reversal of flow is accounting 
for the viscous effects in the airfoil near-wall region. The latter is commonly referred to as the boundary layer. 
 
Drag prediction is important in the aerospace industry for economic reasons since it influences fuel burn costs 
(Anderson, 2007). The boundary layer region is typically described via the direct discretisation and solution of 
Navier-Stokes equations. When employing this approach, however, the boundary layer typically requires the 
largest part of computational resources, owing to the need for small mesh spacing normal to the boundary. In 
addition, the need for highly stretched elements on the boundary makes the process of meshing more specialised 
and time-consuming. Boundary layer approaches, on the other hand, have been demonstrated to quantify boundary 
layer effects in a far more efficient manner, and yet have received comparatively little attention since the 1980s.  
 
Boundary layer approaches follow from the flow characteristics specific to many aerospace applications. The small 
thickness of the boundary layer prevalent in external high Reynolds number (small viscosity) attached flows, for 
example, permits certain approximations for governing equations within the boundary. Firstly, the variation of the 
pressure normal to the wall is negligibly small. Secondly, the variation of velocity along the wall is much smaller 
than the variation of velocity normal to the wall. These observations allow empirical relations to be employed to 
analytically integrate through the thickness of the boundary layer in a manner that reduces the dimensionality of the 
problem, vastly decreasing the computational resources consumed. 

 
In industrial boundary layer modelling, the flow is divided into two regions: an inviscid flow region, where the 
flow is determined from models such as the Euler or full potential equations, and a viscid region, where flow is 
described by the boundary layer equations. This approach is computationally considerably more efficient than 
resolving the Navier-Stokes equations throughout, and various researches have demonstrated the efficiency of this 
approach. 
 
Riziotis and Voutsinas (2008), for example, improved prediction of aerodynamic performance in dynamic stall 
conditions of airfoils. Jie and Zhou (2007) modelled transonic flow over complex three-dimensional aircraft 
configurations. Sekar and Laschka (2005) determined minimum flutter speed in transonic flows, Szmelter (2001) 
optimised transonic wings, Florea, Hall and Cizmas (1998) modelled cases of unsteady viscous separated flow 
through subsonic compressors and Soize (1992) modelled unsteady compressible flow in cascade blades at positive 
incidences. 
 
However, a few difficulties are present with viscid-inviscid interaction schemes, for example, the so-called ‘strong 
interaction problem’. Strong interactions exist, for example, in the trailing edge and separation regions where 
neither the viscous nor the inviscid flow is dominant locally. It is in these cases that the so-called ‘Goldstein 
singularity’ exists and where numerical interaction between the viscous and inviscid flow can fail or lack 
robustness (Katz and Plotkin, 2001). One way to overcome the Goldstein singularity is to solve the viscous and 
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inviscid flow regions simultaneously (Drela, 1985). However, this is computationally expensive and effectively 
limits one to using a potential flow scheme for the inviscid flow solution. Other existing interactive methods 
include the semi-inverse method of Le Balleur (1977), (1978), (1983) and Carter (1979), and the quasi-
simultaneous method of Veldman (1979), (1980), (1981), (1984), (2001), (2005), (2009). Another important aspect 
when coupling the viscous and inviscid flow regions is that the inviscid solution needs to be informed of the 
boundary layer displacement. This is usually achieved by using a transpiration condition at the interface between 
the two flow regions, whereby a fictitious velocity is induced into the boundary layer to simulate its effect. The 
drawback of this scheme, however, is that it does not strictly conserve mass. 
 
The objective of this study is to develop a method of solving boundary layer flow coupled to inviscid outer flow  
which counters the difficulties described above. In order to achieve this, we combine the following ingredients: 
 
� An interactive solution technique to achieve computational efficiency and scaling for large problem sizes, as 

well as modularity of inviscid and boundary layer solvers. 
� The use of a fully mass-conserving boundary condition, instead of the transpiration velocity condition.  
� A coupling algorithm which circumvents the Goldstein singularity without the need for a monolithic 

simultaneous solution of both inviscid as well as viscous regions. 
 

The algorithm developed will be used with an existing computational fluid dynamics solver to compute the 
influence of the boundary layer on the outer flow.  
 

2. Mathematical formulation 
2.1. Governing equations for out-of-boundary layer region 
For the purposes of this work, we consider the incompressible (low Mach number) Navier-Stokes equations by 
which to describe the out-of-boundary layer flow, with the inviscid flow approximation: 
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 Where p is pressure, f is the body force, u is the velocity, � is density and � is the dynamic viscosity. 
 

2.2. Boundary layer model 
The boundary layer equations employed in this work are those derived by Drela (Drela, 1985). Drela derived the  
momentum integral equation in terms of momentum and displacement thickness. These equations are known as the 
two-equation integral formulation based on dissipation closure for both laminar and turbulent flows, which eliminate 
the direct link between the profile shape and the pressure gradient, making them suitable for flow with strong 
interaction. The resulting two equations read: 
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where � is the momentum thickness, Me the Mach number of the external flow, Ue the velocity of the external flow, 
Cf the skin friction coefficient, CD the dissipation coefficient and 
 the coordinate parallel to the boundary layer. 
These equations also contain three different shape parameters: the shape parameter H, the energy thickness shape 
parameter, H*, which eliminates the direct link between the H and the local external velocity Ue, and the density 
thickness shape factor H** .  
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The shape parameters are defined as follows: 

θ
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The momentum and displacement thicknesses � and *δ and the kinetic energy and density thickness *θ and **δ are 

defined as follows:  
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where � is the similarity coordinate. The dissipation coefficient CD and the skin friction coefficient Cf are defined as: 
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The two dependent variables are defined as momentum and displacement thickness, � and �*. Ue and Me relate to the 
external inviscid flow and therefore do not represent additional unknowns. The undefined variables that remain are 
Cf, CD, H* and H**  for which the proposed functional dependencies by Drela and Giles (1987) are assumed: 
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In the above relations, Hk is the kinematic shape parameter defined with density taken as constant across the 
boundary layer and solely depends on the velocity profile and not the density profile. Since compressible and 
incompressible velocity profiles have closely similar shapes, the above correlations are based on the kinematic shape 
parameter for compressible flow cases (Drela, 1985). 
 
Hk was developed as an empirical expression by Whitfield (1978) in terms of the conventional shape parameter and 
edge Mach number Me as follows: 
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Laminar closure equations empirically derived from the Falkner-Skan profile family are as follows (Drela, 1985): 
 
The energy thickness shape parameter equations:  
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                                              The skin friction coefficient: 
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The dissipation coefficient: 
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The density thickness **H  was derived by Whitfield (1978) and is defined as follows: 
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Note that this shape parameter is negligible for low subsonic flows and has only a small effect on transonic flows.  
 
The laminar closure equations reach a singularity at the point where Hk reaches 4, which is where the function (13) 
reaches a minimum. This is referred to as the ‘Goldstein singularity’ at a boundary layer separation point. The 
vanishing derivative of *H causes a singularity in equation (4), which can only be avoided if Ue adjusts to cause the 
rest of the equation to tend to zero as well. Therefore, any boundary layer method with a prescribed Ue that reaches 
separation will fail at this point. 
 
Various methods have been proposed to circumvent this problem.  Firstly, the inviscid flow and boundary layer 
equations may be solved simultaneously (Drela, 1985). Secondly, in the semi-inverse method of Le Balleur (1977) 
and Carter (1979), the boundary layer is solved in reverse, i.e. for a given displacement thickness, the velocity 
distribution at the edge of the boundary layer is computed.  By then comparing this computed velocity with the target 
distribution imposed by the inviscid flow, a relaxation formula is used to obtain a new estimate for displacement 
thickness. Thirdly, using the quasi-simultaneous approach of Veldman (1979), a simplified model for the inviscid 
flow is solved simultaneously with the boundary layer thickness to circumvent the singularity.  While this yields only 
an approximate solution to the full system, the true solution can then be obtained through iterative refinement. 
Simultaneous solution of the entire system may be computationally costly, while the quasi-simultaneous method has 
been shown to outperform the semi-inverse method in terms of convergence speed (Lock and Williams, 1987). In 
this paper, therefore, the approach we propose is based on the quasi-simultaneous philosophy.  
 
In the quasi-simultaneous approach, the simplified inviscid flow model is obtained by retaining only principal 
diagonals in the external flow operator which maps the displacement thickness at the boundary points to the edge 
velocities at those points (Veldman, 2009).  Thus, only the influence of a limited neighbourhood of points is taken 
into account as the boundary layer adjusts, depending on how many diagonals are retained.  In this work, we propose 
an alternative approach.  To avoid prescribing the velocity directly, for the purposes of the boundary layer solution, 
the outer inviscid flow is assumed to be confined to a notional two-dimensional channel. This channel has a fixed 

specified total volume flow rate 
•

V and a varying specific height h(x1) which is calculated to reproduce the desired 
velocity profile given an estimated boundary layer thickness (Drela, 2010). The velocity is then solved using the 
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channel model together with the boundary layer equations, allowing the singularity to be avoided.   Repeating the 
process by feeding back the newly calculated displacement thickness as the updated estimate, the process can be 

iterated until convergence is reached. Although 
•

V  is an arbitrary value (since h(x1) is calculated to always give the 
desired velocity profile) it plays a role in the accuracy versus stability trade-off, smaller values yielding a more stable 
solution but requiring more iterations to reach convergence to an accurate solution. 
Accordingly, the velocity is written as: 

( ) ( ) ( )( )ξδξξ *−=
•

hVUe
.                  (17) 

 
Here h(x1), the specific channel height, is calculated from the specified velocity by 

( ) ( ) ( )ξδξξ *
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                   (18) 

 
Where ( )ξδ *

estimate
 is an estimated displacement thickness and Ue,spec is the velocity obtained from the inviscid solution. 

 
It is unavoidable that the final Ue will differ slightly from Ue,spec, although the more accurate is ( )ξδ *

estimate
, the smaller 

this difference will be.  The greater the value of 
•

V , the closer Ue will be to Ue,spec, but if it is set too high, the 
Goldstein singularity is approached once again as the influence of ( )ξδ *  on Ue is lessened. 

 
Equation (17) becomes an additional equation to solve along with equations (3) and (4). This allows the 
simultaneous solution of displacement thickness and velocity, circumventing the singularity, while avoiding the need 
to solve the entire viscous and inviscid flow domains simultaneously. 

 
3. Solution procedure 
 
3.1. Inviscid flow 
In this investigation, we restrict ourselves to incompressible outer flow. The flow solver is based on the artificial 
compressibility characteristic-based split (CBS-AC) scheme (Nithiarasu, 2003, Malan and Lewis, 2011). The three 
steps of the CBS-AC algorithm can be written as: 
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where the asterisk  indicates an intermediate quantity. Viscous terms are included although they are negligible for 
inviscid flow and the flow solver is not required to resolve the boundary layer.  
 
Step 2: Density or pressure 
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where n denotes the previous pseudo (iteration) time-step and n+1 is the new iteration being solved for. 
 
Step 3: Momentum correction 
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Where 15.0 1 ≤≤ θ  and 10 2 ≤≤ θ . For the explicit artificial-compressibility scheme employed, 02 =θ is used. The 

artificial compressibility formulation allows for a finite value of c2 to be used for incompressible flows, calculated as 
per Malan et al. (2002). 
 
3.2. Boundary layer solution 
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To ensure numerical stability, the Crank-Nicolson differencing scheme is used to discretise the boundary layer 
equations as represented by equations (3) and (4), along with the auxiliary velocity equation (17).  
The momentum equation (3) is discretised as:  
 

( ) 0
2

2 2
1

2
1

2
1

2
1

,1,,

,

1
1 =−

∆
−

++
∆
−

≡ −−

−

−
−

− nf

n

nene

ne

n

n

n

nn
CUU

U
Hf

ξ
θ

ξ
θθ                   (22) 

 
where for the purpose of the boundary layer equations, n denotes a node number. Further, Cf = Cf(Hk,Re) as given by 
(14) and n – ½ refers to an average value between node n and n – 1, for example, 
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The shape parameter equation (4) is discretised as: 
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where Cf = Cf(Hk,Re) as given by (14) and Cd = Cd(Hk,Re) as given by (15). To simplify the working, we shall now 
restrict ourselves to incompressible flow, with the result that θδ *== HH k  and H**  = 0. 

 
The auxiliary velocity equation (17) is discretised as: 
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The equations (22-24) are now solved as an initial value problem using a point-by-point local Newton method. That 
is, given initial values for �0, �0, and Ue,0, the system of three equations  
 

fi(�
*
n, �n, Ue,n) = 0 where i = 1,2,3                        (26) 

 

is solved first for n = 1, then n = 2 and so on.  The 3 × 3 Jacobian 
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n using the exact discretised governing equations.  The initial values used to start the Newton iterations are taken as 
the values from the previous point. 
 
3.3. Initial condition 
Initial values �*

0 and �0 are needed and the logical choice of zero cannot be used for the Crank-Nicolson method 
since fC and DC  are singular there.  Therefore, the initial increment is instead solved using the similarity solution of 

Blasius, to give 
 

eU
1*

1 7208.1
ξνδ ∆=  and                      (26) 

eU
1

1 664.0
ξνθ ∆

= .                  (27) 

 
The initial values obtained from this function are a sufficiently close approximation to solve most boundary layer 
solutions (Drela, 1985).  The boundary layer equations are then solved from the second point onwards. 
 
The initial value for eU  is set at speceU , , which is obtained from the inviscid solver. To improve robustness the 

velocity function (17) is only activated as the singularity is approached; i.e. eU  is set equal to speceU , for 5.2<H after 

which the velocity equation (17) is used to solve for eU . 
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3.4. Mesh movement 
The mesh movement routine is a simple interpolation function (Oxtoby and Malan, 2012) 
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In this case  is the displacement of the grid point from its original position, d1 and d2 are the shortest distances from 
that point to the internal and external boundaries respectively, and 1  and 2  are the displacements of those two 

closest boundary points. Though this approach is somewhat simplistic, it is sufficient for small displacements in 
aerodynamic applications and is selected for its negligible computational cost. 
 
3.5. Coupling and interaction method 
The interaction method between the solver and the different routines to calculate the boundary and move the mesh 
happens as follows: 

� Firstly, the solver lets the flow solution converge to a point where the residual is less than the specified 
tolerance. Both boundary layer and inviscid regions are solved concurrently. 

� Secondly, the solver moves the boundary nodes to the position of a streamline at the boundary surface. This 
is determined by the displacement thickness �

* calculated by the boundary layer routine. Hence, boundary 
node n is displaced as follows: 

( ) )1(*)( 1 −−+= i

nn

i

n xnx ααδ                                 (30) 

where )( i

nx  and )1( −i
nx  are the new and previous displacements of node n from its original position, *δ is 

the computed boundary layer thickness, n is a unit vector normal to the boundary and α  is an under-
relaxation coefficient between 0 and 1. Under-relaxation is necessary to stabilise the viscid-inviscid 
coupling process with the value selected as large as possible to produce a stable solution.  For all the 
problems considered, a value of � = 0.1 was found to be sufficient. 

� Following the mesh movement step, the flow residual is calculated again. If this residual is less than the 
convergence tolerance, the program will give the resulting output, otherwise it restarts from the beginning, 
repeating the process. 

 
3.6. Goldstein singularity 

As described, the 
•

V parameter determines the tradeoff between robustness of the boundary layer solution and speed 
of convergence of the iterative process. The early cycles of computing the boundary layer around an airfoil are 

particularly prone to instability due to the large adverse pressure gradient near the trailing edge. 
•

V is therefore set to 
a conservative value of 0.005 to ensure robust solution. It was found that for the iterative process to converge, it had 
to be “frozen” at some stage. To achieve this, the maximum percentage change in *δ  over the entire boundary layer 

was monitored and when it fell below a set threshold, here set to 0.2%, *estimateδ  was no longer updated. 

 
3.7. Wake 
The calculation of the boundary layer into the wake has not been included in this study, and instead an estimated 
function has been used for wake behind an airfoil. The function fitted approximately to data for a NACA0012 airfoil 
was: 

( ) )1(2.3

1

* 110 −−= xA

wake xδ                            (31) 

 
where A must be selected so that ( ) ( )tewake ξδδ ** 1 = . The trailing edge is at 
 = 
te. Since this does not accurately portray 

the shape of the wake, the approximation function (31) will cause a sacrifice of accuracy in the displacement 
thickness results through and beyond the trailing edge into the wake. Accurate representation of the wake requires 
implementation of different correlations (Katz and Plotkin, 2001) but otherwise is essentially the same as the process 
followed for the boundary layer. 
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4. Results and discussion  
For purposes of verification and validation, the proposed modelling technology was applied to a number of 
benchmark problems. This is discussed in the following paragraphs. 
 
4.1. Flat and angled plates 
The first test cases consisted of laminar flow over a flat plate. Finite difference meshes were employed, with mesh 
spacing as listed in Table 1. Figure 1 shows the two-integral numerical solution compared with the solution of the 
Blasius equations (Blasius, 1908) for a mesh spacing 05.0=∆ξ . Interaction with the inviscid flow is not considered in 

this initial test, with the external velocity set constant at 1 m.s-1. The viscosity used in these test cases is 1×10-5 m2.s-1 
with Reynolds numbers going up to 4×105.  

 
  Figure 1: Comparison between analytical solution (Blasius) and the numerical solution. 

 
To assess mesh convergence, we compute the average percentage error between the Blasius similarity solution and 
the two-integral solution as follows: 

∑
=

−=
N

n
similarityncomputednsimilaritynN

Error
1

*

,

*

,

*

,

1 δδδ            (32) 

Table 1 shows the errors resulting from various mesh spacings: 

 Mesh spacing (
) Error (%) 
Case 1 0.267 42.46% 
Case 2 0.05 2.06% 
Case 3 0.0267 0.55% 
Case 4 0.01 0.083% 

Table 1: Comparison between different mesh sizes for a flat plate 

These errors are plotted in Figure 2 as a function of mesh spacing. The slope of the log-log plot approaches 1.93, 
demonstrating the expected quadratic convergence rate of the Crank-Nicolson scheme. 
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Figure 2: Convergence rate for the Blasius solution using different grid spacings,  
with the dashed line depicting formal second-order accuracy. 

 
We now consider an inclined plate at an angle of 2πβ with respect to the oncoming airstream, as previously, finite 

difference meshes were employed. Table 2 summarises the resulting errors between the numerical boundary-layer 
solution and the Falkner-Skan similarity solution where again the outer velocity distribution is fixed as the inviscid 
analytical solution. The results again indicate quadratic convergence, reaching convergence rates of 2.09 and 1.83 in 
the two cases respectively. 

 
 Step size (
) Error (%) 

� = 0.3 0.05 2.47% 
 0.02 0.35% 
 0.01 0.082% 

� = 0.4 0.05 2.11% 
 0.02 0.23% 
 0.01 0.065% 

         Table 2: Comparison of different mesh sizes for angled plates.          
 
We now allow the entire coupled system to solve for plates at various angles of inclination.  The boundary conditions 
for these test cases were set to have a fixed velocity imposed on the outer boundary, namely the analytical solution of 
the velocity in the inviscid case, and unconstrained pressure. Since there is no “far-field” region in which velocity 
tends to a constant, the boundary conditions have a big influence on the solution. Therefore, to obtain a meaningful 
comparison with the similarity solution, it was necessary to specify them exactly.  
 
The predicted magnified boundary layer displacement mesh for a flat plate is depicted in Figure 3. The structured 
mesh consists of 5 226 nodes with x1 = 0.02 m and the solver converged to a solution with an error percentage of 
0.2%. The solver was found to be stable and robust, with only two tuneable parameters to be set: the under-
relaxation parameter � (see equation (31)), which affects the iterations between the inviscid and boundary layer 
solver, and the CFL number of the inviscid solver. In this case, � was set to 0.7, and the CFL number was set to 0.9. 
The solver was run in parallel on eight Intel Xeon CPUs of 2.33 GHz each and required 30.3 seconds to converge. 
Figure 4 compares the Falkner-Skan similarity solution and that of the interacting solver. The errors evaluated using 
equation (32) varied between 0.7% and 1.2% for the three cases shown.  
 
Note however that the solutions should not agree precisely as the similarity solution assumes the inviscid velocity 
distribution (i.e. no influence of boundary layer displacement on the inviscid outer flow).  The number of viscid-
inviscid iterations required to converge the solution by a five-order of magnitude drop in residual was between 16 
and 18 for these cases, with an under-relaxation coefficient of 0.9 used. 
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     Figure 3: Boundary mesh movement of flat plate, magnified 200 times in the vertical direction. 

  
                                   Figure 4: Comparison between the two-integral solution and that of Falkner-Skan. 

 
4.2. NACA0012 airfoil 
As a concluding example, the flow over a symmetrical airfoil (NACA0012) at zero angle of attack is calculated. 
Results obtained are compared with simulations of the same airfoil from XFOIL 6.9, a code developed by Drela and 
Youngren (2001), to validate the solution of the boundary layer code. A solution for a case of a laminar boundary 
layer is evaluated at Re = 10 000, to obtain the following results using an under-relaxation parameter of 0.1 and 
converging to a solution within 72 coupled iterations, with a drop in residual of five orders of magnitude. An 
unstructured computational mesh consisting of 12 064 nodes was employed for the inviscid fluid domain as shown in 
Figure 9.  
 
Figure 5 shows the solution of the displacement thickness at different stages of convergence. A slight inaccuracy in 
the vicinity of the trailing edge is evident, where the maximum disparity between the codes of 13.2% occurs. The 
velocity equation (17) suggested overcomes the Goldstein singularity existing at the point of shear stress vanishing 
but a proper solution of the wake would be required to ensure accurate calculation of the displacement thickness into 
the wake, whereas in this work, a wake function was used to simulate the displacement thickness across the trailing 
edge into the wake. The average difference in predicted displacement thickness between the developed technology 
and that of XFOIL using equation (32), is 3.95%. 
 
Snapshots were taken at certain stages throughout convergence to show how the boundary layer solution adjusts as 
the system converges. The results in Figure 5 are compared with those of XFOIL for this specific flow case. The line 
name “intermediate” refers to a point in convergence where there is a 10% difference between eU  and specifiedeU ,  at 

the final point. Figure 7 depicts the shape factor (H) during different stages of convergence. The shape factor begins 
at a value slightly lower than the Blasius value (H = 2.59) and grows gradually towards the trailing edge. Recall that 
the singularity occurs at H = 4.    
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      Figure 5: Comparison of displacement thickness at different stages of convergence for a NACA0012 airfoil. 
 

       
Figure 6: Skin friction coefficient at different stages of convergence. 
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Figure 7: Shape factor at different stages of convergence. 

 
Figure 7 depicts the friction coefficient (Cf) as calculated by equation (14) at different stages of convergence, 
compared with the XFOIL values for a NACA0012 airfoil. The friction coefficient is important since this 
dimensionless parameter relates to the friction drag found in the boundary layer. The smaller the friction drag, the 
more economical the fuel-usage of the aircraft. The Cf values converge to the XFOIL solution with an overall error of 
4.7% and a maximum discrepancy of 7.7% to present an accurate value to use for estimating the overall effects of the 
drag. 
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Figure 8: Comparison between the velocity imposed by inviscid solution and that obtained from the boundary layer   solution, after first 
iteration (top), intermediate (middle) and converged (bottom).   
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Figure 9: Mesh and velocity contours around the NACA0012 airfoil: Viscous flow (top) and inviscid flow (bottom). Velocity distribution 
in m.s-1. 

      
Figure 10: Mesh movement around the NACA0012 airfoil. 

Figure 8 shows the velocity that is computed by the auxiliary boundary layer equation (17) (in order to avoid the 
Goldstein singularity) compared with the velocity specified from the inviscid solver. It is compared at the different 
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stages of convergence, showing that the two velocities converge. Figure 9 shows the unstructured mesh with velocity 
contours around the NACA0012 airfoil for both the viscous and inviscid flow cases. The viscous case also shows the 
mesh movement depicted by the light grey area around the airfoil. Finally, Figure 10 displays the boundary layer 
thickness around the airfoil compared with the result obtained from XFOIL. It is evident that as the solver reaches 
the trailing edge and moves into the wake, there is a loss in accuracy. This is due to the assumed wake function as 
discussed in Section 3.7. 
 
5. Conclusion 
Generally, in the aeronautics industry, boundary layer effects are solved using the Navier-Stokes equations, which are 
computationally very expensive. The boundary layer is not only important to determine appropriate shapes to 
minimise drag across a body and thereby save fuel costs or to avoid separation but also to simulate flow through 
blade cascades in compressors and turbines.  
 
A novel viscous-inviscid modelling technology was developed, whereby the viscous region was described by 
boundary layer equations while the outer region was solved via an incompressible flow solver. In the case of the 
viscous boundary layer region, the two-integral method of Drela (1985) was used, obtaining the momentum integral 
equation in terms of momentum and displacement thickness, to solve flow in the boundary layer and predict the 
displacement thickness. The boundary layer equations were then discretised using the Crank-Nicolson differencing 
scheme (second-order implicit scheme) to ensure stability. These equations were solved point by point as an initial 
value problem by a local Newton method, since this method is relatively fast to converge, if the initial approximation 
is close to the solution. The method is able to solve past the separation singularity (Goldstein singularity) by using a 
quasi-simultaneous method with an auxiliary velocity equation suggested by Drela (2010). A coupling algorithm 
based on mesh-movement is used to account for the boundary layer thickness. Moving the mesh is considered more 
accurate and applicable to generic solvers than solving for an additional transpiration condition, which introduces 
spurious mass into the system. This allows for iterative solution of inviscid and boundary layer regions. 
 
The developed modelling technology is thoroughly validated in terms of accuracy and robustness via application to a 
number of test cases. Two classes of test cases were considered: one with only the boundary layer solver and the 
other with the viscous-inviscid coupling between the boundary layer solver and an existing inviscid solver. The first 
class of boundary layer cases consisted of flow over a flat plate as well as flow over an inclined plate at different 
angles of attack. The second class of test cases involved the same problems, in addition to the flow over a 
NACA0012 airfoil (results for the latter were compared with those of the XFOIL program). The developed boundary 
layer modelling scheme was proved second-order accurate. In both cases, the solvers proved to be robust and stable 
and only tuneable for the sake of convergence by the under-relaxation parameter and the CFL number. 
 
The methodology can be extended in a straightforward manner to treat practical airfoil design problems with 
transition to turbulent flows and mild flow separation by adding the additional parameters and equations given in the 
work of Drela (1985). Further, to increase the accuracy of the interactive method the proper closure equations for the 
wake should be solved as suggested by Drela (1985). The inviscid solver is a separate module in this study, which 
has the potential to be extended to transonic compressible flow. 
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