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Abstract

Purpose— The purpose of this paper is to introduce aumigchnique to couple the two-integral boundaygraolutions to a generic
inviscid solver in an iterative fashion.

Design/methodology/approach—-The boundary layer solution is obtained using tilve-integral method to solve displacement
thickness point by point with a local Newton methatla fraction of the cost of a conventional meaked, full viscous solution. The
boundary layer solution is coupled with an existingiscid solver. Coupling occurs by moving the Wa a streamline at the
computed boundary layer thickness and treatingsitaaslip boundary, then solving the flow again dedating. The Goldstein
singularity present when solving boundary layeradigms is overcome by solving an auxiliary veloodtguation along with the
displacement thickness.

Findings — The proposed method obtained favourable restiés compared with the analytical solutions fot #iad inclined plates.
Further, it was applied to modelling the flow ardlmNACAQ012 airfoil and yielded results similarttmse of the widely used

XFOIL code.

Originality/value — A unique method is proposed for coupling of thermary layer solution to the inviscid flow. Rathiban the
traditional transpiration boundary condition, masiovement is employed to simulate the boundary la@kness in a more
physically meaningful way. Further, a new auxiligelocity equation is presented to circumvent@uwdstein singularity.

Paper typeResearch paper

Nomenclature

c Artificial compressibility pseudo- L Length m
acoustic velocity ms M Mach number

c Chord length m n Unit vector normal to the boundary

Co Dissipation coefficient N Maximum number of nodes

o Skin friction coefficient p Pressure N

d Original grid position m Re Reynolds number basedlon

f Body force component N Re Reynolds number based 6n

h Height m t Time

H Shape factor u Velocity component ms

H Energy thickness shape factor U Free-stream velocity m's

H™ Density thickness \Y Volume flow rate ms

J Jacobian X Length m



Greek letters

a Under-relaxation parameter Subscripts
B Similarity parameter 0 Initial value
b Displacement grid position 1,2 Variables in the x- and y-directions
5 Boundary layer thickness m respectively
5 Density thickness e External flow variable
O Kronecker delta f Fluid
A Difference 0 Free-stream value
n Similarity coordinate i, j, Kk  Components of vector/tensor in indicial
0 Momentum thickness m notation
o Kinetic energy thickness n Index of nodes along boundary layer
U Dynamic viscosity kg.ths® w Wall
p Density kg.m
T Shear stress N:m Superscripts
V Kinematic viscosity s? n pseudo-(iteration) time-step
¢ Coordinate parallel to the
boundary layer m

1. Introduction

Since the 1970s, CFD codes have been used in thepaee industry to assist in designing and opitigiaircraft
and jet engine configurations and performance. @@&B revolutionised airfoil design by its ability eptimise
airfoil shapes to specified requirements. Key tedmting effects such as drag or the reversaloef f6 accounting
for the viscous effects in the airfoil near-walgjien. The latter is commonly referred to as thertauy layer.

Drag prediction is important in the aerospace itrgufor economic reasons since it influences fuainbcosts
(Anderson, 2007). The boundary layer region isdgity described via the direct discretisation antltion of
Navier-Stokes equations. When employing this apgrpdowever, the boundary layer typically requithe
largest part of computational resources, owingh® need for small mesh spacing normal to the bayndia
addition, the need for highly stretched elementshenboundary makes the process of meshing moiadiged
and time-consuming. Boundary layer approacheshemther hand, have been demonstrated to quawctifydary
layer effects in a far more efficient manner, aetlhave received comparatively little attentiorceithe 1980s.

Boundary layer approaches follow from the flow @ueristics specific to many aerospace applicatibhe small
thickness of the boundary layer prevalent in extehigh Reynolds number (small viscosity) attacRedss, for

example, permits certain approximations for govegrequations within the boundary. Firstly, the &toin of the
pressure normal to the wall is negligibly smallc@wdly, the variation of velocity along the wallrisuch smaller
than the variation of velocity normal to the walhese observations allow empirical relations tcebgloyed to
analytically integrate through the thickness of tloeindary layer in a manner that reduces the diimeality of the

problem, vastly decreasing the computational ressuconsumed.

In industrial boundary layer modelling, the flowds#/ided into two regions: an inviscid flow regiowhere the
flow is determined from models such as the Eulefuirpotential equations, and a viscid region, vehflow is
described by the boundary layer equations. Thigagmn is computationally considerably more effitigéman
resolving the Navier-Stokes equations throughaud, \zarious researches have demonstrated the efficief this
approach.

Riziotis and Voutsinas (2008), for example, impmbywrediction of aerodynamic performance in dynastal
conditions of airfoils. Jie and Zhou (2007) modeéllzansonic flow over complex three-dimensionakraift
configurations. Sekar and Laschka (2005) determmedmum flutter speed in transonic flows, Szmel{2001)
optimised transonic wings, Florea, Hall and Cizrie98) modelled cases of unsteady viscous sepafiated
through subsonic compressors and Soize (1992) heddahsteady compressible flow in cascade bladpesitive
incidences.

However, a few difficulties are present with visémdiscid interaction schemes, for example, thealed ‘strong
interaction problem’. Strong interactions existr fexample, in the trailing edge and separationomegjiwhere
neither the viscous nor the inviscid flow is donmihdocally. It is in these cases that the so-call@dldstein
singularity’ exists and where numerical interactibatween the viscous and inviscid flow can fail lack
robustness (Katz and Plotkin, 2001). One way taanree the Goldstein singularity is to solve thecwiss and



inviscid flow regions simultaneously (Drela, 1985)owever, this is computationally expensive anckaftely
limits one to using a potential flow scheme for theiscid flow solution. Other existing interactivaethods
include the semi-inverse method of Le Balleur (197(@978), (1983) and Carter (1979), and the quasi-
simultaneous method of Veldman (1979), (1980), {3981984), (2001), (2005), (2009). Another impattaspect
when coupling the viscous and inviscid flow regidagthat the inviscid solution needs to be infornadthe
boundary layer displacement. This is usually adhdelry using a transpiration condition at the irsteef between
the two flow regions, whereby a fictitious velocityinduced into the boundary layer to simulateeifect. The
drawback of this scheme, however, is that it dagsstrictly conserve mass.

The objective of this study is to develop a methbdolving boundary layer flow coupled to invisadter flow
which counters the difficulties described aboveoider to achieve this, we combine the followingradients:

= An interactive solution technique to achieve corafiahal efficiency and scaling for large problerres, as
well as modularity of inviscid and boundary layelvers.

=  The use of a fully mass-conserving boundary comdljtinstead of the transpiration velocity condition

= A coupling algorithm which circumvents the Goldstesingularity without the need for a monolithic
simultaneous solution of both inviscid as well &x@us regions.

The algorithm developed will be used with an erigticomputational fluid dynamics solver to comptte t
influence of the boundary layer on the outer flow.

2. Mathematical formulation

2.1. Governing equations for out-of-boundary lasegion

For the purposes of this work, we consider the nmm@ssible (low Mach number) Navier-Stokes equatiby
which to describe the out-of-boundary layer flovithwhe inviscid flow approximation:

Continuity
0
—po =0 1
ax A M)
Conservation of momentum (Newton’s second law)
0 0 ap du,  Ou; 29u,
+ — u. = +——-——53 (2)
(o) 0x, ('Oq ‘) A [ (ax ox  30x

Wherep is pressurdf,is the body forcey is the velocityp is density ang is the dynamic viscosity.

2.2. Boundary layer model

The boundary layer equations employed in this work are therseed by Drela (Drela, 1985). Drela derived the
momentum integral equation in terms of momentum and displatehiekness. These equations are known as the
two-equation integral formulation based on dissipation céofar both laminar and turbulent flows, which eliminate
the direct link between the profile shape and the pressure gradieking them suitable for flow with strong
interaction. The resulting two equations read:

C
%4.(2 H-M )eiduezif (3)
dé U, d¢ 2
.C
PRI PR 0V oo e
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whereg is the momentum thicknedsl, the Mach number of the external flowW, the velocity of the external flow,
C: the skin friction coefficientCp the dissipation coefficient anfithe coordinate parallel to the boundary layer.
These equations also contain three different shape parametersapleepsinametd, the energy thickness shape
parameterH’, which eliminates the direct link between tHeand the local external velocity., and the density
thickness shape factet .



The shape parameters are defined as follows:
H:i H*:e_ HH:J_ (5)
7 6 7
The momentum and displacement thicknegsasd J” and the kinetic energy and density thickn&sand J~ are

defined as follows:

6= I(l—ijﬂdq 6)
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wherey is the similarity coordinate. The dissipation coeffici€ptand the skin friction coefficier@i; are defined as:
1 7 _du
C,=——|r—d 10
’ peUfl on 4o
C, :izrw (11)
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The two dependent variables are defined as momeatuhdisplacement thicknegsands”. U, andM, relate to the
external inviscid flow and therefore do not represedditional unknowns. The undefined variables thenain are
Ci, Co, H andH™ for which the proposed functional dependencies tfdband Giles (1987) are assumed:

H =H'(H,,M, Re,)
H* = H (H,.M.)

C, =C,(H,.M, Re,)
C, =C,(H,.,M, Re,)

In the above relationdi, is the kinematic shape parameter defined with itletaken as constant across the
boundary layer and solely depends on the velodibfilp and not the density profile. Since comprekesiand
incompressible velocity profiles have closely sanghapes, the above correlations are based dinérmatic shape
parameter for compressible flow cases (Drela, 1985)

Hy was developed as an empirical expression by Whit{ie978) in terms of the conventional shape patarend
edge Mach numbevl, as follows:

Jm -4 dn
H o= 0 U, _H-029m?

KT T 1+ 0113M°
g
U_Ju

e e

(12)
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Laminar closure equations empirically derived fritva Falkner-Skan profile family are as follows (re1985):

The energy thickness shape parameter equations:



2
H™ = 1515+ 0076—(4 HHk) H, <4
. , (13)
_ (Hk _4)
H" = 1515+ 0.04H—,Hk >4
k
The skin friction coefficient:

C _ 2
Reg7f =-0067+ 0.01977M, H <74
C (14)
C _ 14
Reg7— -0067+ 00221~-——| ,H, > 74
k
The dissipation coefficient:
2CD _ 55
Re, /&= 0207+ 0.002084-H,)* H, <4
2C (H, -4) (15)
Re,—2 = 0207- 0003 k v.H, >4
H (1+ 002(H, - 4f)
The density thicknessl”™ was derived by Whitfield (1978) and is definedamws:
He = 9004 go51)Mm? (16)
H, -08

Note that this shape parameter is negligible fardobsonic flows and has only a small effect ondomic flows.

The laminar closure equations reach a singulatithe point wherdH, reaches 4, which is where the function (13)
reaches a minimum. This is referred to as the ‘&eld singularity’ at a boundary layer separati@inp The
vanishing derivative oH " causes a singularity in equation (4), which cary &l avoided itJ. adjusts to cause the
rest of the equation to tend to zero as well. Tloeeg any boundary layer method with a prescribgdhat reaches
separation will fail at this point.

Various methods have been proposed to circumvestptioblem. Firstly, the inviscid flow and boungdayer

equations may be solved simultaneously (Drela, 1.98&condly, in the semi-inverse method of Le Rallg977)
and Carter (1979), the boundary layer is solvedeirerse, i.e. for a given displacement thicknelss, velocity
distribution at the edge of the boundary layerosiputed. By then comparing this computed velowith the target
distribution imposed by the inviscid flow, a reléia formula is used to obtain a new estimate fispldcement
thickness. Thirdly, using the quasi-simultaneougragch of Veldman (1979), a simplified model foe timviscid

flow is solved simultaneously with the boundarydaghickness to circumvent the singularity. Whiles yields only
an approximate solution to the full system, theetaolution can then be obtained through iteratafinement.
Simultaneous solution of the entire system maydreptationally costly, while the quasi-simultaneouwsthod has
been shown to outperform the semi-inverse methagrims of convergence speed (Lock and Williams,7)98

this paper, therefore, the approach we proposassdon the quasi-simultaneous philosophy.

In the quasi-simultaneous approach, the simplifiredscid flow model is obtained by retaining onlyinzipal

diagonals in the external flow operator which m#ps displacement thickness at the boundary pointke edge
velocities at those points (Veldman, 2009). Thurdy the influence of a limited neighbourhood ofiris is taken
into account as the boundary layer adjusts, depgrati how many diagonals are retained. In thikywe propose
an alternative approach. To avoid prescribingvilecity directly, for the purposes of the boundkyer solution,
the outer inviscid flow is assumed to be confineditnotional two-dimensional channel. This charal a fixed

specified total volume flow rat¥ and a varying specific heighi(x;) which is calculated to reproduce the desired
velocity profile given an estimated boundary lagkickness (Drela, 2010). The velocity is then sdlwsing the



channel model together with the boundary layer #guos, allowing the singularity to be avoided. pRating the
process by feeding back the newly calculated digpteent thickness as the updated estimate, the gyr@aa be

iterated until convergence is reached. Althodghis an arbitrary value (sindgX,) is calculated to always give the
desired velocity profile) it plays a role in thecaracy versus stability trade-off, smaller valuedding a more stable
solution but requiring more iterations to reachwargence to an accurate solution.

Accordingly, the velocity is written as:

UL&)=V/[n(e)- & (€)- (17)

Hereh(xy), the specific channel height, is calculated frbmdpecified velocity by

W=V () Bl (18)

Where g, (¢) is an estimated displacement thicknessaggl.ds the velocity obtained from the inviscid solution

estimats

It is unavoidable that the fin&l. will differ slightly from U, spe¢ although the more accurateds, (&), the smaller

this difference will be. The greater the value\bt the closetU. will be to Ue gpee but if it is set too high, the
Goldstein singularity is approached once agaimasnfluence ofy” ({) onU.is lessened.

Equation (17) becomes an additional equation towesalong with equations (3) and (4). This allow® th
simultaneous solution of displacement thickness\aahakity, circumventing the singularity, while asling the need
to solve the entire viscous and inviscid flow donsasimultaneously.

3. Solution procedure

3.1. Inviscid flow

In this investigation, we restrict ourselves todmpressible outer flow. The flow solver is basedtloa artificial
compressibility characteristic-based split (CBS-ACheme (Nithiarasu, 2003, Malan and Lewis, 20Thg three
steps of the CBS-AC algorithm can be written as:

Step 1: Intermediate momentum

. a 101, At 9 d '
Alpu) =4y - -2 Bl B PR (19)
(o) { ox, (ouu, )+ Re ox U axk(axj (puU.)H

where the asterisk indicates an intermediate dyaliscous terms are included although they agligible for
inviscid flow and the flow solver is not requiredresolve the boundary layer.

Step 2: Density or pressure

[ij Ap:(ij (p™ - p)=-at 9(pu;) +910A(,0U‘) -6, 0°p" +6, 0°Ap (20)
c? ox, ox, X 0X, 00X,
wheren denotes the previous pseudo (iteration) time-stefnal is the new iteration being solved for.

Step 3: Momentum correction
n+6,
Apu) = U™ - = Apu) - At "gxi (21)

Where 05<6, <1 and 0< g, <1. For the explicit artificial-compressibility schenemployedd, = 0is used. The

artificial compressibility formulation allows for finite value ofc? to be used for incompressible flows, calculated as
per Malaret al. (2002).

3.2. Boundary layer solution



To ensure numerical stability, the Crank-Nicolsdffedencing scheme is used to discretise the boyntieyer
equations as represented by equations (3) andl®fg with the auxiliary velocity equation (17).
The momentum equation (3) is discretised as:

f,= LA_{H"_l +(2+ H”_%)UH”’% A_ 0 (22)
n en-¥% n

where for the purpose of the boundary layer eqnafindenotes a node number. Furth€r= C;(H,,Re) as given by
(14) andn — Yrefers to an average value between nodadn —1, for exampleg,_ = % 6, + % 6.,

The shape parameter equation (4) is discretised as:

P H;_H;fl_

6.y U, -U
n-% Ag,-,

en-1 = O
Uy O,

(23)

f, ZCD,n—}/Z + H.:— Cf;—% + H; 2(1_ H,.- 2)

b

whereC; = C¢(Hy,Re) as given by (14) argy = Cy4(Hy,Re) as given by (15). To simplify the working, sfall now
restrict ourselves to incompressible flow, with theult thaH, =H =& /8 andH™ = 0.

The auxiliary velocity equation (17) is discretisesi

Vv (24)
The equations (22-24) are now solved as an iniiale problem using a point-by-point local Newtoathod. That
is, given initial values fody, 8, andU, o, the system of three equations

(6" Ony Ue) = 0 wherei = 1,2,3 (26)

is solved first fom = 1, thenn = 2 and so on. The 3 x 3 Jacobiﬁ% is calculated analytically at each point

n using the exact discretised governing equatidre initial values used to start the Newton itenadi are taken as
the values from the previous point.

3.3. Initial condition

Initial valuesdo and 6, are needed and the logical choice of zero cannatsed for the Crank-Nicolson method
since C, and C, are singular there. Therefore, the initial incesinis instead solved using the similarity solutidn

Blasius, to give
5, =1.7208 /%‘i and (26)

6, = 0664 /"351 : (27)

The initial values obtained from this function aesufficiently close approximation to solve mosubdary layer
solutions (Drela, 1985). The boundary layer equetiare then solved from the second point onwards.

The initial value forU, is set atU which is obtained from the inviscid solver. Topirave robustness the

espec’!

velocity function (17) is only activated as theggitarity is approached; i.&J, is set equal t&J  _for H < 25after

espec

which the velocity equation (17) is used to solwel . .



3.4. Mesh movement
The mesh movement routine is a simple interpoldtioction  (Oxtoby and Malan, 2012)

6= r.%‘)1+(1—r)82 (28)
a4’

—_ 2
where r= dl% " dz% (29)

In this caseé is the displacement of the grid point from itsgoral positiond; andd, are the shortest distances from
that point to the internal and external boundaréspectively, and, and 8, are the displacements of those two

closest boundary points. Though this approach iBesdhat simplistic, it is sufficient for small diggements in
aerodynamic applications and is selected for itgigible computational cost.

3.5. Coupling and interaction method
The interaction method between the solver and iffierent routines to calculate the boundary and enthe mesh
happens as follows:
= Firstly, the solver lets the flow solution convergea point where the residual is less than theifpéd
tolerance. Both boundary layer and inviscid regiaressolved concurrently.
= Secondly, the solver moves the boundary nodesetpakition of a streamline at the boundary surfabés
is determined by the displacement thicknéssalculated by the boundary layer routine. Henceindary
noden is displaced as follows:
X" =adn+(1-a)x'™? (30)
where 8x!’ and 8x!™ are the new and previous displacements of moftem its original position,J is

the computed boundary layer thicknessis a unit vector normal to the boundary andis an under-
relaxation coefficient between 0 and 1. Under-rafn is necessary to stabilise the viscid-inviscid
coupling process with the value selected as lagy@assible to produce a stable solution. Forlal t
problems considered, a valuesof 0.1 was found to be sufficient.

= Following the mesh movement step, the flow residsiaalculated again. If this residual is less thize
convergence tolerance, the program will give theilteng output, otherwise it restarts from the begig,
repeating the process.

3.6. Goldstein singularity

As described, they parameter determines the tradeoff between robistfehe boundary layer solution and speed
of convergence of the iterative process. The eeybles of computing the boundary layer around afoibiare

particularly prone to instability due to the la@g@verse pressure gradient near the trailing edgs.therefore set to
a conservative value of 0.005 to ensure robustisalult was found that for the iterative processonverge, it had
to be “frozen” at some stage. To achieve thisnlagimum percentage changedn over the entire boundary layer
was monitored and when it fell below a set threghére set to 0.2%), was no longer updated.

estimate

3.7. Wake

The calculation of the boundary layer into the walas not been included in this study, and insteadstimated
function has been used for wake behind an aiffdie function fitted approximately to data for a NA@12 airfoil
was:

o,

wake

(X1) =10732%D (3 1)

whereA must be selected so thatt_(1)= 05 (¢,). The trailing edge is @t= &e. Since this does not accurately portray

the shape of the wake, the approximation functi®h) (will cause a sacrifice of accuracy in the dispiment
thickness results through and beyond the trailishgeeinto the wake. Accurate representation of thkearequires
implementation of different correlations (Katz dpldtkin, 2001) but otherwise is essentially the sa@® the process
followed for the boundary layer.



4. Results and discussion
For purposes of verification and validation, theopgsed modelling technology was applied to a nurdfer
benchmark problems. This is discussed in the faofigyaragraphs.

4.1. Flat and angled plates

The first test cases consisted of laminar flow cvélat plate. Finite difference meshes were engdowith mesh
spacing as listed in Table 1. Figure 1 shows theiftegral numerical solution compared with theusoh of the
Blasius equations (Blasius, 1908) for a mesh sgagi= 005. Interaction with the inviscid flow is not considd in

this initial test, with the external velocity semnstant at 1 ms The viscosity used in these test cases is Txf0s*
with Reynolds numbers going up to 4210

016

014

6.012 /
1.1 /
0.00% /
1.0 /
(L0 /
/ = Blasius solution
002

I == = Nierical approximation

Dusplacemeant thickness (67) Jm)|

j
0 0.3 1 L3 2 13 3 33 4 4.5

<[]

Figure 1: Comparison between analytical solutiorfBlasius) and the numerical solution.

To assess mesh convergence, we compute the ayseggntage error between the Blasius similaritytgmt and
the two-integral solution as follows:

N
Error = %Z 6;,similarity - 5;,compute4/5n,similarity (32)
n=1

Table 1 shows the errors resulting from varioushmsgmcings:

Mesh spacing/¢) Error (%)
Case 1 0.267 42.46%
Case 2 0.05 2.06%
Case 3 0.0267 0.55%
Case 4 0.01 0.083%

Table 1: Comparison between different mesh sizesrfa flat plate

These errors are plotted in Figure 2 as a funatiomesh spacing. The slope of the log-log plot epphes 1.93,
demonstrating the expected quadratic convergeneefahe Crank-Nicolson scheme.
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Figure 2: Convergence rate for the Blasius solutionsing different grid spacings,
with the dashed line depicting formal second-ordeaccuracy.

We now consider an inclined plate at an anglgzmb with respect to the oncoming airstream, as preWotisite
difference meshes were employed. Table 2 summattigesesulting errors between the numerical bountser
solution and the Falkner-Skan similarity solutiohere again the outer velocity distribution is fixasl the inviscid

analytical solution. The results again indicatedyatic convergence, reaching convergence rate08f@hd 1.83 in
the two cases respectively.

Step sizeA¢) Error (%)

B£=0.3 0.05 2.47%
0.02 0.35%

0.01 0.082%

£=0.4 0.05 2.11%
0.02 0.23%

0.01 0.065%

Table 2: Comparison of different mesh sizfor angled plates.

We now allow the entire coupled system to solvepfates at various angles of inclination. The latarg conditions
for these test cases were set to have a fixed ityelogposed on the outer boundary, namely the digalysolution of
the velocity in the inviscid case, and unconstrdipesssure. Since there is no “far-field” regionwhich velocity
tends to a constant, the boundary conditions habdig anfluence on the solution. Therefore, to obtaimeaningful
comparison with the similarity solution, it was eesary to specify them exactly.

The predicted magnified boundary layer displacenmeesgh for a flat plate is depicted in Figure 3. Bheictured
mesh consists of 5 226 nodes with = 0.02 m and the solver converged to a solutidh amn error percentage of
0.2%. The solver was found to be stable and robust, witly two tuneable parameters to be set: the under-
relaxation parametes (see equation (31)), which affects the iteratiorsMeen the inviscid and boundary layer
solver, and the CFL number of the inviscid solVeithis caseq was set to 0.7, and the CFL number was set to 0.9.
The solver was run in parallel on eight Intel X&RUs of 2.33 GHz each and required 30.3 secondsrteerge.
Figure 4 compares the Falkner-Skan similarity sotuand that of the interacting solver. The ermraluated using
equation (32) varied between 0.7% and 1.2% fottitee cases shown.

Note however that the solutions should not agreeigely as the similarity solution assumes thesitidi velocity
distribution (i.e. no influence of boundary layasmglacement on the inviscid outer flow). The numbgviscid-

inviscid iterations required to converge the solutby a five-order of magnitude drop in residuakvietween 16
and 18 for these cases, with an under-relaxatiefficent of 0.9 used.
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Figure 3: Boundary mesh movement of flat platemagnified 200 times in the vertical direction.
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Figure 4: Comparison between the two-integral solubn and that of Falkner-Skan.

4.2. NACA0012 airfoil

As a concluding example, the flow over a symmetraiefoil (NACA0012) at zero angle of attack is calated.
Results obtained are compared with simulationi@fseame airfoil from XFOIL 6.9, a code developeddgla and
Youngren (2001), to validate the solution of theidary layer code. A solution for a case of a laminoundary
layer is evaluated at Re = 10 000, to obtain tHeving results using an under-relaxation paramefe®.1 and
converging to a solution within 72 coupled itera8p with a drop in residual of five orders of madgde. An
unstructured computational mesh consisting of 12 fiédes was employed for the inviscid fluid domesrshown in
Figure 9.

Figure 5 shows the solution of the displacemeruktieéss at different stages of convergence. A sligidcuracy in
the vicinity of the trailing edge is evident, wheahee maximum disparity between the codes of 13.2¢uis. The
velocity equation (17) suggested overcomes the kel singularity existing at the point of sheaes$ vanishing
but a proper solution of the wake would be requteednsure accurate calculation of the displacettécitness into
the wake, whereas in this work, a wake function used to simulate the displacement thickness athessailing
edge into the wake. The average difference in ptedidisplacement thickness between the develaadthology
and that of XFOILusing equation (32), is 3.95%.

Snapshots were taken at certain stages througbouemence to show how the boundary layer soluditjosts as
the system converges. The results in Figure 5@rgared with those of XFOIL for this specific flaase. The line
name ‘“intermediate” refers to a point in convergemthere there is a 10% difference betwégnand U, .., at

the final point. Figure 7 depicts the shape fa¢ttyrduring different stages of convergence. The sliag®r begins
at a value slightly lower than the Blasius valble=2.59) and grows gradually towards the trailidge Recall that
the singularity occurs &t = 4.
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Figure 7 depicts the friction coefficienC{ as calculated by equation (14) at different stage convergence,
compared with the XFOIL values for a NACA0012 airfoThe friction coefficient is important since shi
dimensionless parameter relates to the frictioy doaind in the boundary layer. The smaller thetifsit drag, the
more economical the fuel-usage of the aircraft. Thealues converge to the XFOIL solution with an olezeror of
4.7% and a maximum discrepancy of 7.7% to pregeataurate value to use for estimating the ovefédkts of the
drag.

13



o

Velocity (L
<
=]

————lk
0.7 oo
— e specified
0.6
0 0.2 04 .6 0.8 1 1.2
5-1
1.2
N‘-
1 -"\
Ak T
-

—_ 1
o
é 0.9
2
)
“ os

0

0.6

0 0.2 04 0.6 0.8 1 1.2
S
1.2

o)

Veloeity (U

0 0.2 04 [1X6) 0.8 1 1.2

¢

Figure 8: Comparison between the velocity imposedybinviscid solution and that obtained from the boumlary layer solution, after first
iteration (top), intermediate (middle) and converge (bottom).

14



Figure 9: Mesh and velocity otour ru the Nlaiol:isos
; -1
inm.s™.

low (t d inviscid ﬂw( ottom). Velocity distribution

02 T T T T T
Boundary displacement
XFOIL result
0.1+ 4
-0.1 - 4
_02 1 1 1 1 1
0 02 0.4 0.6 0.8 1 1.2

X
Figure 10: Mesh movement around the NACAO0012 airfoi

Figure 8 shows the velocity that is computed byahgiliary boundary layer equation (17) (in orderavoid the
Goldstein singularity) compared with the velocipesified from the inviscid solver. It is comparedtize different
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stages of convergence, showing that the two vééscttonverge. Figure 9 shows the unstructured méhkhvelocity

contours around the NACAQ012 airfoil for both thecous and inviscid flow cases. The viscous case gtlows the
mesh movement depicted by the light grey area ardhe airfoil. Finally, Figure 10 displays the bdany layer
thickness around the airfoil compared with the Itesitained from XFOIL. It is evident that as thelver reaches
the trailing edge and moves into the wake, thee lizss in accuracy. This is due to the assumea iizhction as
discussed in Section 3.7.

5. Conclusion

Generally, in the aeronautics industry, boundaygiaffects are solved using the Navier-Stokes taojusg which are
computationally very expensive. The boundary laigenot only important to determine appropriate &safo
minimise drag across a body and thereby save sk or to avoid separation but also to simulate flhrough
blade cascades in compressors and turbines.

A novel viscous-inviscid modelling technology wasvdloped, whereby the viscous region was descriped
boundary layer equations while the outer region s@sed via an incompressible flow solver. In tlzse of the
viscous boundary layer region, the two-integrallmodtof Drela (1985) was used, obtaining the mormaritiegral
equation in terms of momentum and displacemenkitieiss, to solve flow in the boundary layer and jotetthe
displacement thickness. The boundary layer equatigere then discretised using the Crank-Nicolsdfereincing
scheme (second-order implicit scheme) to ensui@lisfaThese equations were solved point by paisitan initial
value problem by a local Newton method, since itiethod is relatively fast to converge, if the @itpproximation
is close to the solution. The method is able teesplast the separation singularity (Goldstein demify) by using a
guasi-simultaneous method with an auxiliary velp@tuation suggested by Drela (2010). A couplirgpathm
based on mesh-movement is used to account foraedary layer thickness. Moving the mesh is comsidienore
accurate and applicable to generic solvers thavirgpfor an additional transpiration condition, whiintroduces
spurious mass into the system. This allows foattee solution of inviscid and boundary layer regio

The developed modelling technology is thoroughlydeded in terms of accuracy and robustness vidiggin to a
number of test cases. Two classes of test cases ap@sidered: one with only the boundary layer esobnd the
other with the viscous-inviscid coupling betweea Houndary layer solver and an existing inviscildeso The first
class of boundary layer cases consisted of flow aviat plate as well as flow over an inclinedtplat different
angles of attack. The second class of test casedved the same problems, in addition to the floweroa
NACAO0012 airfoil (results for the latter were comga with those of the XFOIL program). The developedndary
layer modelling scheme was proved second-orderrateeun both cases, the solvers proved to be tandstable
and only tuneable for the sake of convergence béyittder-relaxation parameter and the CFL number.

The methodology can be extended in a straightfatwaanner to treat practical airfoil design problewith
transition to turbulent flows and mild flow sepédoatby adding the additional parameters and egugfiven in the
work of Drela (1985). Further, to increase the aacy of the interactive method the proper closupgations for the
wake should be solved as suggested by Drela (198%).inviscid solver is a separate module in thislys which
has the potential to be extended to transonic cessfirle flow.
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