Optical delivery of ARV drugs into HIV-1 permissive cells

Thulile Khanyile1,2, Maria Papathanasopoulos2, Andrew Forbes1 and Patience Mthunzi1

1. National Laser Centre, Council for Scientific and Industrial Research, PO Box 395, Pretoria, 0001, South Africa
2. HIV Pathogenesis Research Laboratory, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Parktown, Johannesburg, South Africa

*E-mail: pmthunzi@csir.co.za

29 October 2013
What is HIV-1?
1996 - “Ongoing declines in AIDS incidence and deaths in developed nations, primarily due to widespread use of HAART”

(Roger J Pomerantz and David L Horn)
AIDS-related deaths, 1995–2011

Sub-Saharan Africa region:

23.5 mil living with HIV-1

(World Health Organisation, 2012)
People receiving HAART, 2002–2011

No. of people in millions

- North Africa and the Middle East
- Europe and Central Asia
- East, South and South-East Asia
- Latin America and the Caribbean
- Sub-Saharan Africa

(World Health Organisation, 2012)
Downfalls of HAART

- Treatment is lifelong
 - Long-term toxicities and side effects

- Emergence of drug resistance

- Poor targeting ability to latent sites
 - Lymphatic system, macrophages, CNC and lungs
Deliver anti-HIV-1 drugs using femtosecond (fs) laser pulses

- Optical delivery of therapeutic drugs has not yet been demonstrated in literature

Previous studies where method was used

- DNA plasmids – pGFP (Tirlapur & Konig, 2002)
- Viability dyes – Trypan blue (Stevenson, D et al, 2006)
- Transcription factors
- Applicability to stem cell differentiation (Mthunzi, P et al, 2010)
Objectives

- Assemble and characterise an optical translocation setup
- Optically deliver tenofovir via fs laser pulses into TZM-bl cells
- Miniaturise current drug inhibition assay protocol
 - Drug – cell exposure time
 - Cell concentration
 - Reagents used
Photo-translocation optical setup

- Koehler illumination
- XYZ translation stage
- 0.8 NA objective
- LDW objective
- CCD camera
- 1064 nm laser
- M1, M2, M3, M4
- L1, L2, TL
- Shutter

Photo-translocation optical setup

- Koehler illumination
- XYZ translation stage
- 0.8 NA objective
- LDW objective
- CCD camera
- 1064 nm laser
- M1, M2, M3, M4
- L1, L2, TL
- Shutter
Selective and non-invasive nature of photo-translocation

- Genetic material (DNA)
- Laser beam
- Mammalian cell
- DNA and transient hole

Microscope objective
HIV-1 inhibition assay

No infection

Tzm-bl cell

Tenofovir
Pseudovirus

2013
Emerging Researchers Symposium

our future through science
Laser-assisted drug delivery enhances HIV-1 inhibition

Table showing obtained RLU values

<table>
<thead>
<tr>
<th>TC</th>
<th>PC</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>95282</td>
<td>2775</td>
<td>62763</td>
</tr>
<tr>
<td>132304</td>
<td>2589</td>
<td>93561</td>
</tr>
<tr>
<td>141862</td>
<td>2660</td>
<td>118104</td>
</tr>
</tbody>
</table>

- TC – tenofovir control
- PC – positive control
- Experiment: Laser-treated cells

Graph showing RLU values of laser assisted drug delivery compared to non-treated cells
Conclusions

• Successful assembly of photo-translocation setup
• Successful photo-translocation of tenofovir into TZM-bl cells
 • Increased drug uptake
 • Reduction of drug – cell exposure time
 • 48 hours to 30 minutes

• Decreased cell concentration
 • 1×10^4 to 5×10^3

• Decreased ELISA plate well usage
 • 96 wells to 12 wells
 • Decreased reagents
Future perspectives

- Decrease diameter of sample chamber
- Further decrease in cell numbers
- Change laser beam shape

- Compare photo-translocation efficiency
- Drug delivery into multiple number of cells by incorporating SLM
- Cytotoxicity and cell viability testing
Acknowledgements

- Dr Patience Mthunzi (NLC-CSIR)
- Prof Maria Papathanasopoulos (Wits)
- Prof Andrew Forbes (NLC-CSIR)
- Dr Hazel Mufhandu (Biosciences – CSIR)
- Dr Dalu Ncama (Biosciences – CSIR)
Thank you