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Crack edge collocation for the direct computation
of stress intensity factors using the displacement

discontinuity method

J.A.L. Napier®

The numerical solution of problems relating to crack fracture and
failure can be accomplished using the displacement discontinuity
boundary element method. This paper presents an extension to the
normal formulation of this method to enable stress intensity factors
to be solved directly atthe crack edges. This is achieved by employ-
ing an enhanced edge collocation procedure. The limiting interpre-
tation of the governing integral equations is discussed and two
simple examples are presented to illustrate the application of the
method.

Introduction

Two well-established methods for the numerical analysis of
boundary value problems in potential theory and elasticity are
the finite element method (FEM) and the boundary element
method (BEM). Relying on the existence of fundamental solu-
tions, the BEM is usually restricted to problems with homoge-
neous material properties. Nevertheless, this approach may
often be the method of first choice when considering the analy-
sis of problems that are dominated by the behaviour of signifi-
cant boundary or internal surfaces. A particular example is the
treatment of tabular mining problems, introduced in South
Africa by Salamon,’ Starfield and Crouch,” and Crouch.” This
technique, now termed the displacement discontinuity method
(DDM), has been employed also in the solution of problems of
earthquake dynamics'® and in general crack propagation
studies.”

The DDM requires the solution of a singular integral equation
that can, in the case of a flat crack surface, be treated effectively
by dividing the surface into a number of uniform square
elements.'” In the simplest case, itis assumed that the crack slip
or opening displacement is constant within each element and
that the element ‘influence’, in terms of induced stress values,
can be derived analytically at the centres of all the surrounding
elements to form a matrix approximation to the integral equa-
tion. In problems relating to deep-level gold mining, where reef
excavations typically extend over areas of several square kilo-
metres, the derived influence matrix may be extremely large (of
the order of 50 000 or more) requiring special numerical treat-
ment. An innovative, and then novel, use of the Fast Fourier
technique was proposed by Starfield (pers. comm.) for the
solution of these problems and its viability was demonstrated by
Stuart.”

A central issue in the use of the DDM is the evaluation of the
boundary integral relationship at any given point on the crack
surface.” Owing to the nature of the singular kernel in the
integral equation, this requires special care in any numerical
treatment. Most of the early applications of the DDM™ conse-
quently employed collocation methods, where the limiting
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behaviour is evaluated at a point internal to the element surface
(typically at the element centre for constant, square elements),
Recent proposals' have suggested that this collocation point can
be located ata common vertex of adjoining elements. This paper
discusses the restrictions that are associated with this procedure
and then proposes the novel concept of placing collocation
points on the edge of the crack surface. In this case the stress
intensity factor is evaluated directly, rather than being inferred
from the value of the adjacent crack opening displacement. This
has the advantage of providing immediately one of the key
parameters of interest in fracture mechanics and in the analysis
of crack growth problems. In the context of tabular mine design,
this approach may be used for the direct evaluation of the
energy release rate along the edges of mine excavations,

Boundary integral equation singularities

The components of the stress tensor induced at point I by the
displacement discontinuity vector 1(Q) defined at the points Q
of a crack surface @B are given by the expression

Ty (P)= | T, (P,OYD(Q)n (Q)dS,, . (n

ob

where D (Q)=u; (Q)—u, (Q)and where 1 (Q) and 1 (Q) are the
components of the displacement vector on the ‘positive” and
negative’ sides of the surface with respect to the defined positive
normal 1{Q). dSu is the elementary surface area at point Q. The
influence tensor Iy, depends on the relative distance r between
points P and Q as well as the direction cosines y, of point P rela-
tive to point Q.” Repeated indices in the integrand in Equation
(1) are assumed to be summed. Problems in elastodynamics can
be reduced to a similar, but functionally more complex form.*

Consider the simplified case of a single, flat crack lying in the
plane z = 0and subjected to a far field stress that acts perpendic-
ularly to the fracture surface. The explicit form of Equation (1) for
the normal stress component, 7, induced by the crack in an
isotropic elastic medium, is given by

. l , ; g .
T (P)=C, [[ 11+ 67 =157 1D_(&,m)dédn. (2)
ai r
where point P has coordinates (v, 1,2), 7. = 2/ = (x = &) + (y—n)
t+ 2" and D,(E) is the normal component of the displacement
discontinuity vector at point Q(E 7). The constant C, depends on
the elastic properties of the medium and is given by

C.=G/an(1-v), (3)

where G is the shear modulus and v is Poisson’s ratio.

Care must be taken in evaluating Equation (2) when the field
point I’ tends to the surface aB (that is when z — 0). The analysis
of this limit can be simplified by expressing the integrand in
Equation (2) in polar coordinates. In particular, by setting v - & =
pcos land y—y = psin @, Equation (2) can be writtenin the form

Ri#
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where P, designates the expansion point (v,y), ¥ = p’ + z* and
R(f) represents the distance from the expansion point £, to the
crack boundary. The outer integral, with respect to 6, is consid-
ered to imply a complete circuit around the crack boundary. In
the special case where D. is a simple polynomial function of v—&
and i —# it is possible to express D. in the form of a series

D.(p.0)=c,+3 f(0)p" (5)
A=l

where ¢, is a constant and f,(f) are trigonometric polynomials in
sinfland cos ¢. The upper limit of the sum, n, defines the order of
the expansion. The inner integral in Equation (4) can be evalu-
ated analytically in this case and the limiting behaviour asz — ()
can be determined. Carrying out the inner integration, Equation
(4) may be written in the form

r;_.(ﬂ.:):J'i_f;(m[ﬂ(R)ka(m]da (6)
k=0
where,
k+l
!-;_(;J):j’% [1+622 702 ~1524 1#"]dp )
'

and it is assumed that f(f#}) = ¢,. The limiting case z — 0is then
determined by the behaviour of the integrals Fi(p) as z — (.
Considering the first three terms of the series in Equation (6), it
may be shown that

Fipy=—p*(p> +4z)4p* +27)", (%)

FApy=—p(p' +5p°2" + 20" +27) +In|p+y(p" +2)|. 9)

F(p)=ptp® =223 (p* + %) (10)

Examination of Equations (8), (9) and (10) reveals that, forp > 0,
F.(p) remains finite when z — (L. When p — (), both F(p)— 0and
F.(p) — 0when zis not zero. In this case the zero terms, F(0) and
F(0), in the integrand of Equation (6) do not contribute to the
value of the induced stress r_(P,z) and are assumed also to give
no contribution when z — 0. However, when p =0,

F(0)=In(vz%) (11)
and the integrand in Equation (6) becomes unbounded as z — (.
For a function D.(p.f!) possessing a smooth tangent at p = (),
the expansion function f,(/) must assume the form

fi(B)=a, cosd + 3, sinf> (12)

where @, and 3, are constants defining the local tangent slope.
The contributions to the induced stress from the F; terms in
Equation (6) then become

r = [(a, cos& + f, sin0) [ F,(R() ~Iny/z" ]a0 (13)

and it can be seen that the potentially singular terms involving
Vz* vanish when the integral is evaluated around the perimeter
of the crack.

In summary, it is therefore apparent that if the crack opening
displacement function D(p.0) possesses a locally smooth
tangent at a given point P on the crack surface, then the stress
induced at the point will be bounded. This provides, as well, a
sufficient condition for the evaluation of the traction vector at
the common vertex, P, of a set of adjoining elements as shown in

Fig. 1. This places some constraints on the implementation of a
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Fig. 1. Polar integration about a common vertex P, shared by five triangular
displacement discontinuity elements.

‘node-centric’ collocation scheme such as the method proposed
by Vijayakumar ¢t al."' This condition will not be satisfied if each
element at the vertex has a different tangent plane at the
common point. This would arise, for example, if it were assumed
that the discontinuity variation was linear within each of the
adjoining elements. However, if a numerical procedure is
devised in which the uniform tangent condition is ensured at
each common vertex, then traction boundary conditions can be
evaluated at each vertex by adjustment of the crack displace-
ment discontinuity components.

Edge collocation procedure

Imposing the condition of a uniform tangent plane for the
displacement discontinuity components at point P, of the crack
surface and letting z — 0 in Equations (8)-(10), yields the follow-
ing values for the functions F(R):

. |
'},’,I}E'(R’:“E- (14)
limFI('R')=fl+ln2+InR. (15)
=l

(16)

lim F,(R) = R.

If the expression for F,(R), given by Equation (15), is substituted
into Equation (13), itis apparent that the constant -1 + In 2 does
not contribute to the value of 7'’ when the integral is evaluated.
From these results, it appears therefore that when z — 0, Equa-
tion (4) can be written formally as

R

r.p)=C,f [ 229 4pag
0 ph

and the inner integral in Equation (17) may be evaluated directly
once the functional form of the crack opening displacement
D.(p.0) is assigned. This is equivalent to interpreting the inner
integral in Equation (17) in terms of Hadamard's finite part of a
divergent integral.” This effectively allows the immediate
derivation of Equations (14)-(16) by evaluating the inner
integral in Equation (17) formally and ignoring the lower limit of
integration, p = (. [The constant =1 + In 2 will not appear in
Equation (15) in this case, but may be omitted as it will not con-
tribute to the outer integral in Equation (17)]. Consequently, pro-
vided the smooth tangent condition is satisfied, it seems feasible
to choose the collocation point P atany position within the crack
surface, including the limiting case when this point tends to the
edge of the crack from within the crack region.

To mativate this suggestion further, consider the analysis of a
parallel-sided crack located in the region 0<y <H of the x-y

(7
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Fig. 2. Parallel-sided crack defined in the region 0 < y < H of the x—y plane.

plane as shown in Fig. 2. Suppose that the distance between the
collocation point I and a point Qlocated on the opposite edge of
the crack is equal to L and that the line PQ isinclined at an angle
0 to the x-axis as shown in Fig. 2. Hence,
LB)=H/sin@;0<0<n. (18)
Furthermore, suppose that the crack opening displacement
along the line PQ is given by the function
D.(p.0)=[p(L-p)]

Also, suppose that near the crack edges, y = 0 and v = H,
the crack opening displacement can be expressed as follows.

ey, +a,p). (19)

lim D, (£,8) = k, Je, y=0 (20
Iij_,(L—g,B):J;:J;_;,:H‘ (21)

Using Equations (20) and (21), Equation (19) may be expressed
in terms of shape’ functions i, (p) and y.(p), for 0 = p < L, in
the form

D (p.6)=kwy, +kup,, (22)
where
vip)=—= —lpL-p)] - pi 1), (23)
VL
] 12,
v (py=—=[p(L-p)]"(p/L) (24)
VL

and L(f) is given by Equation (18).
Employing Equations (22)-(24), Equation (17) can be evaluated
in terms of the following integrals:

[p(L-p)'"
J p

P

. [
A(p)= dp:[p(L—pn“-+Lmn"\]—_

(25)

L-p'

—2tan”
,—)

It can be seen from Equation (26) that substitution of the lower
limitp = 0 results in a singular expression for A.. If it is assumed
that Hadamard’s finite part interpretation, as motivated in the
derivation of Equations (14)-(16), can be applied to Equation (26)
then the value for A, is evaluated by substituting the upper limit
p = L into Equation (26) and the lower limit, p = (), is ignored.
Hence,

A(L)=nL/2,

J’[P(L P

A (p)= (26)

A, (L)y=-

Using these values and employing Equations (22), (23) and
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(24), allows Equation (17) to be reduced to the form
Tt 3k 7k
rpy=—c, [|F0) _ #:0) |4, (29)
2JL(8) 2JL©O)

where T(P) designates the normal traction component relative
to the crack surface and C. is given by Equation (3). For the paral-
lel-sided crack geometry shown in Fig. 2, it is assumed that the
crack is opened by a linearly varying internal pressure given by
Tiony = 0and T:ony = H. Hence, T varies across the width of
the crack accnrding to

T(y)=T, +(T, ~T,)y/H;0<y<H. (30)

In this case, the crack edge opening coefficients k, and k, are
uniform along each edge. Along the particular direction PQ, k,
and k, are given by

k,(8)=k"sing 31)
k,(B)=k)\sin@" (32)

where k' is used to denote the value of k() when 8 =0, = 1,2.
Employing Equations (31) and (32), together with Equation (18),
enables Equation (29) to be evaluated at each edge of the crack.
This yields two simultaneous equations for the tractions T, and
T-in the form

— =G 30 _p0
T, g~ [3%° - &°], (33)
Fome—0 __[opw. g (34)

41-v)VH

If T, =0and T, =-2 p, where p is the average pressure in the
crack, Equations (33) and (34) can be solved to give

kY =(1-v)pJH /G, (35)

k! =3(1-v)pVH I1G.

Assuming that the crack frontis locally smooth and in a state of
plane strain, the stress intensity factor K, can be inferred from the
crack edge coefficient k, using standard crack tip expansions
(see, for examp]e, Cherepanov"), to be

(36)

[2nG

4(1—1)

Substituting the values of k| and k! given by Equations (35)and
(36) into Equation (37), yields

; (37)

K,=~2mllp/4; K, =3K, (38)

which agrees with the analytic expressions given by Chere-
panov.” It must be noted that these results depend directly on
the choice of the shape functions defined by Equations (23) and
(24). In the present case, these represent the best possible choice
corresponding to the exact solution for the parallel-sided crack
with a linearly varying internal pressure. However, the main
consideration dictating this choice is to ensure that the charac-
teristic limiting behaviour defined by Equations (20) and (21) is
represented.

Flat elliptical crack

A second demonstration of the proposed edge collocation
scheme is the case of a flat, elliptical crack, depicted in Fig. 3. The
coordinates of points on the perimeter of the crack are defined
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Fig. 3. Flat elliptical crack with chord P.Q and local inward normal vectors N, and N.
at points P and Q respectively.

parametrically in terms of the angular variable § by x = a cos f3,
y = bsinfi, where 20 and 2b are the lengths of the major and
minor axes, respectively. [t may again be assumed that the crack
opening displacement across any chord Q) (see Fig. 3) is given
by Equation (19). Employing Equation (29), it is apparent that at
cach point on the perimeter of the crack, the traction just inside
the crack edge must obey the equation

-G 7| 3k(0)
8(1=v)3| {L0)

ko (8)

2 0) g, (39)
N

rr)=

The function £,(¢) is implied by the specific orientation of the
chord P Q and the inward normals to the crack front at points [
and @, respectively. Some care must be taken in the evaluation of
the integrand near the limits # = 0 and 6 = 7. In these cases, the
limiting behaviour can be determined by approximating the
crack cdj,e locally at point P by a circular arc whose curvature,

, malches the curvature of the elliptical crack boundary. The
limiting chord length L is then given by

')
lmli(f)) ="sind, (40)
0 h

and the local radius of curvature is equal to 1/x. Since k(¢) = k(1))
Jsind, .‘.nd k() — k() as @ — 0, the integrand in Equation (39)
tends to+/2xk (0yas 0 — 0. (In the case of the parallel-sided crack
treated previously, £ = (1)

Applying Equation (39} to a series of points P around the
perimeter of the elliptical crack, yields a set of equations in terms
of the unknown edge expansion coefficients k() at each bound-
ary point. These may be transformed to the stress intensity factor
using Equation (37). In the case of a uniformly loaded elliptical
crack, the stress intensity factor along the crack perimeter can be
expressed in terms of the angular parameter j in the form"

o ) .

K (pr= PYAD [sin® B+ (bla) cos® 1" (41

E(m)
where 20 and 2b are the major and minor axis lengths, as defined
previously, and p is the applied internal pressure. E(in) is the
complete elliptic integral of the second kind defined by

mEE
Eim)= I\.‘Jl —m’sin’ gdd: m’ =1—=b"la’ (42)
o

As a specific example, an elliptical crack was considered with
dimensions @ = 20 m, b = 5 m and p =100 MPa. The elastic
constants were chosen as G = 29167 MPa and v = 0.2. The edge
collocation points were chosen to have a nominal spacing of T m
along the crack perimeter, resulting in a total of 86 boundary
points. The local edge curvature at each point was estimated by
computing the radius of the circle passing through each point
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Fig. 4. Comparison of the analytic distribution of the stress intensity factor around
the perimeter of a 4:1 elliptical crack to the numerical solution computed using the
proposed edge collocation procedure
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Fig. 5. Simulation of five crack growth steps from an initial 4:1 elliptical crack withan
internal pressure acting normal to the crack surface. Crack growth increments
are normal to the local crack front tangent and are proportional to the local stress
intensity factor.

and its two neighbours. The estimated stress intensity values are
compared to the analytic solution in Fig. 4. It can be seen that the
agreement is excellent. (The maximum error levels were found
to be less than 0.2% in this example.)

The utility of employing the stress intensity factor values to
implement a simple crack growth algorithm was also tested.
Fig. 5 shows the results of an incremental growth simulation
where each boundary pointisadvanced in a direction normal to
the crack front by a distance thatis scaled to the local stress inten-
sity factor. Five growth steps are shown indicating ‘faster’
erowth in the direction of the minor axis where the stress inten-
sity factor is the greatest,

Discussion and conclusions

The concept of extending the capability of the displacement
discontinuity method to include crack edge collocation is
presented in this paper. The viability of the approach is demon-
strated in two simple cases for flat cracks. In these cases the
enclosed crack region is convex and appropriate edge shape
functions can be readily chosen. In general cases, where the
crack surface geometry is more complicated (including re-en-
trant edge segments), it will be necessary to cover the crack
surface with a suitable element tessellation. If the elements are
assumed specifically to be triangular, the local edge collocation
procedure appears to be entirely feasible, provided local slope
continuity of the crack opening displacement function is main-
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tained at element vertices, This can be achieved, for example, by
determining local least squares estimates of the crack opening
displacement function at each vertex or by other shape ‘blend-
ing’ procedures. This approach appears to offer a very useful
extension to the displacement discontinuity method by provid-
ing the essential resulls that are required in both fracture
mechanics applications and in tabular mine design procedures
where the energy release rate (which can be derived from the
stress intensity factor) is used to judge the extent of fracturing
near the edges of the excavations.

More challenging developments of the edge collocation tech-
nique are still required to devise effective collocation schemes at
crack junctions or 'kinks'. It is also of great interest to extend the
method to treat problems involving curvilinear crack surfaces
and to the analysis of dvnamic fracture propagation processes.
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Numerical modelling of heat flow in mines

F.H. von Glehn" , R. Hemp" and R.C. Funnell’

For deep mines with excavations situated in areas of high virgin
rock temperature, most of the heat entering the excavations is via
conduction through rock. The fundamental equations describing
heat transfer within the rock and the transfer of this heat from the
surface of the excavation to air flowing in the excavation are
complex. For example, boundary conditions are not uniform and
heat flow into the excavation is not symmetrical; rock surfaces may
be partially wet, with convection, evaporation and radiation taking
place simultaneously at the rock surface; in stopes, mining activi-
ties take place cyclically, with varying amounts of service water
used at different periods in the mining cycle. Thus, numerical
approximations are required to model heat flow in mines. This
paper describes recent developments in the simulation of heat flow
into mine excavations. In particular, models developed for under-
ground dams and stopes are described in detail.

Introduction

To design optimum mine cooling systems that ensure a safe
working environment and achieve maximum productivity com-
bined with cost-effective operation, it is essential to be able to
predict the various heat loads and cooling effects in a mine
accurately.

Most of the heat entering deep mine excavations is via conduc-
tion through rock. The fundamental equations describing heat
transfer within the rock and the transfer of this heat from the
surface of the excavation to air flowing in the excavation are
complex. For example, boundary conditions are not uniform

“Bluhm Burton Engineering, P.O. Box 786012, Sandton 2146, South Africa
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and heat flow into the excavation is not symmetrical; rock
surfaces may be partially wet, with convection, evaporation and
radiation taking place simultancously at the rock surface; in
stopes, mining activities take place cyclically with varying
amounts of service water used at different periods in the mining
cycle. Thus, various numerical approximations have been devel-
oped. The problem has previously cither been reduced to one of
radial symmetry by usinga uniformly damp airway to represent
one that is in reality partly wet and partly dry, or a large set of
partly wet cross-section problems has been solved numerically,
from which a general solution based on interpolation has been
developed.' ' These solutions have been successfully applied in
software used for predicting heat loads in mines, for example,
Tunnel, Vuma,” Environ,” and the quasi-steady method.”

This paper discusses recent developments in the simulation of
heat flow into mine excavations. In particular, models developed
for underground stopes and dams are discussed in detail.

Heat flow in underground stopes

The stoping zone is one of the principal contributors to the
overall mine heat load and the use of large quantities of chilled
service water is being considered to combat this heat load in
deep mines, Since the 1970s, many mines have adopted chilled
service water as an inexpensive means of distributing cooling, as
service water is an inherent part of many mining activities.
Exposed chilled service water in the working zones cools the
ventilation air directly and also, as the water flows over the hot
rock surfaces, it cools the rock. This cooling effect is obtained at
the correct time, coinciding with the working shift, since this is
the period of peak water usage.

An alternative powering system to conventional” compressed
air, the use of hydropower (that is, high-pressure service water)
has been introduced in a number of South African mines.
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