Sensors and Actuators B 184 (2013) 170-178

A classification and ranking system on the H2 gas sensing capabilities of nanomaterials based on proposed coefficients of sensor performance and sensor efficiency equations

Bonex W. Mwakikungaa,b,*, Sarah Motshekgaa, Lucky Sikhwivhilua,c, Mathew Moodleya, Manfred Scribaa, Gerald Malgasa, A. Simod, B. Soned, M. Maazad,e, Suprakas Sinha Raya,f,*

a DST/CSIR National Centre for Nano-Structured Materials, Pretoria 0001, South Africa

b Department of Physics, University of Malawi - The Polytechnic, Blantyre 0003, Malawi

c DST/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Johannesburg 2125, South Africa

d Nanosciences African Network, iThemba LABS, Somerset West 7129, South Africa

e College of Graduate Studies, University of South Africa, Pretoria 001, South Africa

f Department of Chemistry, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia

Abstract

A coefficient of performance is defined based on the traditional definitions of response, S, of a chemoresistive sensing material to a specific gas from resistance–time data. The new definition not only considers the $S_{response}$ and $S_{recovery}$ but also the temperature, T, and the relative humidity, H, at which the sensor operates and the response time, _res, and recovery time, _rec. Resistance–time data at various temperatures in a H₂ atmosphere for six samples of different materials, including WO₃ nanoparticles, SnO₂ nanoparticles, SnO₂ nanoparticles mixed with carbon nanotubes, TiO₂ nanorods, TiO₂ nanotubes and VO₂ nanobelts, are presented in this report. The VO₂ nanobelts were the best sensing materials when these materials were ranked according to the temperatures at which they operate; however, the SnO₂ nanoparticles are the superior sensing materials when they are ranked by the defined coefficient of performance.