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INTRODUCTION
The primary input to the development of a 
strong wind climatology or atlas is observed 
wind data. This data should be analysed 
by the application of the most relevant 
statistical techniques available, by taking the 
underlying theoretical statistical distribution 
into account, and also the assumptions that 
are accompanied by the application of such a 
distribution.

Typical methodologies applied in the 
development of strong wind climatology 
mainly comprise a broad discussion of sta-
tistical extreme-value theory, but relevant to 
wind data. Discussions of the methodologies 
developed for special cases in extreme-value 
analysis, such as those developed for short 
time series and time series subjected to 
an underlying mixed strong wind climate 
(where the sources of the measured strong 
wind values are forthcoming from more 
than one type of strong wind producing 
mechanism), are also presented. The consid-
eration of the latter methodologies is crucial, 
firstly because some of the time series to 
be utilised in this study can be considered 

to be quite short, but also due to the fact 
that a large part of South Africa exhibits 
a mixed strong wind climate (Kruger et al 
2010). It should be noted that, although the 
statistical analysis applied in this paper is 
based on extreme-value theory, reference is 
made to strong winds as the outcome of the 
analysis; extreme winds are typically applied 
for winds exceeding the design base for 
structures, or treated as accidental situations 
(SANS 10160-1:2011).

Extreme-value theory comprises the 
statistical methodologies developed to deter-
mine the probabilities of specific extreme 
values to occur, from observed data sets. The 
optimum statistical method to be applied 
ultimately depends on the underlying fea-
tures of these data sets.

BACKGROUND
Wind loading plays a prominent role in the 
new South African national standard SANS 
10160:2011, but is still based on the extreme 
wind analysis conducted in 1985 (Milford 
1985a & b). This study was predominantly 

Strong winds in 
South Africa: Part 1
Application of estimation methods
A C Kruger, J V Retief, A M Goliger

The accurate estimation of strong winds is of cardinal importance to the built environment, 
particularly in South Africa, where wind loading represents the dominant environmental action 
to be considered in the design of structures. While the Gumbel method remains the most 
popular applied method to estimate strong wind quantiles, several factors should influence the 
consideration of alternative approaches. In South Africa, the most important factors influencing 
the choice of method are the mixed strong wind climate and the lengths of available wind 
measurement records. In addition, the time-scale of the estimations (in this case one hour and 
2–3 seconds) influences the suitability of some methods.
	 The strong wind climate is dominated by synoptic scale disturbances along the coast and 
adjacent interior, and mesoscale systems, i.e. thunderstorms, in the biggest part of the interior. 
However, in a large part of South Africa more than one mechanism plays a significant role in the 
development of strong winds. For these regions the application of a mixed-climate approach is 
recommended as more appropriate than the Gumbel method.
	 In South Africa, reliable wind records are in most cases shorter than 20 years, which makes 
the application of a method developed for short time series advisable. In addition it is also 
recommended that the shape parameter be set to zero, which translates to the Gumbel method 
when only annual maxima are employed. In the case of the Peak-Over-Threshold (POT) method, 
one of several methods developed for short time series, the application of the Exponential 
Distribution instead of the Generalised Pareto Distribution is recommended. However, the POT 
method is not suitable for estimations over longer time scales, e.g. one hour averaging, due to 
the high volumes of dependent strong wind values in the data sets to be utilised. The results 
of an updated assessment, or the present strong wind records reported in this paper, serve as 
input to revised strong wind maps, as presented in the accompanying paper (see page 46).



Journal of the South African Institution of Civil Engineering  •  Volume 55  Number 2  August 201330

based on the Fisher-Tippet Type I or Gumbel 
distribution. The Gumbel method is the 
most widely applied to estimate strong 
winds, mostly because of the relative simpli
city of application, but also the conservative 
assumption that the shape parameter of 
the extreme-value distribution is equal 
to zero. However, due to the utilisation of 
only annual maxima, this method is most 
suitable for long time series, preferably 30 
years or longer. In addition to this, Milford 
(1985a) identified apparent mixed climatic 
conditions in the parent distributions of the 
wind data sets analysed. Kruger et al (2010) 
confirms this, and indicates that the larger 
part of South Africa is influenced by more 
than one strong wind mechanism.

The purpose of the analyses performed 
in this paper is the identification of the most 
appropriate strong wind estimation methods 
to be applied to the available wind speed 
data in South Africa. The analysis is based 
on a data set of strong winds extracted from 
209 Automatic Weather Stations (AWS) 
deployed by the South African Weather 
Service (SAWS) since 1995. Following quality 
scrutiny an initial set of 94 AWS records was 
selected and ultimately reduced to 76 records 
used for the final analysis. An important 
constraint was to have at least ten years of 
records at the selected AWS. A limitation 
of the data set is that the maximum record 
length is 20 years. A critical feature of the 
extracted strong wind record is that it 
includes an observation of the meteorologi-
cal conditions for each occurrence.

In the fitting of the various statistical dis-
tributions, the Anderson-Darling goodness-
of-fit test has been applied, as this test is par-
ticularly sensitive to deviations in the tails 
of the distribution (D’Agostino & Stephens 
1986). The results from this test implied that 
all the applied statistical distributions fitted 
the data in a satisfactory manner.

The results of the extreme-value analysis 
of the recent extensive strong wind data set 
are applied in the update of mapping the 
strong wind statistics for South Africa, as 
reported in the accompanying paper (Kruger 
et al 2013).

APPLICATION OF GENERALISED 
EXTREME-VALUE DISTRIBUTIONS
The most widely used methods to estimate 
extreme wind speeds are based on the clas-
sical or Generalised Extreme-Value (GEV) 
theory, of which a short review is presented 
by Palutikof et al (1999). The GEV distribu-
tion is only fitted to the extreme values, 
usually the annual maxima.

In the annual maxima method, an 
Extreme-Value (EV) distribution is fitted to 

the annual maximum wind speed values. By 
using this method only independent annual 
extreme values are used in the fitting of the 
distribution. For sufficiently long sequences 
of independent and identically distributed 
random variables, the maxima of samples 
of size n, for large n, can be fitted to one of 
three basic families. These three families 
were combined into a single distribution 
(Jenkinson 1955), and is known as the GEV 
distribution, with cumulative distribution 
function (cdf):

F(x) = e-1(1-κy)1/k
	 κ ≠ 0� (1a)

F(x) = e-e(-y)	 κ = 0� (1b)

where κ is the shape parameter, which deter-
mines the type of extreme-value distribution, 
and y is the standardised or reduced variate. 
The Gumbel or Fisher-Tippett Type I distri-
bution has a value of κ = 0, the Fisher-Tippett 
Type II has κ < 0, while the Type III has 
κ > 0. Types I and II are unbounded at the 
upper end, while Type III is bounded. This 
means that there will be an upper bound for 
the quantile values estimated with the Type 
III distribution, while no upper bound exists 
for Types I and II.

Gumbel method
The Gumbel method is the most often 
applied method to estimate extreme wind 
speeds. This is firstly because of the fact 

Table 1 �Available annual extreme wind gust values (m/s) (a) and reduced variates for Struisbaai (b) 
for the period 1997–2008

(a) (b)

Year Annual maximum 
wind gust (m/s)

Annual maximum 
wind gust (m/s) in 
increasing order

Reduced variate
yGumbel

1997 26.6 24.2 –1.1

1998 25.9 24.9 –0.7

1999 41.9 25.9 –0.4

2000 27.4 26.1 –0.1

2001 31.5 26.6 0.1

2002 Not available 26.6 0.4

2003 26.6 27.4 0.6

2004 26.1 28.0 1.0

2005 28.0 29.3 1.3

2006 24.2 31.5 1.9

2007 24.9 41.9 3.0

2008 29.3 – –

Figure 1 �Gumbel plot for Struisbaai for the period 1997–2008
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that the shape parameter, κ, of the Gumbel 
distribution is equal to zero, and therefore 
simplifies the calculations. The second rea-
son is that one of the parent distributions of 
the Gumbel distribution is the Weibull dis-
tribution, which is considered to be a good 
model for the distribution of the wind speed 
(Hennessey 1977; Perrin et al 2006).

There are different options of methodolo-
gies which are often applied to estimate the 

parameters of the Gumbel distribution, i.e. 
the scale or shape α, and the mode β. These 
methods include graphical methods, probabil-
ity weighted moments, maximum likelihood 
solutions and the method of moments. All of 
these methods should produce similar results. 
A graphical solution to the estimation of α 
and β is often preferred (Palutikof et al 1999).

The graphical method is based on the 
standardised or reduced variate y given by:

y = 
(x – β)

α � (2)

where α is the scale or dispersion parameter, 
β is the mode of the extreme-value distribu-
tion, and x is the extreme value, which is 
then modified to

x = αy + β� (3)

where the slope α gives the scale or disper-
sion, and β, the mode. To estimate a value for 
y, the Gumbel reduced variate

yGumbel = –ln[–ln(F(x))]� (4)

is used. F(x) is empirically estimated for 
each of the observed annual maxima. For 
the Gumbel distribution, the most unbiased 
estimates are given by

F(xm) = 
(m – 0.44)
(N + 0.12) � (5)

where xm is the mth ranked annual maxi-
mum wind speed, and N is the number of 
annual maxima (Gringorten 1963 in 
Palutikof et al 1999). A value for yGumbel 
can be calculated for each value of x, and a 
least-squares fit is used to fit a straight line 
to this data set. From this straight line the 
parameters α and β can be found.

As an example, the graphical method is 
applied to the annual extreme wind gust data 
for Struisbaai, on the southern Cape coast, 
which is presented in Table 1. In the third 
column the wind gust values are shown in 
increasing order, xm, from the smallest to the 
largest, from which the plotting positions 
F(xm) were determined from Equation 5. 
Values for the reduced variate, yGumbel, could 
then be calculated with Equation 4.

Figure 1 presents the Gumbel plot, 
yGumbel against x (the annual maximum 
wind gust values), as well as the least-squares 
fit to the plotted values. The fitted straight 
line has equation y = 3.8x + 26.4, from which 
the estimations for α and β are then acquired 
as 3.8 and 26.4 respectively.

Alternatively, the estimation of the 
Gumbel parameters by the method of 
moments (Wilks 2006), which only uses the 
sample mean and standard deviation to esti-
mate the Gumbel parameters, would be:

α = 
s√6
π � (6)

and

β = x – γα� (7)

where s is the standard deviation of the sam-
ple, x is the sample mean, and γ = 0.57721… 
is Euler’s constant. The estimations of the 

Figure 2 �Gumbel estimation of the quantiles for Struisbaai
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The markers indicate an estimation of the return period 
from the observed annual maximum gust values.

Table 2 �Estimations of the quantiles XT (m/s) with return periods T equal to 50, 100 and 500 years, 
with the Gumbel method

Station 
Number Station Name

Annual maximum wind gust 
(m/s)

Annual maximum hourly 
wind speed (m/s)

α β X50 X100 X500 α β X50 X100 X500

0012661 George WO 1.81 25.16 32.2 33.5 36.4 1.63 14.32 20.9 22.0 24.6

0021178 Cape Town WO 3.18 25.85 38.3 40.5 45.6 1.64 16.00 22.4 23.5 26.2

0035209 Port Elizabeth 2.09 29.90 38.1 39.5 42.9 1.55 18.68 24.7 25.8 28.3

0059572 East London WO 1.50 25.89 31.8 32.8 35.2 0.80 15.68 18.8 19.4 20.7

0092081 Beaufort West 2.28 29.65 38.6 40.1 43.8 1.88 18.39 25.8 27.1 30.1

0127272 Umtata WO 3.44 27.07 40.5 42.9 48.5 1.50 14.58 20.5 21.5 23.9

0182591 Margate 1.63 24.18 30.6 31.7 34.3 0.75 13.67 16.6 17.1 18.3

0239698 Pietermaritzburg 1.89 19.65 27.0 28.3 31.4 0.87 7.62 11.0 11.6 13.0

0240808 Durban WO 2.16 24.85 33.3 34.8 38.2 1.21 14.66 19.4 20.2 22.2

0261516 Bloemfontein WO 2.60 24.30 34.5 36.3 40.5 0.72 11.40 14.2 14.7 15.9

0274034 Alexander Bay 1.43 25.76 31.3 32.3 34.6 0.80 19.03 22.2 22.7 24.0

0290468 Kimberley WO 2.37 27.10 36.4 38.0 41.8 0.87 13.36 16.8 17.4 18.8

0317475 Upington WO 3.11 25.30 37.5 39.6 44.6 0.75 13.68 16.6 17.1 18.3

0476399 Johannesburg 2.82 22.96 34.0 35.9 40.5 0.96 11.68 15.4 16.1 17.6

0508047 Mafikeng WO 1.99 24.14 31.9 33.3 36.5 1.20 14.26 19.0 19.8 21.7

0513385 Irene WO 2.48 23.22 32.9 34.6 38.6 0.91 12.42 16.0 16.6 18.1

0677802 Pietersburg WO 2.40 22.82 32.4 34.0 37.9 0.90 11.37 14.9 15.5 16.9
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Gumbel parameters were calculated using 
the above method, and produced estimates 
for α as 3.7 and β as 26.3.

The estimated 1:50 year quantiles are 
40.8 m/s and 40.6 m/s for the above two 
methods respectively. Comparisons of 
the results between the two methods for 
the data sets of other weather stations 
produce similar small differences between 
the results. According to Abild (1994) and 
Hosking et al (1985), in Larsén & Mann 
(2009), the method of moments yields less 
bias and variance on the parameter esti-
mates, and has been proved highly efficient 
even for small sample sizes. It was therefore 
decided to estimate the coefficients of 
all the fitted Gumbel distributions with 
the method of moments. To be noted, the 
level of confidence of the estimations, and 
therefore the uncertainties, is not taken into 
consideration here.

The quantile XT, which is the value of 
X to be expected every T years, can now be 
calculated with

XT = β – α ln[–ln(1 – 
1
T )]� (8)

The quantiles of the annual maximum gust 
speeds and annual maximum hourly wind 
speeds, with return periods 50, 100 and 

500 years, were then calculated accordingly. 
It is recognised that there should be sub-
stantial reservations in the estimations 
of quantiles for long return periods such 
as 100 and 500 years based on the short 
time series; these are only estimated for 
comparative purposes between the different 

methodologies. For illustrative purposes, 
the degree of extrapolation of the quantiles 
beyond the data record for Struisbaai is 
presented in Figure 2.

The Gumbel results for the main centres 
in South Africa, as well as other significant 
weather stations, are presented in Table 2. 

Figure 3 �GEV Type II estimation of the quantiles for Struisbaai
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The markers indicate a simple estimation of the return 
period from the observed annual maximum gust values.

Table 3 �Estimations of the quantiles XT of the annual maximum wind 
gusts, with return periods T equal to 50, 100 and 500 years, by 
fitting of the GEV distribution

Station 
number Station name

Distribution 
parameters

Annual maximum 
wind gust (m/s)

κ α β X50 X100 X500

0012661 George WO +0.23 2.39 25.26 31.4 32.0 33.2

0021178 Cape Town WO –0.06 3.25 25.61 39.9 42.8 50.1

0035209 Port Elizabeth –0.13 1.94 29.69 39.6 42.0 48.3

0059572 East London WO –0.09 2.39 26.01 37.3 39.8 46.2

0092081 Beaufort West –0.01 2.36 29.59 38.9 40.6 44.5

0127272 Umtata WO –0.19 3.08 26.58 44.4 49.2 63.0

0182591 Margate +0.01 1.70 24.16 30.7 31.8 34.5

0239698 Pietermaritzburg –0.05 2.20 19.72 29.2 31.1 35.8

0240808 Durban WO –0.14 2.00 24.62 35.0 37.5 44.4

0261516 Bloemfontein WO –0.24 2.01 24.02 37.1 41.0 53.1

0274034 Alexander Bay +0.09 1.70 25.75 31.3 32.1 33.7

0290468 Kimberley WO +0.20 3.07 27.21 35.6 36.5 38.2

0317475 Upington WO –0.17 2.82 24.90 40.5 44.6 56.1

0476399 Johannesburg –0.16 2.46 22.70 36.1 39.5 49.1

0508047 Mafikeng WO +0.20 2.65 24.20 31.4 32.3 33.8

0513385 Irene WO +0.03 2.82 23.11 33.5 35.2 39.0

0677802 Pietersburg WO +0.36 3.43 23.39 30.5 31.1 31.8

Table 4 �Estimations of the quantiles XT of the annual maximum hourly 
mean wind speeds, with return periods T equal to 50, 100 and 
500 years, by fitting of the GEV distribution

Station 
number Station name

Distribution 
parameters

Annual maximum 
hourly wind 
speed (m/s)

κ α β X50 X100 X500

0012661 George WO +0.27 2.2 14.6 20.0 20.5 21.3

0021178 Cape Town WO –0.20 1.4 15.8 23.9 26.1 32.7

0035209 Port Elizabeth –0.11 1.5 18.5 25.8 27.4 31.9

0059572 East London WO +0.45 1.2 15.8 18.1 18.2 18.4

0092081 Beaufort West –0.04 2.6 15.7 26.6 28.7 33.9

0127272 Umtata WO –0.05 1.6 14.4 21.4 22.8 26.2

0182591 Margate –0.03 0.8 12.0 16.7 17.2 18.5

0239698 Pietermaritzburg –0.03 0.9  7.6 11.3 12.0 13.8

0240808 Durban WO –0.13 1.1 14.6 20.2 21.5 25.1

0261516 Bloemfontein WO +0.13 0.9 11.4 14.1 14.5 15.2

0274034 Alexander Bay +0.22 1.0 19.1 21.7 22.0 22.5

0290468 Kimberley WO +0.07 1.0 13.3 16.8 17.3 18.4

0317475 Upington WO +0.55 1.1 13.9 15.7 15.8 15.9

0476399 Johannesburg +0.11 1.1 11.7 15.3 15.8 16.8

0508047 Mafikeng WO –0.04 1.3 14.2 19.6 20.7 23.3

0513385 Irene WO +0.11 1.1 12.4 15.9 16.4 17.4

0677802 Pietersburg WO +0.39 1.3 11.5 14.1 14.2 14.5
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The results for a set of 84 selected weather 
stations are included in Kruger (2011).

Fitting of the GEV distribution
In fitting the Gumbel distribution to a set of 
data, it is assumed that the shape parameter, 
κ, of the GEV distribution equals zero. 
Various authors dispute this, and often give 
a choice between the Type I (κ = 0) and Type 
III form (κ > 0) of the GEV distribution.

It is assumed that the Type II form (κ < 0) 
is usually indicative of a wind data series 
composed of wind speeds forthcoming from 
different strong wind producing mechanisms 

(Gomes & Vickery 1978), producing a thicker 
tail to the distribution, which can cause 
unrealistically high values for wind speed 
quantiles at longer return periods. Such wind 
series should ideally be decomposed, and the 
wind speeds forthcoming from the different 
strong wind producing mechanisms treated 
separately, and a method for mixed strong 
wind climates applied.

The biggest criticism of the application 
of the Type III form is that the distribution 
is bounded from above, and Palutikof et al 
(1999) argue that there is no physical justi-
fication for a natural upper bound for wind 

speed, especially at the order of magnitude 
at which wind speeds are naturally observed. 
However, Walshaw (1994) argues that a 
Type III distribution should be fitted if it fits 
the data better than a Type I. Lechner et al 
(1992) showed that for 100 wind time series 
in the United States, 36 showed a Type I 
form, three a Type II form and 61 a Type III 
form.

By assuming that the shape parameter, 
κ, is not equal to zero, GEV distributions 
were fitted to the annual maximum wind 
gusts, as well as the annual maximum mean 
hourly wind speeds, of the set of weather 
stations. Three distribution parameters, κ, 
α, and β, therefore needed to be estimated, 
i.e. the shape parameter, the scale or disper-
sion parameter, and the mode, respectively. 
The estimations of these values can be 
mathematically intensive and therefore the 
use of applicable software is advisable. Here 
the EasyFit software (www.mathwave.com) 
was employed, which estimates the distribu-
tion parameters by the ML solutions. This 
method follows an iterative procedure until 
the iterations reach a specified maximum, in 
this case 1 000 iterations, which are deemed 
sufficient to obtain accurate estimates.

Figure 3 presents the fitting of the GEV 
distribution to the annual maxima of the 
wind gusts of Struisbaai, for which the value 
of the κ parameter was estimated as –0.47, 
i.e. a very strong form of Type II. Interesting 
to note is that, while the quantile estimations 
for the Type II is much higher than Type I 
for the longer return periods, the quantile 
estimations for the shorter return periods, 
e.g. ten years, are actually lower, due to the 
shape of the distribution.

Tables 3 and 4 present the results of the 
estimations of the annual maximum gusts 
and annual maximum hourly wind speeds, 
for the quantiles of the same return periods 
as those estimated with the Gumbel distribu-
tion, presented in Table 2.

Further analysis and 
discussion of results
From the results presented in Tables 3 
and 4 it is apparent that fitting of the GEV 
distribution to the available data sets led to 
the shape parameter, κ, almost as a rule, to 
be estimated not close to zero. For the set of 
94 weather stations utilised by Kruger (2011) 
the estimated values for κ range from –0.47 
to 1.07; and for the annual maximum hourly 
mean wind speeds from –0.35 to 0.55.

Figures 4 and 5 illustrate the annual 
extreme wind gusts, and annual maximum 
hourly mean wind speeds estimated with 
the GEV and Gumbel distributions differ 
as a function of the value of κ. As can be 
expected, a negative value of κ corresponds 

Figure 4 �Differences between the values of the annual extreme wind gusts estimated with the 
GEV and Gumbel distributions for (a) 1:50, (b) 1:100 and (c) 1:500 year quantiles, with 
varying shape parameter κ
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to a quantile value estimated with the GEV 
distribution to be higher than that esti-
mated with the Gumbel distribution. This is 
because a negative shape parameter implies 
a thicker tail of the GEV distribution, com-
pared to the Gumbel distribution.

A positive value of κ corresponds to 
a quantile value estimated with the GEV 
distribution to be lower than that estimated 
with the Gumbel distribution, as a positive 
shape parameter implies that there is an 
upper bound to the quantile values which 
are estimated with the GEV distribution. As 
the deviations of the values of κ from zero 
become larger, the differences between the 
values of the quantile values estimated with 
the GEV distribution and that estimated with 
the Gumbel distribution also become larger. 
This is especially true when the quantiles for 
annual extreme wind gusts are estimated for 
long return periods, with negative values for κ.

As mentioned before, the Type II dis-
tribution is seldom resolved from a GEV 
analysis, and might indicate a mixed wind 
series (Abild et al 1992; Brabson & Palutikof 
2000; Palutikof et al 1999). However, the data 
analysed in Kruger (2011) suggest quite a 
high percentage of weather stations in South 
Africa with annual maximum wind series 
exhibiting negative values for κ. For the 
annual maximum wind gusts 39% of weather 
stations had negative values for κ, while for 
annual maximum hourly wind speeds the 
figure is 32%. Also, negative κ values were 
found for weather stations where strong 
winds are caused by only one strong wind 
producing mechanism. No link between 
the sign of κ and the particular strong wind 
producing mechanisms could be found.

It is argued here that another possible 
cause for negative values for κ could be 
anomalous values, where the annual maxi-
mum values for one or a few years are much 
higher than the other values in a particular 
data set. These values are not regarded as 
possibly incorrect, as the data values utilised 
in these analyses have been thoroughly 
quality controlled. The fitting of a GEV 
distribution to data series is affected by these 
values, and can therefore indicate a Type II 
distribution when it is physically not justifi-
able – this is particularly relevant to short 
time series. To take Cape Town (κ = –0.20) 
as an example – the quantiles are estimated 
from strong winds measured during the 
passages of cold fronts. One should therefore 
assume that the quantile estimations for 
Cape Town should fall within the range 
expected from the strongest winds that can 
be generated by cold fronts, even for long 
return periods. However, this is not the case, 
as the 1:500 year quantile from the GEV 
method, for the hourly mean wind speeds 

shows: the estimated quantile of 32.7 m/s 
falls in the maximum wind category of the 
Beaufort wind scale, an empirical measure 
to describe wind speed, which indicates hur-
ricane strength winds. However, the Gumbel 
estimate for the 1:500 year hourly mean wind 
speed for the same station is 24.6 m/s, which 
falls into the category for a storm or gale, 
and is consistent with wind strengths to be 
expected during a very strong cold front.

With regard to the above, Brabson & 
Palutikof (2000) illustrated the effect of the 

addition of four very large annual maxima, 
when the time series for Sumburgh (UK) 
was extended from a 13-year sample to a 
25-year sample. The addition of these values 
dramatically raised the 100-year quantile 
value from 45.3 m/s to 56.8 m/s, well outside 
the standard errors calculated on the basis 
of the 13-year sample. However, the Gumbel 
predictions were less affected by the addi-
tion of the new data. It is also important to 
note from that analysis that the extension of 
the data set caused the difference between 

Figure 5 �Differences between the values of the annual extreme hourly wind speeds estimated 
with the GEV and Gumbel distributions for (a) 1:50, (b) 1:100 and (c) 1:500 year quantiles, 
with varying shape parameter κ
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the quantile estimations with the GEV and 
Gumbel to be smaller, than with the shorter 
time series (0.1 m/s compared to 6.4 m/s). 
Brabson & Palutikof also showed, using addi-
tional weather stations, that the longer the 
time series utilised, the closer the value for κ 
is estimated to zero. With additional analyses 
they concluded that the generalised models, 
whether GEV or GPD, if brought to rely on 
13 years of data, fail to predict the actual 
maximum gust speeds observed over a longer 
25-year period. They attributed this failure 
largely to the non-stationarity in the wind 
climate in the region. This has the effect that 
the extreme values are not evenly distributed 
in a wind time series – this of course will 
apply to South Africa, as well, because of the 
cyclical behaviour of the climate.

The median of a data set is robust to out-
liers or anomalous values, while the average 
is not. The difference between the median 
and the average can therefore provide an 
indication of the magnitude of anomalous 
values in a data set. Figure 6 presents the 
relationship between κ and the difference 
between the median and the average, of 
all the data sets of the annual maximum 
wind gusts. The graph illustrates the fact 
that there is a statistically significant cor-
relation between the value of the difference 
between the median and the average, and the 
value of κ.

An example of how an anomalous value 
in a data set can make a significant differ-
ence in the values of the estimated quantiles, 

is for the data set for Umtata. The annual 
maximum gust speed for Umtata for 1999 is 
a verified 39.3 m/s, which was measured on 
3 November 1999. This value is much higher 
than the mean of the annual maximum gust 
speeds, which is 27.8 m/s. If, for illustrative 
purposes, the value of 39.3 m/s is removed 
from the data set, the 1:50 year quantile for 
the wind gust becomes 35.6 m/s, compared 
to the 40.5 m/s with the high value included. 
It is concluded here, with the analyses pre-
sented in this section and those by Brabson 
& Palutikof (2000), that the fitting of the 
GEV distribution to small data sets of annual 
extreme winds should be treated with cau-
tion, and is in general not recommended.

METHODS FOR SHORT TIME SERIES
The problems in fitting the GEV distribu-
tion will be more pronounced for smaller 
data sets, such as those utilised in this 
research, which are all shorter than 20 years. 
Therefore other approaches to estimate the 
extreme wind speeds, specifically developed 
for shorter time series, were investigated to 
compare the results with those from the tra-
ditional methods and, by doing so, to identify 
the most appropriate statistical method to 
apply to the available wind data sets.

The well-known approaches to estimate 
extreme winds for shorter time series are 
discussed in Palutikof et al (1999), of which 
the methodologies in most cases contain 
some elements of subjectivity. At the same 

time, it has to be ensured that wind speed 
values extracted from the original wind data 
sets, for fitment to the statistical distribu-
tions, should be as independent and identi-
cally or evenly distributed as possible.

Regarding the extension of a single 
extreme value per epoch to include the 
r-largest values (Weissman 1978), decisions 
have to be taken on the size of r, as well as 
the minimum separation distance or time 
between extreme values. The separation dis-
tance might depend on the type of wind data, 
whether wind gusts or mean wind speeds 
over longer periods, as well as the type of 
strong winds experienced at the location 
where the wind measurements were taken.

Using the Method of Independent Storms 
(MIS) a decision has to be taken on the 
threshold value which separates individual 
storms. This value should be high enough to 
ensure that the storms identified are inde-
pendent and eliminate the possibility of one 
larger storm which contains a lull in wind 
speed during the period it occurred. Also, 
individual storms might be separated by lulls 
with wind speeds of different values, compli-
cating the choice of the threshold value.

With the Peak-Over-Threshold (POT) 
method a decision also has to be taken 
regarding the threshold value, as well as the 
separation distance, similar to the method 
that employs the r-largest values. However, if 
a separation distance is deemed sufficient by 
taking the prevailing weather systems into 
account, the threshold value can be inferred 
or derived without deciding on a specific 
value beforehand. The POT approach is 
the most widely used method to estimate 
extreme winds from short wind data time 
series and, due to the above considerations, 
it was decided to apply this method to the 
available wind data sets.

Application of Peak‑Over‑Threshold 
(POT) method
With POT methods, all values exceeding a 
specific threshold are used for analysis. A 
General Pareto Distribution (GPD) is fitted 
to the selected values. The CDF (Cumulative 
Distribution Function) of the GPD is

F(x) = 1 – [1 – (
κ
α)(x – ξ)](1/κ)� (9)

where ξ is the selected threshold. For κ = 0, 
the GPD simplifies to the exponential (EXP) 
distribution

F(x) = 1 – e-[(x-ξ)/α]� (10)

The crossing rate of the threshold is defined 
as

λ = n/M� (11)

Figure 6 �Relationship between the difference between the median and average (m/s) and the 
shape parameter κ, for the GEV distribution fitted to the annual maximum gust data
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where n is the total number of exceedances, 
and M is the total number of years of the 
time series. Quantiles for specific return 
periods (in years) can be calculated from 
Abild et al (1992):

XT = ξ + (
α
κ)[1 – (λT)-k]	 κ ≠ 0� (12a)

XT = ξ + αln(λT)			   κ = 0� (12b)

The distribution parameters α and k can be 
estimated by

κ̂  = [
b0

(2b1 – b0)] – 2� (13a)

α̂ = (1 + κ̂)b0� (13b)

which are valid within the range 
–0.5 < κ < 0.5. The threshold value should 
ensure a sufficient separation time between 
selected strong winds to avoid the interde-
pendence of values. A separation time of 48 
hours was selected by various authors for 
European wind climates (Cook 1985; Gusella 
1991). The European wind climate is domi-
nated by synoptic-scale strong wind produc-
ing mechanisms, especially the passages of 
extratropical cyclones. In South Africa the 
situation is similar for hourly mean wind 
speeds and gusts in many regions, and 
therefore this separation time was deemed 
to be appropriate. However, in a large part 
of the country most strong wind gusts 
are produced by thunderstorms in which 
individual systems can easily be separated 
by a period of one day only. Therefore, in the 
analysis of hourly mean wind speeds, the 
separation time was strictly deemed to be 48 
hours, while for wind gusts, more flexibility 
was allowed by taking the particular strong 
wind mechanism and synoptic conditions 
into account.

To obtain a sufficient number of strong 
wind data values, one must accept that not 
all of the data values will be independent. 
In this regard the finding by Brabson & 
Palutikof (2000) was taken into account, in 
which the value of the independent event 
index, ε, is defined as

ε = 
(independent events)

(total events) � (14)

which can be as low as 0.8 to obtain accurate 
quantile estimates from the GPD.

In analysing the wind data, a range of 
threshold values were selected in 2.5 m/s 
increments. The data sets extracted accord-
ing to these thresholds were then checked to 
identify the data set with the largest number 
of wind speed values and a value of ε that is 
at least 0.8. The GPD was then fitted to the 
selected series of values. The POT method is 

Table 5 �Estimations of the quantiles XT of the annual maximum wind gusts, with return periods T 
equal to 50, 100 and 500 years, by application of the POT method

Station 
Number Station Name

Distribution parameters Annual maximum 
wind gust (m/s)

κ α t n λ X50 X100 X500

0012661 George WO +0.19 2.7 22.4  62  3.88 31,3 32.0 33.2

0021178 Cape Town WO –0.19 2.2 24.8  49  3.06 42,7 46.8 58.4

0035209 Port Elizabeth +0.21 2.8 25.1 193 12.06 35,2 35.7 36.6

0059572 East London WO +0.12 2.6 20.2 167 15.18 32,3 33.1 34.7

0092081 Beaufort West +0.10 3.0 24.9  83  5.53 38,0 39.2 41.6

0127272 Umtata WO +0.03 3.2 20.0 103 10.30 38,3 40.1 44.2

0182591 Margate  0.10 2.4 20.1 125  8.33 30,8 31.7 33.5

0239698 Pietermaritzburg  0.04 2.6 15.0 118  8.43 28,8 30.1 33.2

0240808 Durban WO –0.05 2.0 20.0 151  9.44 34,3 36.2 40.8

0261516 Bloemfontein WO  0.03 2.8 20.1 112  8.00 35,1 36.6 40.0

0274034 Alexander Bay  0.11 1.7 22.6 138  9.86 30,3 30.9 32.0

0290468 Kimberley WO  0.00 2.9 20.0 158 11.29 38,0 40.0 44.5

0317475 Upington WO  0.02 2.6 20.1 140 10.00 35,1 36.7 40.2

0476399 Johannesburg –0.05 2.2 17.8 158 11.29 34,3 36.4 41.7

0508047 Mafikeng WO –0.04 1.9 20.3  97  8.08 33,3 35.0 39.2

0513385 Irene WO  0.11 2.8 17.5 188 13.43 30,7 31.7 33.6

0677802 Pietersburg WO  0.19 3.7 17.4 117  9.00 30,7 31.4 32.9

Note: �κ and α are the distribution parameters, while t refers to the threshold value, as determined by the 
software.

Table 6 �Estimations of the quantiles XT of the annual maximum wind gusts, with return periods T 
equal to 50, 100 and 500 years, by application of the EXP method

Station 
number Station name

Distribution parameters Annual maximum 
wind gust (m/s)

α t n λ X50 X100 X500

0012661 George WO 2.0 22.6 62  3.88 33.3 34.7 38.0

0021178 Cape Town WO 2.3 25.2  49  3.06 36.7 38.2 41.9

0035209 Port Elizabeth 2.4 25.1 193 12.06 40.4 42.1 45.9

0059572 East London WO 2.4 20.1 167 15.18 36.1 37.8 41.7

0092081 Beaufort West 2.5 25.1  83  5.53 39.0 40.7 44.7

0127272 Umtata WO 3.0 20.1 103 10.30 39.0 41.1 46.0

0182591 Margate 2.2 20.1 125  8.33 33.3 34.8 38.3

0239698 Pietermaritzburg 2.3 15.1 118  8.43 29.1 30.8 34.5

0240808 Durban WO 2.0 20.1 151  9.44 32.6 34.0 37.3

0261516 Bloemfontein WO 2.7 20.1 112  8.00 36.3 38.2 42.5

0274034 Alexander Bay 1.5 22.6 138  9.86 32.1 33.2 35.7

0290468 Kimberley WO 2.8 20.1 158 11.29 37.7 39.6 44.1

0317475 Upington WO 2.6 20.1 140 10.00 36.0 37.8 41.9

0476399 Johannesburg 2.5 17.6 158 11.29 33.4 35.1 39.2

0508047 Mafikeng WO 2.2 20.1  97  8.08 33.0 34.5 38.0

0513385 Irene WO 2.5 17.6 188 13.43 33.6 35.3 39.3

0677802 Pietersburg WO 2.9 17.6 117  9.00 35.0 37.0 41.6

Note: �α indicates the distribution parameter, while t refers to the threshold value, as determined by the 
software.
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not compatible with hourly mean wind speed 
data, with too high percentages of values, 
even with very high thresholds, showing 
dependency. Table 5 presents the quantiles 
XT of the annual maximum wind gusts for 
return periods T equal to 50, 100 and 500 
years, for the weather stations in Table 2, by 
application of the POT method. In Kruger 
(2011) the number of values n that could be 
selected varied widely between stations, with 
λ (the average number of values per year) 
ranging from 1.50 to 19.20. A high value for 

λ indicates a better separation of individual 
storms than when λ is low, because a larger 
number of independent strong wind values 
could be utilised. A low value of λ indicates 
that the strong winds tend to be clustered in 
the time series. It is, therefore, not surprising 
that the weather stations in those regions in 
the interior where thunderstorms are likely 
to occur frequently, exhibit in general higher 
λ values than those closer to the coast, where 
synoptic scale systems tend to cause most 
strong winds.

The advantage of the POT method, above 
methods which employ only one value per 
epoch, is that usually significantly more val-
ues can be utilised, which will in turn result 
in more confident estimates of the extreme 
wind quantiles. On the other hand it can be 
argued that a very large number of values 
can dilute the effect of the more extreme val-
ues in the data. However, it is assumed here 
that in general greater confidence can be 
given to quantiles estimated with values of λ 
much larger than 1, compared to a situation 
when only one value per epoch is utilised, as 
long as the values are independent and there-
fore assumed to be Poisson distributed.

Fitting of the exponential distribution
When the POT method is applied with the 
GPD, one of the parameters to be estimated 
is the shape parameter κ, similar to the GEV 
distribution. However, it was shown with 
the results of the fitting of the GEV distribu-
tion to a small number of data values, that 
κ can then be under- or overestimated. In 
fact, Brabson & Palutikof (2000) show in 
their analyses that the value of κ varies with 
a varying threshold value. From Table 5 it 
can be seen that the number of data values 
available for POT analysis, and the thresh-
old values deemed most appropriate, vary 
substantially between the weather stations. 
In this section we fit the same data sets to 
which the GPD was fitted to the Exponential 
(EXP) distribution, i.e. the GPD with κ = 0. 
Table 6 presents the results of the analyses, 
also with estimations of the quantiles XT, 
with return periods T equal to 50, 100 and 
500 years, for the same weather stations as 
in Table 2.

Comparison between application 
of GPD and EXP distributions
As with the comparison between the results 
of the Gumbel and GEV methods, it can 
be seen that the estimated quantiles are 
sensitive to the value of κ, which confirms 
the finding of Simiu & Heckert (1996). The 
general result is that with the GPD method, 
positive values of κ render quantile values 
lower, while negative values of κ render 
quantile values higher than that estimated 
with the EXP method. Figure 7 illustrates 
how the difference between annual extreme 
wind gusts estimated with the GPD and 
EXP distributions differ, with the estimated 
value of κ. The trends which can be observed 
are similar to those in the analysis which 
was presented in Figure 4. Because the 
GPD method is more flexible than the EXP 
method, the GPD distribution should fit the 
data better than the EXP distribution, as 
demonstrated by Brabson & Palutikof (2000). 
However, it was also illustrated that the 

Figure 7 �Differences between the values of the annual extreme wind gusts estimated with the 
GPD and EXP distributions for (a) 50, (b) 100 and (c) 500 year quantiles, with varying 
shape parameter κ
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(a) Difference between GPD and EXP by value of κ 1:50 year annual maximum gust
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Figure 8 �Comparison between κGPD and κGEV, as estimated for all the data sets utilised in the study
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downside of this flexibility is that estimated 
values of κ which are highly positive, strongly 
truncate the tail of the distribution causing 
a low bound at the upper end. Unlikely low 
extreme quantile values are then predicted. 
On the other hand, highly negative estima-
tions of κ predict extreme speeds that are 
unrealistically strong for the longer return 
periods. The same argument than that devel-
oped for Gumbel vs GEV applies here, that 
short time series tend to render unrealistic 
values for κ.

COMPARISON OF THE ANNUAL 
MAXIMA AND POT METHODS

The κ parameter
If the gust speed extremes are well described 
by a single GPD distribution, then κGPD 
(κ estimated with the GPD) should equal 
κGEV (κ estimated with the GEV), or should 
approach this value with increase in the 
threshold value (Brabson & Pautikof 2000). 
However, this can of course only be true if 
the estimations for κGPD and κGEV are realis-
tic, which may ultimately depend on the size 
of the data sets utilised to estimate the dis-
tribution parameters with. Figure 8 presents 
a scatterplot comparison between κGPD and 
κGEV for the weather stations utilised in the 
research. One can see that there is no appar-
ent relationship between the two parameters. 
This could be due to either the inaccurate 
estimations of κGPD or κGEV, or both.

From the above discussion it is apparent 
that the value of the shape parameter should 
be treated with suspicion when generalised 
distributions are applied to short time series. 
However, the sizes of the data sets utilised in 
the application of the GPD distribution vary 
a lot between weather stations, as reported 
in Kruger (2011), with λ ranging from 1.5 to 
19.2, with a median value of 7. It is assumed 
that the larger the data set utilised, the more 
accurate the estimated distribution para
meters. Figure 9 presents the relationship 
between κGPD and λ. It is apparent that the 
values for κGPD tend to be clustered around 
zero, with the average for the values calcu-
lated as 0.05. Another observation is that the 
values for κGPD show lower variability for the 
upper half of the data pairs where λ > 7, com-
pared to where λ < 7. The standard deviation 
for the values of κGPD where λ > 7 is equal to 
0.12, while for κGPD where λ < 7 the standard 
deviation is equal to 0.22; the difference of 
which is statistically significant.

From the above, and results elsewhere 
in this paper, it follows then that it can be 
assumed that, with the available data for this 
study, the safest estimation for the value of 
κ is zero. This is consistent with Brabson & 

Palutikof (2000) who, after analysing shorter 
and longer periods of data for the same loca-
tion, came to the conclusion that the κ = 0 
versions of the models make more accurate 
predictions of extreme wind speeds, even 
when a shorter period of data is utilised (in 
their case 13 years).

Abild et al (1992) came to a similar 
conclusion, namely that, while the GPD and 
GEV distributions are powerful in detect-
ing outliers, and a possible two-component 
population in exponential data, the tail 
behaviour is strongly influenced by the esti-
mation of κ, and will therefore not provide 
reliable estimates of upper quantiles when 
fitted to a short record. This shows that the 
poor behaviour of κ is indicative of the insuf-
ficiency of the short time series.

Gumbel and exponential 
distributions
It was concluded in the previous section 
that, while the GEV and GPD distributions 

provide a better fit to the data, they do not 
necessarily make accurate predictions of 
high wind speeds, when based on a short 
period of data, or a small average number of 
data values per year. Figure 10 presents the 
relationship between X100 estimated by the 
Gumbel and EXP methods, with the correla-
tion statistically significant at the 95% level 
of confidence. There is a general tendency 
for X100 to be estimated higher by the EXP 
method than with the Gumbel method, 
when X100 is estimated by the Gumbel 
method to be below about 38 m/s. This 
observation applies to about 82% of the X100 
Gumbel estimates.

The question arises now which estimates, 
by the Gumbel or EXP method, can be 
considered to be the most reliable. Abild 
et al (1992) suggests that T-year estimates 
should never be given only as point esti-
mates but should at least also contain some 
information regarding the uncertainty of 
the estimate related to the statistical model 

Figure 9 �Relationship between the shape parameter κGPD and λ as presented in Table A.4
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chosen. Brabson & Palutikof (2000) state 
that critical to the usefulness of maximum 
gust speed predictions are their associated 
standard errors. Calculation procedures for 

the standard errors of the T-year estimates 
are described by Hosking et al (1985) and 
Abild et al (1992). The derivations of the 
equations for the calculations of the standard 

deviations or variances will not be repeated 
here, but for the Gumbel distribution

Var[X̂T] =~ �(
α2

n )(0.608{ln[–ln(1 – T-1)]}2  
– 0.514{ln[–ln(1 – T-1)]}  
+ 1.109)� (15)

and for the EXP distribution

Var[X̂T] =~ �(
α2

n ){1 + [ln(λT)] 2}� (16)

where α is the scale or dispersion parameter, 
n is the number of wind speed values utilised 
(in the case of the Gumbel distribution the 
number of years), T is the return period, and 
λ is the cross-over rate per year in the case 
of the POT. It follows then that the standard 
errors of the quantiles for a specific return 
period, which express the precision of the 
estimates of the quantiles, essentially depend 
on the variability of the wind speed values 
of the sample, and the number of values in 
the sample. Table 7 presents the standard 
deviations S50, S100 and S500 associated with 
the estimated annual maximum wind gust 
quantiles X50, X100, and X500 by the Gumbel 
and EXP distributions, as presented in Tables 
2 and 6 respectively.

In Kruger (2011) only seven of the 94 
weather stations analysed indicate standard 
errors of the Gumbel method to be smaller 
than that of the EXP method. For all these 
stations α was estimated larger for the EXP 
distribution than for the Gumbel distribu-
tion which, referring to Equations 15 and 
16, caused the larger values. However, one 
can conclude that in general more confi-
dence can be put on the quantile values 
estimated by the EXP method than by the 
Gumbel method.

MIXED STRONG WIND CLIMATES
As previously mentioned, in the applica-
tion of the GEV and GPD methods, the 
estimation of a negative value for the shape 
parameter κ is often seen as an indication 
of a mixed strong wind climate, i.e. the 
data set contains values from two or even 
more populations or types of events. While 
these methods are powerful in detecting 
outliers or a possible two-component (or 
more) population in exponential data, they 
will not provide reliable estimates of upper 
quantiles when fitted to a short record (Abild 
et al 1992). Twisdale & Vickery (1992), in 
their analysis of the wind speed data of four 
weather stations, came to the conclusion that 
places where thunderstorms dominate the 
extreme wind climatology, the traditional 
approach by the Gumbel or POT methods 
will tend to underestimate the design 
wind speeds.

Table 7 �Standard deviations S50, S100 and S500 associated with the estimated quantiles X50, X100 
and X500 by the Gumbel and EXP methods

Station 
number Station name

Gumbel EXP

S50 S100 S500 S50 S100 S500

0012661 George WO 1.6 1.8 2.4 1.4 1.6 2.0

0021178 Cape Town WO 2.8 3.2 4.2 1.7 1.9 2.4

0035209 Port Elizabeth 1.8 2.1 2.8 1.1 1.2 1.5

0059572 East London WO 2.1 2.4 3.2 1.3 1.4 1.7

0092081 Beaufort West 2.1 2.4 3.1 1.5 1.7 2.2

0127272 Umtata WO 3.8 4.3 5.7 1.9 2.1 2.6

0182591 Margate 1.5 1.8 2.3 1.2 1.3 1.6

0239698 Pietermaritzburg 1.8 2.1 2.7 1.3 1.5 1.8

0240808 Durban WO 1.9 2.2 2.9 1.0 1.1 1.4

0261516 Bloemfontein WO 2.4 2.8 3.7 1.6 1.7 2.1

0274034 Alexander Bay 1.3 1.5 2.0 0.8 0.9 1.1

0290468 Kimberley WO 2.3 2.6 3.4 1.4 1.6 1.9

0317475 Upington WO 2.9 3.3 4.4 1.4 1.5 1.9

0476399 Johannesburg 2.6 3.0 3.9 1.3 1.4 1.7

0508047 Mafikeng WO 2.0 2.3 3.0 1.3 1.5 1.8

0513385 Irene WO 2.4 2.7 3.5 1.2 1.3 1.6

0677802 Pietersburg WO 2.3 2.7 3.5 1.6 1.8 2.2

Figure 10 Correlation between estimations of X100 by the Gumbel and EXP methods
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These methods assume that all of the 
winds used to describe the probability 
distribution of wind speed are produced by 
the same phenomena, such as large-scale 
extra-tropical storms. However, this is 
not always the case, especially for the 2–3 
second wind gusts, as in the greater part of 
the interior of South Africa thunderstorms 
tend to dominate the strong wind climate 
(Kruger et al 2010). Therefore, for such data 
sets extreme wind estimation methodolo-
gies should be explored that explicitly take 
the mixed strong wind climatology into 
account.

Application of a mixed 
distribution method
The optimum application or fitting of the 
mixed speed distribution is described by 
Gomes & Vickery (1978). This method 
requires preferably the identification of 
all strong wind producing mechanisms, 
which will probably be the cause of the 
occurrence of an annual extreme wind at 
a specific station. Gomes & Vickery (1978) 
disaggregated four extreme wind generating 
mechanisms, i.e. extra-tropical low-pressure 
systems, thunderstorms, hurricanes and 
tornadoes, while Twisdale & Vickery (1992) 
distinguished between two mechanisms, 
i.e. extra-tropical low-pressure systems and 
thunderstorms.

In this study the causes of each of the 
annual maximum wind gusts and annual 
maximum hourly mean wind speeds were 
identified for the individual weather stations. 
To be noted, the thunderstorms were not 
considered to be a possible cause of high 
hourly mean wind speeds, due to their strong 
winds of usually short duration. Strong 
winds during a thunderstorm are usually 
shorter than ten minutes; therefore only the 
underlying synoptic-scale situation was taken 
into account.

The descriptions of the different strong 
wind mechanisms are presented in Kruger 
et al (2010). The identified causes for each 
weather station were then considered to be 
the main strong wind producing mecha-
nisms at a particular station. The disaggre-
gations of the strong wind sources, in the 
synoptic scale, in the current research are 
more detailed than in both of the examples 
of Gomes & Vickery (1978) and Twisdale & 
Vickery (1992). This approach may improve 
the accuracy of the extreme wind estima-
tions, and additional information can also 
be gained from the extreme wind analyses, 
such as the most likely causes, directions 
and the time of year of extreme wind 
estimations for specific return periods. For 
the annual extreme wind gusts 86% of the 
94 weather stations in Kruger et al (2010) 

exhibited a mixed strong wind climate by 
application of the disaggregation procedure, 
while for the annual extreme hourly mean 
wind speeds the fraction is much lower 
at 57%.

After the identification of the strong 
wind mechanisms involved at each weather 
station, the strongest wind gusts and hourly 
mean wind speeds were determined which 
were caused by each of the identified 
mechanisms, for each year of available data. 
An example of the results of this procedure 
is presented in Table 8, for the weather 
station at Robben Island. Here the annual 
maximum wind gusts, as well as the annual 

maximum hourly winds, are caused by two 
mechanisms, namely the passage of cold 
fronts and the ridging of the Atlantic Ocean 
high-pressure system. The maximum wind 
gust values and hourly mean wind speeds 
produced by each of the mechanisms are 
also given.

For both the wind gusts and the hourly 
mean wind speeds, assuming that the values 
are Gumbel distributed, the combined dis-
tribution of these events is determined as the 
sum of the individual risks of exceedance, 
given as

F(x) = 1 – [(1 – e-e-yCF) + (1 – e-e-yR)]� (17)

Figure 11 �Annual maximum wind gust distribution (a) and annual maximum hourly mean wind 
speed distribution (b) for Robben Island
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where yCF and yR are the reduced variates for 
the data sets for the cold fronts and ridging 
respectively.

Therefore,

e(-1/T) = {e-e-[(VR-αCF)/βCF]} * {e-e-[(VR-αR)/βR]}� (18)

where T is the return period, αCF and βCF 
are the dispersion and the mode parameters 
of the cold front values, αR and βR are the 

dispersion and the mode parameters of the 
values associated with ridging, and VR is 
the wind speed associated with the return 
period T. The return period estimations for 
a specific wind speed could then be deter-
mined by

T = 1
{e[(αCF-VR)/βCF] + e[(αR-VR)/βR]}

� (19)

Figure 11 presents the quantile estimates 
for the annual maximum wind gusts as well 

as the annual maximum hourly mean wind 
speeds, by the method for mixed strong 
wind climates and the Gumbel method. Also 
shown are the quantile estimates where the 
Gumbel method has been applied to the data 
sets for cold fronts and ridging, presented 
in Table 8. One can see that the distribution 
patterns are similar for extreme wind gusts 
and hourly mean wind speeds. One may also 
assume that from a return period of about 
50 years for the wind gusts, and 100 years 
for the hourly mean wind speeds, the annual 
extreme winds will probably be caused by 
the passage of cold fronts, of which the 
strongest usually occur during the winter 
months. The wind directions of these winds 
are usually north-westerly.

An example of a weather station where 
thunderstorms are one of the main causes 
of extreme wind gusts is Jamestown in the 
Eastern Cape Province. Figure 12 presents 
the annual maximum wind gust distribu-
tion for this weather station, from which 
one notices large differences between the 
quantile estimates by the mixed climate 
method and the conventional Gumbel 
method.

Table 9 presents the values for the quan-
tiles X50, X100, and X500, as estimated by the 
mixed distribution method, for both annual 
maximum wind gusts and mean hourly 
wind speeds, for the weather stations listed 
in Table 2 which exhibit a mixed strong 
wind climate (cells are empty where a single 
mechanism applies).

Table 8 �Maximum wind gust values and hourly wind speeds produced 
by the passage of cold fronts and the ridging of the Atlantic 
Ocean high-pressure system at Robben Island for 1992–2008

Year
Annual maximum 

wind gust (m/s)
Annual maximum hourly 

mean wind speed (m/s)

Cold front Ridging Cold front Ridging

1994 27.3 21.6 12.9 11.9

1995 22.5 22.7 11.6 12.1

1996 21.4 20.8 11.6 13.3

1997 23.2 22.6 12.9 11.6

1998 19.9 20.0  9.6 11.9

1999 18.2 22.3 11.0 12.1

2000 20.9 21.7 10.8 13.1

2001 24.4 22.0 12.9 11.0

2002 21.5 20.6 12.2 12.4

2003 20.2 21.8 11.4 11.3

2004 16.4 20.2  8.3 11.6

2005 24.3 21.6 11.9 10.8

2006 18.4 23.5 10.8 11.9

2007 26.3 20.4 14.1 13.3

2008 24.0 25.4 10.7 14.5

Table 9 �Values for the quantiles X50, X100 and X500 as estimated by the mixed 
distribution method for weather stations with more than one strong 
wind producing mechanism

Station 
number Station name

Annual maximum 
wind gust (m/s)

Annual maximum 
hourly wind 
speed (m/s)

X50 X100 X500 X50 X100 X500

0021178 Cape Town WO 38.7 41.0 46.3 22.8 24.0 26.8

0092081 Beaufort West 38.8 40.4 44.1

0127272 Umtata WO 41.9 44.7 51.2

0239698 Pietermaritzburg 28.6 30.1 33.6 11.0 11.6 13.0

0261516 Bloemfontein WO 14.4 14.9 16.1

0274034 Alexander Bay 32.2 33.6 37.4

0290468 Kimberley WO 16.9 17.5 19.0

0317475 Upington WO 17.0 17.7 19.2

0476399 Johannesburg 34.6 36.8 41.7 15.8 16.5 18.2

0508047 Mafikeng WO 31.8 33.3 36.7

0513385 Irene WO 33.3 35.1 39.4 16.5 17.2 18.9

0677802 Pietersburg WO 15.0 15.7 17.3

Note: Cells are empty where a single mechanism applies.

Figure 12 �Annual maximum wind gust distribution for Jamestown
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Table 12 �Annual maximum wind gust values produced by 
the passage of cold fronts and the occurrence of 
thunderstorms at Uitenhage for 1996–2008

Year

Annual maximum 
wind gust (m/s)

Annual maximum 
wind gust (m/s) caused 
by either a cold front 

or thunderstormCold front Thunderstorm

1996 30.3 15.9 30.3

1997 22.1 29.5 29.5

1998 22.8 16.3 22.8

1999 25.5 15.9 25.5

2000 25.1 18.5 25.1

2001 23.0 24.7 24.7

2002 – – –

2003 – – –

2004 26.5 18.2 26.5

2005 23.3 20.8 23.3

2006 27.1 24.3 27.1

2007 26.0 13.4 26.0

2008 24.7 25.8 25.8

Average 25.2 19.8 26.1

Note: The measurements for 2002 and 2003 are unreliable and were 
therefore omitted from the analysis.

Further analyses and discussion 
of results

The κ parameter and mixed distributions
 The assumption that a negative shape 
parameter κ, estimated by fitting of the GEV 
distribution, or GPD distribution with the POT 
method, might indicate a mixed distribution 
of the wind values in the data samples is here 
investigated further. With the data sets utilised 
in Kruger (2011), more than one strong wind 
mechanism was identified for 23 of the 35 
weather stations with κ < 0, estimated by fitting 
of the GEV distribution to annual maximum 
gust speeds. For mean hourly winds, 15 of the 
29 weather stations with κ < 0, estimated by 
the fitting of the GEV distribution to annual 
maximum mean hourly wind speeds, had more 
than one identified strong wind mechanism. It 
is therefore apparent that mixed distributions 
are not the only cause for negative estimations 
of κ, as not all weather stations with κ < 0 have 
mixed strong wind climates.

The GEV distribution was fitted to 
the data samples for each strong wind 
mechanism, e.g. to the data sets in the four 
columns of Table 8 for Robben Island. The 
results of these analyses are presented in 
Table 10, for the same weather stations as in 
Table 2. It can be noted that the analyses in 
Kruger (2011) revealed that there is no real 
consistency between the sign or magnitude 
of κ and specific strong wind mechanisms.

Table 10 �Values of the κ parameter for the different strong wind mechanisms, estimated by fitting 
of the GEV distribution

Station 
number Station name

Annual maximum wind gust (m/s) Annual maximum hourly 
wind speed (m/s)

κTS κCF κR κOTHER κCF κR κOTHER

0012661 George WO +0.23 +0.27

0021178 Cape Town WO –0.04 –0.14 –0.16 –0.01

0035209 Port Elizabeth –0.13 –0.11

0059572 East London WO +0.59 +0.45

0092081 Beaufort West +0.32 –0.05 –0.30 –0.04

0127272 Umtata WO –0.35 +0.57 –0.05

0182591 Margate +0.01

0239698 Pietermaritzburg –0.13 –0.17 –0.24 –0.23 –0.03

0240808 Durban WO –0.14 –0.13

0261516 Bloemfontein WO –0.24 +0.21 –0.09

0274034 Alexander Bay +0.09 –0.04 +0.22

0290468 Kimberley WO +0.20 +0.21 –0.07

0317475 Upington WO –0.17 +0.23 +0.20

0476399 Johannesburg +0.01 +0.27 –0.03

0508047 Mafikeng WO –0.12 –0.04

0513385 Irene WO +0.09 –0.15 +0.21

0677802 Pietersburg WO +0.36 +0.24 –0.10

Note: �κTS is the shape parameter for the data set for thunderstorms, κCF for cold fronts and κR for ridging. 
κOTHER indicates an additional strong wind mechanism at a specific weather station, which can be 
found in Table 5.8. Cells are empty where a single mechanism applies.

Table 11 �Differences between the estimates for the quantiles X50, X100 
and X500 estimated by the mixed distribution and Gumbel 
methods (i.e. X50

mixed – X50
G )

Station 
number Station name

Annual maximum 
wind gust (m/s)

Annual maximum 
hourly wind 
speed (m/s)

X50 X100 X500 X50 X100 X500

0021178 Cape Town WO 0.4 0.5 0.7 0.4 0.5 0.6

0092081 Beaufort West 0.2 0.3 0.3

0127272 Umtata WO 1.4 1.8 2.7

0239698 Pietermaritzburg 1.6 1.8 2.2 0.0 0.0 0.0

0261516 Bloemfontein WO 0.2 0.2 0.2

0274034 Alexander Bay 0.9 1.3 2.8

0290468 Kimberley WO 0.1 0.1 0.2

0317475 Upington WO 0.4 0.6 0.9

0476399 Johannesburg 0.6 0.9 1.2 0.4 0.4 0.6

0513385 Irene WO 0.4 0.5 0.8 0.5 0.6 0.8

0677802 Pietersburg WO 0.1 0.2 0.4

Note: Cells are empty where a single mechanism applies.
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A conclusion can be made that the values 
of κ, for the data samples utilised, probably 
depend in most cases on the internal vari-
ability of the values in the data samples, 
and not on the strong wind mechanisms 
involved. Therefore it is reiterated again that 
for shorter time series, the estimation of 
quantiles should be based on the application 
of a method restricting the value of κ to zero, 
as previously suggested. It might be possible 
that, if the time series utilised were signifi-
cantly longer, there would be some consis-
tencies evident in the sign and magnitude of 
κ between the different weather stations, and 
specific strong wind producing mechanisms.

Comparison between quantile estimations 
of Gumbel and mixed distribution methods
The differences between the values of the 
quantiles X50, X100, and X500, estimated by 
the method for mixed distributions and the 
Gumbel method, e.g. for the 1:50 year quan-
tiles, are presented in Table 11, for the weather 
stations in Table 9. As expected, and also 
noted by Gomes & Vickery (1978), quantile 
estimations by the mixed distribution method 
are usually larger than the estimations by the 
Gumbel method, with the differences increas-
ing with increasing return periods. In Kruger 
(2011), for X50 the mixed distribution method 
estimates are, on average, 0.7 m/s larger than 
the Gumbel method for annual maximum 
wind gusts, and 0.2 m/s larger for annual maxi-
mum hourly mean wind speeds. For longer 
return periods the mean differences become 
larger. For X100, the mean differences are 
1.0 m/s and 0.3 m/s, while for X500 the mean 
differences are 1.7 m/s and 0.5 m/s respectively.

Where there are large differences 
between the estimates of the two methods 
it is usually because the strong wind mecha-
nism that is causing the most extreme wind 
speeds is underrepresented in the sample of 
annual maximum wind speeds of a weather 
station. The dispersion of the annual maxi-
mum values of this particular strong wind 
mechanism is then also always larger than 
that for the other strong wind mechanism(s) 
taken into account. To illustrate this, the 
annual maximum wind gust distribution 
for Uitenhage and the annual maximum 
hourly mean wind speed distribution for 
Malmesbury are discussed.

In the case of Uitenhage the most extreme 
wind gusts are caused by thunderstorms. 
Table 12 presents the annual maximum wind 
gust values, as well as the annual maximum 
values produced by the passage of cold fronts 
and the occurrence of thunderstorms at 
Uitenhage for the period 1996 to 2008.

Cold fronts are the causes of the annual 
maximum wind gusts on eight of the avail-
able 11 years of data. The average of the 

values for cold fronts is 25.2 m/s, which is 
higher than the average of the values for 
thunderstorms at 19.8 m/s. However, the 
value of the dispersion parameter, α, is 1.8 
for cold fronts and 3.8 for thunderstorms. 
This larger value for α results in a shallower 
slope in the extreme wind gust distribution 
graph for thunderstorms, as well as for the 
mixed climate, as presented in Figure 13.

Another interesting example is that for the 
extreme hourly mean wind speed distribu-
tion for Malmesbury. Table 13 presents the 
maximum hourly mean wind speed values 
produced by the passage of cold fronts and the 
ridging of the Atlantic Ocean high-pressure 
system at Malmesbury, for the period 1992 to 
2008. Cold fronts are the causes of the annual 
maximum hourly mean wind speeds on six 

Figure 13 �Extreme wind gust distribution for Uitenhage
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Table 13 �Annual maximum hourly mean wind speed values produced by the passage of cold 
fronts and the ridging of the Atlantic Ocean high-pressure system at Malmesbury for 
1992–2008

Year
Annual maximum hourly mean wind speed (m/s) Annual maximum 

hourly mean wind speed 
(m/s) caused by either 
a cold front or ridgingCold front Ridging

1992 9.9 9.5 9.9

1993 9.3 11.1 11.1

1994 11.1 10.1 11.1

1995 8.2 9.9 9.9

1996 9.4 9.3 9.4

1997 10.1 10.2 10.2

1998 7.1 9.0 9.0

1999 7.7 9.8 9.8

2000 7.2 9.1 9.1

2001 8.8 9.0 9.0

2002 8.3 9.3 9.3

2003 8.8 9.7 9.7

2004 6.1 8.4 8.4

2005 8.1 6.5 8.1

2006 8.0 7.0 8.0

2007 8.8 6.5 8.8

2008 8.8 9.0 9.0

Average 8.6 9.0 9.4
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of the available 17 years of data, while the 
ridging of the Atlantic Ocean high-pressure 
system is the cause for the remaining 11 
years. The average of the annual maximum 
values for the cold fronts is 8.6 m/s, while for 
the ridging it is 9.0 m/s. The value of α for 
the cold fronts is 0.9, while for the ridging 
it is 1.0. Therefore the extreme hourly wind 
distributions for cold fronts and ridging are 
very similar. However, the mean of the annual 
maximum hourly mean wind speeds, regard-
less of the cause, is 9.4 m/s and α is equal to 
0.7. The result is an extreme wind distribution 
as presented in Figure 14. The slope of the 

mixed climate distribution is similar to the 
distributions for cold fronts and ridging, while 
the single climate slope for the traditional 
Gumbel method is much steeper, causing a 
significant underestimation of wind speeds 
for the longer return periods.

The conclusion is that, for the estimation 
of quantiles for long return periods, it is 
advisable or “safer” to follow a mixed distri-
bution approach. This is especially applicable 
to strong wind estimations in South Africa, 
where most of the land area is influenced 
by more than one strong wind producing 
mechanism.

The disaggregated data sets developed in 
this analysis also make it possible to predict 
extreme wind estimations caused by the 
different strong wind mechanisms. For the 
above examples, the estimated wind gust 
quantiles X50, X100 and X500 for the strong 
wind mechanisms identified for Uitenhage 
are shown in Table 14. Table 15 presents 
hourly mean wind speed quantiles for the 
same return periods for the strong wind 
mechanisms identified for Malmesbury.

SUMMARY AND 
RECOMMENDATIONS
It is demonstrated that, amongst others, the 
background information on the strong wind 
climatology and record length are imperative 
considerations in the selection of appropriate 
methods for extreme-wind estimations.

The various steps taken in the analysis 
of the strong wind data can be summarised 
as presented in the overview in Figure 15. 
Due to the short time series and the complex 
wind climate of South Africa, some extreme 
wind estimation methods can be recom-
mended above others.

Firstly all the data sets were analysed 
with the traditional Gumbel method. As it 
cannot readily be assumed that κ = 0, the 
data sets were subsequently analysed with 
the GEV approach, and from the results it 
was seen that no spatial consistency between 
stations in terms of the value of κ is evident. 
This indicated the influence of outliers on 
the analysis; and that the GEV approach is 
not recommended for the analysis of short 
time series.

The POT method, specifically developed 
for the analysis of short time series, was 
then applied. This method is not applicable 
to hourly mean wind speeds, and therefore 

Table 14 �Estimations of extreme wind gusts 
of cold fronts and thunderstorms for 
Uitenhage

Strong wind 
mechanism X50 X100 X500

Cold front 31.0 32.2 35.0

Thunderstorm 33.0 35.6 41.7

Table 15 �Estimations of extreme hourly mean 
wind speeds of cold fronts and 
ridging of the Atlantic Ocean high-
pressure system for Malmesbury

Strong wind 
mechanism X50 X100 X500

Cold front 11.6 12.3 13.7

Ridging 12.3 12.9 14.5

Figure 14 �Annual maximum mean hourly wind speed distribution for Malmesbury
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Figure 15 �The analysis approach of strong winds (grey cells indicate the preferred methods for 
the data utilised)
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only the data sets for the wind gusts were 
analysed. With the POT method applied 
to the GPD, again no spatial consistency 
between stations in terms of the value of 
κ was evident. The POT method was then 
applied with the EXP distribution, which is 
essentially the GPD distribution with κ = 0. 
This approach is deemed to produce the best 
estimates of extreme wind values from the 
methods investigated, if a single strong wind 
climate is assumed.

Subsequently a method for analysing 
mixed strong wind climates was applied to 
the wind gust as well as the hourly mean 
wind speed data sets, where almost all of the 
weather stations showed increased quantile 
estimates.

For wind gusts, in the case of wind data 
of single climatic origin, the POT approach 
applied with the EXP method is recom-
mended. In the case of a strong wind climate 
of various origins the mixed strong wind 
climate approach is recommended, especially 
for longer return periods where the quantile 
estimations by the mixed climate method 
become much larger than that with the 
traditional Gumbel method. It is not feasible 
to apply the POT method to a mixed climate 
approach, due to the large number of strong 
winds of which the causes would have to be 
determined.

For hourly mean wind speeds the tra-
ditional Gumbel approach is satisfactory. 
However, in the case of a mixed strong wind 
climate of various origins, it is recommended 
that the method providing the highest quan-
tile values is applied.
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