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Abstract. We extend the Description Logic ALC with preferential role
restrictions as class constructs, and argue that preferential universal re-
striction represents a defeasible version of standard universal restriction.
The resulting DL is more expressive without adding to the complexity of
TBox reasoning. We present a tableau system to compute TBox entail-
ment, show that this notion of entailment is not sufficient when adding
ABoxes, and refine entailment to deal adequately with ABox reasoning.

1 Introduction

Description logics (DLs) have been extended with features to express defeasibility
in a number of ways, one of which is to incorporate preferential reasoning into
the semantics [5, 10, 14, 20]. Recently, Britz, et al. [4] obtained a representation
result for preferential and rational extensions of DLs linking previous syntactic
approaches [10, 14] to semantic proposals for preferential extensions to DLs [5,
18, 20]. This established a foundation for the study of preferential and ranked
entailment in DLs with a clear and intuitively appealing semantics supported by
sound and complete reasoning support.

Different preferential extensions to DLs do not all share the same aim, and
hence also do not share a semantics. One such aim is the representation of
defeasible subsumption statements, which semantically translate to set inclusions
admitting classical counter-examples. The focus there is therefore on defeasible
statements of the form C @∼D, read “Cs are usually Ds” or “normally Cs are
Ds”, leaving open the option for Cs that are, in a sense, exceptional not to be
instances of D. There are, however, a number of other aspects of defeasibility at
the object level besides that of defeasible subsumption [1, 2, 14]. The common
aim of these approaches is the introduction of some aspect of defeasibility, rather
than non-monotonicity, with the latter rather emerging as a desired property of
the resulting entailment relation in consequence of the introduction of the former.

Here we make a case for defeasible universal restrictions, in which a class
description of the form ∀r.C may be too strong, calling for a weaker version
thereof which is defeasible in the sense that it admits classical counter-examples.
As an example, consider the class description Lawyer u ∀hasClient.PayingClient,
intended to capture the class of all private practice lawyers who only handle the
cases of paying clients. This class description may be too strong, calling for a
weaker class description of lawyers who normally defend only paying clients, but



2 Britz, Casini, Meyer, Varzinczak

who may exceptionally take on pro bono work. This leads to the introduction
of defeasible universal restrictions. For example, Lawyeru∀•∼hasClient.PayingClient
can be used to describe the class of all lawyers having only paying clients, yet
allowing for relatively exceptional role fillers to the hasClient role.

Dually, a class description of the form ∃r.C may be too lenient, calling for a
strengthening of the existential restriction construct that discounts exceptional
role fillers. For example, ∃hasClient.PayingClient describes the class of individuals
having at least one paying client, whereas a description of the class of individuals
whose normal clientèle includes at least one paying client requires a stricter
version of existential restriction, written ∃•∼hasClient.PayingClient. This notion can
incidentally also be generalized to number restrictions.

The remainder of the paper is structured as follows: We present some back-
ground on preferential DL semantics in Section 2. In Section 3 we introduce
preferential versions of universal and existential role restrictions, and define
their semantics. We present a tableau system for ALC TBox entailment with
the added role restrictions in Section 4, and conclude in Section 6 with a few
remarks on related and future work.

2 Preferential semantics for description logics

We assume the reader to be familiar with Description Logics, and follow standard
notation. In this section we outline the preferential semantics for DLs obtained
by enriching standard DL interpretations with an ordering on the elements in
the domain. The intuition on which this approach is based is simple and natural,
and extends similar work done for the propositional case [17, 19], and also more
recently for description and modal logics [5–7, 9].

Informally, the semantics is based on the idea that objects of the domain
can be ordered according to their degree of normality [3] or typicality [15, 2].
We do not require that objects intrinsically possess certain features that render
some objects more normal than others. Rather, the intention is to provide a
framework in which to express all conceivable ways in which objects, with their
associated properties and relationships with other objects, can be ordered, in
the same way that the class of all DL standard interpretations constitute a
framework representing all conceivable ways of representing the properties of
objects and their relationships with other objects. The knowledge base at hand
therefore imposes constraints on the allowed orderings on objects in preferential
DL interpretations in the same way as it imposes constraints on the allowed
extensions of classes and roles in standard DL interpretations.

Definition 1 (Preferential Interpretation). A preferential interpretation is
a structure P = 〈∆P , ·P ,≺P〉, where 〈∆P , ·P〉 is a DL interpretation (which we
denote by IP and refer to as the standard interpretation associated with P),
and ≺P is a strict partial order on ∆P (i.e., ≺P is irreflexive and transitive)
that is well-founded.1

1 Observe that well-foundedness is a stricter condition to impose than the smoothness
condition used for modelling defeasible subsumption [4].
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A preferential interpretation P satisfies a subsumption statement C v D
(denoted P  C v D) if and only if CP ⊆ DP . It is easy to see that the addition
of the ≺P -component preserves the truth of all subsumption statements holding
in the associated standard interpretation:

Lemma 1. Let P = 〈∆P , ·P ,≺P〉 be a preferential interpretation. For every α,
P  α if and only if IP  α.

Example 1. Let NC = {A,B} and let NR = {r}. Figure 1 below depicts the
preferential interpretation P = 〈∆P , ·P ,≺P〉, where ∆P = {xi | 1 ≤ i ≤ 5},
AP = {x1, x2, x3}, BP = {x2, x3, x4}, rP = {(x1, x2), (x2, x3), (x3, x2), (x1, x4),
(x4, x5), (x5, x4)}, which is represented by the solid arrows in the picture, and≺P
is the transitive closure of {(x1, x2), (x1, x3), (x2, x4), (x3, x4), (x4, x5)}, i.e., of
the relation represented by the dashed arrows in the picture. (Note the direction
of the dashed arrows, pointing from less to more preferred objects, with more
preferred objects lower in the order.)

P :

• x1 {A}

•{A,B} x2 • x3 {A,B}

• x4 {B}

• x5 {}

Fig. 1. A preferential interpretation.

3 Enriching DLs with preferential role restrictions

The preferential DL interpretations presented above have been used elsewhere
to define a defeasible subsumption relation, and also to define preferential and
ranked entailment relations on defeasible DL knowledge bases [4]. Our present
purpose is however to use it in the definition of a defeasible universal restric-
tion class construct with a preferential semantics, analogous to the defeasible
modalities defined by Britz, et al. [9]. We also define its dual class construct
for existential restrictions. We show that preferential universal restriction intro-
duces an aspect of defeasibility to the base class construct of universal restriction,
while its dual introduces an aspect of strictness to the base class construct of
existential restriction.

Definition 2. Let P = 〈∆P , ·P ,≺P〉 be a preferential interpretation. Given a
role name r and a class description C, the truth conditions for defeasible uni-
versal restriction ∀•∼r.C and strict existential restriction ∃•∼r.C are given by:

• (∀•∼r.C)P := {x ∈ ∆P | min≺P r
P(x) ⊆ CP}.
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• (∃•∼r.C)P := {x ∈ ∆P | min≺P r
P(x) ∩ CP 6= ∅}.

With L̃ we denote the extension of L obtained by adding ∀•∼ and ∃•∼ to the concept
constructors of ALC.

We say that C ∈ L̃ is preferentially satisfiable if and only if there is a pref-
erential interpretation P such that CP 6= ∅. Preferential satisfiability of C with
respect to a TBox T is defined in the usual way. If C,D ∈ L̃, then satisfaction
of subsumption statements of the form C v D is just as before.

Definition 3. Given a TBox T and a subsumption statement α (built up from

L̃), we say that T preferentially entails α, denoted T |= α, if and only if for
every preferential interpretation P, P  K implies P  α.

Lemma 2. Let T be a TBox and let C,D ∈ L̃. T |= C v D if and only if
C u ¬D is preferentially unsatisfiable with respect to T .

Definition 3 yields a monotonic entailment relation (in the sense that, if
T |= α then we also have that T ∪ {β} |= α for any subsumption statement β)
with associated Tarskian consequence relation [9]. This raises the question of the
nature and role of non-monotonicity in preferential role restrictions.

Non-monotonicity is often conflated in this way with defeasibility in the AI
literature, probably because there is a connection between non-monotonic entail-
ment relations and the intended application of such logics in defeasible reasoning.
While not much harm may be done in that context, a more careful analysis is
required when studying defeasibility of functions, operators or connectives in a
language. We therefore briefly digress to recall some basic definitions surrounding
these notions.

Definition 4. Given n+ 1 partially ordered sets of objects 〈Si,≤i〉, 0 ≤ i ≤ n,
an n-ary function f : Πn−1

i=0 Si → Sn is monotone increasing in all its arguments
on Sn if the following holds:

If xi ≤ yi for 0 ≤ i < n then f(x0, . . . xn−1) ≤ f(y0, . . . , yn−1).

It is then easy to see that (the semantic interpretations of) the class con-
structs u, t and ∃ induce monotone increasing binary functions on 〈P(∆),⊆〉,
the class construct ¬ induces a monotone decreasing unary function, and the
class constructs ∀, ∀•∼ and ∃•∼ induce binary functions that are neither monotone
increasing nor monotone decreasing, i.e., they are non-monotonic. We may al-
ternatively take a more proof-theoretic approach and observe that u, t and ∃
induce monotone increasing functions on the class subsumption hierarchy 〈L,v〉,
¬ induces a monotone decreasing function and ∀, ∀•∼ and ∃•∼ induce non-monotonic
functions on 〈L,v〉. Although we cannot express r v s in ALC, semantically ∀
remains a non-monotonic class construct, and in more expressive DLs with role
hierarchies this can also be expressed syntactically, in that it does not in general
follow from r v s and C v D that ∀r.C v ∀s.D.

Defeasible reasoning dates back to Aristotle’s analysis of dialectics, and re-
lates to argument forms that seem compelling but are not classically valid.
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As mentioned above, a more restrictive view of defeasible reasoning is often
taken, conflating it with non-monotonic reasoning. However, demonstrating non-
monotonicity to prove defeasibility is not always accurate. For example, as we
showed above standard universal restriction is non-monotonic, but there is no
reason why it should be regarded as a defeasible class construct.

Informally, a defeasible relation on a set is one which admits classical counter-
examples. The defeasibility of the relation does not refer to its non-monotonicity,
but rather to the possibility of defeat by counter-example. A requirement of a
defeasible function is therefore that it is more tolerant than some base function
in the following sense:

Definition 5. Given n+ 1 partially ordered sets of objects 〈Si,≤i〉, 0 ≤ i ≤ n,
an n-ary function f : Πn−1

i=0 Si → Sn is tolerant with respect to an n-ary function
f ′ : Πn−1

i=0 Si → Sn if the following holds:

f ′(x1, . . . , xn) ≤ f(x1, . . . , xn), for all xi ∈ Si, 0 ≤ i < n.

f ′(x1, . . . , xn) 6= f(x1, . . . , xn), for some xi ∈ Si, 0 ≤ i < n.

The obvious examples relevant to the content of this paper are ∀•∼, which is
tolerant with respect to ∀, and ∃, which is tolerant with respect to ∃•∼. Our claim
is not that tolerance as defined above corresponds precisely to defeasibility (and
could therefore be used as a definition of defeasibility). A simple illustration of
this point is that classical disjunction is tolerant with respect to conjunction,
but it does not seem to make sense to consider disjunction as being defeasible
with respect to conjunction.

We contend that ∀•∼ may be interpreted as defeasible universal restriction:
Informally, PrivateLawyer ≡ Lawyer u ∀•∼hasClient.PayingClient defines the class of
private lawyers as the set of objects that are lawyers, and whose typical clients
are the ones who pay. The defeasibility resides in the class construct of universal
quantification ∀•∼, rather than in any of the class or role descriptions involved,
or in the subsumption relation. Thus we are not stating that, normally, private
lawyers only have paying clients, but rather that the normal clientèle of private
lawyers are restricted to paying clients. This is made more precise in the example
below.

Definition 6. A TBox T is said to be preferentially coherent if, for every A ∈
NC , there is a preferential model P of T s.t. AP 6= ∅.2

Example 2. Let T be a TBox containing the following two statements:

PrivateLawyer ≡ Lawyer u ∀•∼hasClient.PayingClient,
CommunityLawyer v PrivateLawyer u ∃hasClient.¬PayingClient.

It is easy to show that T is preferentially coherent. Informally, this means it
is possible for community lawyers, by virtue of being private lawyers, to nor-
mally have paying clients, but to have some non-paying clients at the same

2 Preferential coherence is a generalisation of classical coherence as defined by
Schlöbach, et al. [21].
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time. Furthermore, it can be verified that T preferentially entails the statement
CommunityLawyer v ∃hasClient.PayingClient. Informally, because we know that
all community lawyers have some clients (albeit non-paying clients), it must be
the case that they all have paying clients as well. This follows from the fact that
community lawyers are also private lawyers.

4 Tableau system for preferential role restrictions

In this section we present a simple tableau-based proof procedure for reasoning
with preferential role restrictions. Our tableau calculus is based on standard
modal tableaux with labeled formulae and explicit accessibility relations [16].
(Our exposition here follows that given by Britz and Varzinczak [8] in the modal
case, which is based on those by Castilho et al. [11, 12].)

As usually done in the DL community, subsumptions of the form C v D,
which are equivalent to > v ¬C t D, are treated internally by the tableau as
concepts of the form ¬C t D. In that respect, it is enough to define a tableau
system that checks only for concept satisfiability.

Definition 7. If n ∈ N and C ∈ L̃, then n :: C is a labeled concept.

In a labeled concept n :: C, the natural number n is the label. (As we shall
see, informally, the idea is that the label stands for some object in a DL inter-
pretation.)

Definition 8. A skeleton is a function Σ : NR −→P(N×N).

That is, a skeleton maps role names in the language to binary relations on labels.
Our tableau system also makes use of an auxiliary structure of which the

intention is to build a preference relation on objects of the domain:

Definition 9. A preference relation ≺ is a binary relation on N.

As we shall see below, like Σ, ≺ is built cumulatively through successive
applications of the tableau rules we shall introduce.

Definition 10. A branch is a tuple 〈S, Σ,≺〉, where S is a set of labeled con-
cepts, Σ is a skeleton and ≺ is a preference relation.

Definition 11. A tableau rule is a rule of the form:

ρ
N ; Γ

D1 ; Γ ′1 | . . . | Dk ; Γ ′k

where N ;Γ is the numerator and D1 ; Γ ′1 | . . . | Dk ; Γ ′k is the denominator.

Given a rule ρ, N represents one or more labeled concepts, called the main
concept of the rule, separated by ‘,’. Γ stands for any additional condition (on
Σ or ≺) that must be satisfied for the rule to be applicable (see below). In the
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denominator, each Di, 1 ≤ i ≤ k, has one or more labeled concepts, whereas each
Γ ′i is a condition to be satisfied after the application of the rule (e.g. structural
changes in the skeleton Σ or in the relation ≺). The symbol ‘|’ indicates the
occurrence of a split in the branch, characteristic of the so-called don’t-know
non-deterministic rules.

Figure 2 below presents the set of tableau rules for L̃. In the rules we abbre-

viate (n, n′) ∈ Σ(i) as n
i→ n′, and n′ ∈ Σ(i)(n) as n′ ∈ Σi(n). Finally, with

n′?, n′′?, . . . we denote labels that have not been used before. We say that a rule
ρ is applicable to a branch 〈S, Σ,≺〉 if and only if S contains an instance of the
main concept of ρ and the conditions Γ of ρ are satisfied by Σ and ≺.

(⊥)
n :: C, n :: ¬C

n :: ⊥ (¬)
n :: ¬¬C
n :: C

(u)
n :: C uD

n :: C, n :: D
(t)

n :: ¬(C uD)

n :: ¬C | n :: ¬D

(∀•∼)
n :: ∀•∼ri.C ; n

i→ n′, n′ ∈ min≺Σi(n)

n′ :: C
(∃•∼) n :: ¬∀•∼ri.C

n′? :: ¬C ; n
i→ n′?, n′? ∈ min≺Σi(n)

(∀) n :: ∀ri.C ; n
i→ n′

n′ :: C
(∃) n :: ¬∀ri.C

n′? :: ¬C ; Γ ′1 | n′? :: ¬C ; Γ ′2
, where

Γ ′1 = {n i→ n′?, n′? ∈ min
≺

Σi(n)} and

Γ ′2 = {n i→ n′?, n
i→ n′′?, n′′? ≺ n′?, n′′? ∈ min

≺
Σi(n)}

Fig. 2. Tableau rules for L̃.

The Boolean rules together with (∀) are as usual and need no explanation.
Rule (∀•∼) propagates concepts in the scope of a defeasible universal restriction to
the most preferred (with respect to ≺) of all successor nodes. Rule (∃•∼) creates
a preferred (minimal) successor node with the corresponding labeled concept as
content. Rule (∃) replaces the standard rule for ∃-concepts with a don’t-know
non-deterministic version thereof and requires a more thorough explanation.
When creating a new successor node, there are two possibilities: Either (i) it
is minimal (with respect to ≺) amongst all successor nodes, in which case the
result is the same as that of applying Rule (∃•∼), or (ii) it is not minimal, in which
case there must be a most preferred successor node that is more preferred (with
respect to ≺) than the newly created one. (This splitting is of the same nature
as that in the (t)-rule, i.e., it fits the purpose of a proof by cases.)

Definition 12. A tableau T for C ∈ L̃ is the limit of a sequence T 0, . . ., T n, . . .
of sets of branches where the initial T 0 = {〈{0 :: C}, ∅, ∅〉} and every T i+1 is
obtained from T i by the application of one of the rules in Figure 2 to some
branch 〈S, Σ,≺〉 ∈ T i. Such a limit is denoted T ∞.
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We make the so-called fairness assumption: Any rule that can be applied will
eventually be applied, i.e., the order of rule applications is not relevant. We say
a tableau is saturated if no rule is applicable to any of its branches.

Definition 13. A branch 〈S, Σ,≺〉 is closed if and only if n :: ⊥ ∈ S for some n.

A saturated tableau T for C ∈ L̃ is closed if and only if all its branches are closed.
(If T is not closed, then we say that it is an open tableau.)

For an example, consider the concept C = ∃•∼r.(A u ¬B) t ∃r.¬A t ∀r.B.
Figure 3 depicts the (open) tableau for ¬C = ∀•∼r.¬(A u ¬B) u ∀r.A u ¬∀r.B.

0 :: ∀•∼r.¬(A u ¬B) u ∀r.A u ¬∀r.B

0 :: ∀•∼r.¬(A u ¬B), 0 :: ∀r.A, 0 :: ¬∀r.B

1 :: ¬B ; Γ ′1

1 :: A

1 :: ¬(A u ¬B)

1 :: ¬A

1 :: ⊥

(⊥)

(t)

1 :: ¬¬B

1 :: B

1 :: ⊥

(⊥)

(¬)

(t)

(∀•∼)

(∀)

(∃)

2 :: ¬B ; Γ ′2

2 :: A

3 :: A

3 :: ¬(A u ¬B)

3 :: ¬A

3 :: ⊥

(⊥)

(t)

3 :: ¬¬B

3 :: B

(¬)

(t)

(∀•∼)

(∀)

(∀)

(∃)

(u)

Γ ′1 = add (0, 1) to Σ and 1 to min≺Σ(0); Γ ′2 = add (0, 2) and (0, 3) to Σ, (3, 2) to ≺ and 3 to min≺Σ(0)

Fig. 3. Visualization of an open tableau for a satisfiable concept.

From the open tableau in Figure 3 one can extract the preferential interpre-
tation P as depicted in Figure 4. (In Figure 4 the understanding is that 3 ≺ 2
and that 0 is incomparable with respect to ≺ to the other objects in the domain.)

We are now ready to state the main result of this section. (The proof of
Theorem 1 is analogous to that by Britz and Varzinczak in the modal case [8]
and we do not state it here.)
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P :

•3 {A,B}

•2 {A}

• 0 {}

Fig. 4. Preferential interpretation P constructed from the tableau in Figure 3.

Theorem 1. C ∈ L̃ is preferentially satisfiable if and only if there is an open
(saturated) tableau for C.

It can easily be checked that in the construction of the tableau there is
only a finite number of distinct states since every concept generated by the
application of a rule is a subconcept of the original one. Therefore we have a
decision procedure for our enriched description logic.

It is well-known that satisfiability checking for the description logic ALC is
pspace-complete. It is not that hard to see that the addition of ∀•∼ and ∃•∼ to the
concept language does not affect the space complexity of the resulting tableaux.
To see why, if the concept at the root of the tableau is C, and |C| = m, i.e.,
m is the number of symbols occurring in C, then the space requirement for
each label is at most O(m). Since there exists a saturated tableau with depth
at most O(m2), the total space requirement is O(m3). In summary, in spite of
the additional expressivity brought in by the introduction of preferential role
restrictions, we remain in the same complexity class as that of the logic we
started off with.

Finally, the tableau system we have just introduced checks only for concept
satisfiability and therefore no TBox information is assumed. From the perspec-
tive of knowledge representation and reasoning it becomes important to check for
concept satisfiability with respect to background knowledge provided in the form
of a TBox and (possibly) an ABox. Fortunately our tableau calculus can easily
be adapted to take care of this need. For instance, satisfiability with respect to
a TBox can be achieved with the addition of the following rule [13]:

(TB)
n :: E

n :: E u
d

CvD∈T (¬C tD)

The rule (TB) is the only one that does not have the subconcept property,
but it is not hard to see that it does not affect decidability of the method.
Complexitywise, since TBox entailment in ALC is exptime [13], and given our
discussion above, one can expect entailment with preferential role restrictions to
remain in exptime, in particular if we require rule (TB) to be applied exactly
once per node, which avoids an extra exponential blow up. A thorough analysis
of complexity issues, as well as a study of proof strategies and optimizations, are
beyond the scope of the present paper and we leave these for future work.
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5 Reasoning with ABoxes

In the previous section we showed how to perform preferential TBox reasoning,
and provided a tableau system for computing preferential TBox entailment. In
this section we investigate what happens when we include ABoxes. Let NI be
a finite set of individual names. An ALC ABox A is a finite set of assertions of
the form C(a) where a ∈ NI and C ∈ L̃. We extend the preferential interpre-
tation function ·P of Definition 1 to include mappings from individual names to
elements of the domain ∆P in the standard way: for every a ∈ NI , aP ∈ ∆P .
The satisfaction of (extended) ABox assertions is then defined as usual:

• For a preferential interpretation P, and for C ∈ L̃ and a ∈ NI , P  C(a) if
and only if aP ∈ CP .

An extended ALC knowledge base K is a tuple 〈T ,A〉 where T is an extended
TBox and A is an extended ABox. Henceforth we omit the word “extended”
when referring to extended ALC knowledge bases, TBoxes and ABoxes. We
sometimes abuse notation by referring to K = 〈T ,A〉 as the set T ∪ A.

Given a knowledge base K, the preferential models of K is the set of preferen-
tial interpretations PM (K) := {P | P  α for every α ∈ K}. K is preferentially
satisfiable if it has a preferential model. Definition 3 then applies without change
also to preferential entailment from knowledge bases.

Example 3. Let T be the TBox given in Example 2 and consider the ABox
A = {PrivateLawyer(sam),∃hasClient.>(sam)}. The knowledge base K = 〈T ,A〉
preferentially entails the ABox statement ∃hasClient.PayingClient(sam). That is,
if we know that Sam the private lawyer has a client, we can conclude that he
has a paying client. In fact, in line with the reasoning exhibited in Example 2,
if we replace the statement ∃hasClient.>(sam) in A with the stronger statement
∃hasClient.¬PayingClient(sam), the resulting knowledge base is preferentially sat-
isfiable, and preferentially entails ∃hasClient.PayingClient(sam). In other words,
given that Sam the private lawyer has a non-paying client, we can also conclude
that he has a paying client.

At first glance, preferential entailment for knowledge bases may seem to pro-
vide appropriate results. However, closer inspection reveals that preferential en-
tailment for knowledge bases sometimes gives counterintuitive results. Consider
the knowledge base K = 〈T ,A〉 where T = {Lawyer v ∀•∼hasClient.PayingClient}
and A = {Lawyer(sam), hasClient(sam, peter)}. From this we would like to (de-
feasibly) conclude the statement PayingClient(peter). But is easy to see that
preferential entailment does not sanction this conclusion. The issue is that we
need individuals to be as typical as is allowed by the knowledge. For example,
the reason why PayingClient(peter) is not entailed by K is because there are some
preferential models of K in which Peter is not a paying client, and is therefore
not one of Sam’s normal clients.

To rectify this, we introduce an ordering on the preferential models of a
knowledge base. Intuitively, a preferential model P1 of K is at least as preferred
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(at least as low down in the ordering) as P2 if (i) it agrees with P2 everywhere
except on the denotation of individual names, and (ii) all names in P1 denote
objects that are at least as low down in the ordering as in P2.

Definition 14. Given a knowledge base K, we define the binary relation �K on
PM (K) as follows: P1 �K P2 if and only if ∆P1 = ∆P2 , CP1 = CP2 for every

C ∈ L̃, rP1 = rP2 for every r ∈ NR, and aP1 �P1
aP2 for every a ∈ NI . 3

It is easily verified that �K is a weak partial order (i.e., it is reflexive, anti-
symmetric and transitive). Moreover, since all preferential interpretations are
well-founded, it follows that �K is also well-founded. Let min�K PM (K) =
{P ∈PM (K) | P ′ 6�K P for every P ′ ∈PM (K) s.t. P ′ 6= P}.

Definition 15. Let K be a knowledge base and α a (TBox or ABox) statement.
α is said to be minimally preferentially entailed by K, written K |=� α, if and
only if P  α for every P ∈ min�PM (K).

It can now be verified that the statement PayingClient(peter) is minimally
preferentially entailed by the knowledge base in Example 3. To see that this is a
defeasible conclusion, note that if we add the statement ¬PayingClient(peter) to
the knowledge base in Example 3, the statement PayingClient(peter) is not mini-
mally preferentially entailed by the new knowledge base (and the new knowledge
base is preferentially satisfiable).

6 Concluding Remarks

We conclude with a comment on the expression of defeasible subsumption state-
ments [4, 5, 7] in terms of defeasible universal restrictions. Given C,D ∈ L, a
statement of the form C @∼D is a defeasible subsumption statement and is read
“usually C is subsumed by D”. The connective @∼ is meant to be a defeasible
counterpart of v. A preferential interpretation P satisfies a defeasible subsump-
tion statement C @∼D, written P  C @∼D, if and only if min≺P (CP) ⊆ DP .

For every concept C ∈ L and preferential interpretation P, we can define in
P its left cylindrification rC in the following way:

rC := {〈x, y〉 | x ∈ ∆P and y ∈ CP}.

Practically, rC is the largest role r definable in a preferential model P such that
P  > v ∀r.C. It follows that, for every C,D ∈ L, P  C @∼D if and only if
P  > v ∀•∼rC .D.

The implications of this connection between defeasible subsumption and de-
feasible universal restriction requires further investigation. Other future work
include extension of the tableau procedure to minimal preferential entailment.

3 Note that �P1 is the weak partial order obtained from ≺P1 .
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