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Abstract—The current trend in balance calibration-matrix 

generation is to use non-linear regression and statistical methods. 

Methods typically include Modified-Design-of-Experiment 

(MDOE), Response-Surface-Models (RSMs) and Analysis of 

Variance (ANOVA). These methods are used to reduce the 

number of calibration loads, to identify relevant calibration 

matrix coefficients, and to avoid or eliminate invalid or 

detrimental coefficients. The methods are currently focused on 

the balance loading scheme and the curve-fitting processes. They 

do not take into account the load dependent uncertainty inherent 

in the calibration loads, nor do they estimate the uncertainty of 

the balance when installed in a wind tunnel. 

This paper proposes a simulation approach which extends the 

matrix generation process to take into account both the 

uncertainties of the applied calibration loads as well as the 

uncertainty of the electrical response of the balance to these 

loads. Further, calibration uncertainties are propagated by 

simulation from calibration through to balance installation to 

produce uncertainties which may be expected in a wind tunnel. A 

Performance Weighted Efficiency (PWE) parameter is defined 

and used to select the best calibration matrix with respect to 

optimum in-tunnel balance performance.  It is proposed that the 

PWE parameter, either in this form, or with modification, may 

be an effective balance comparison parameter. 

Keywords— wind tunnel; balance; calibration; uncertainty; 

I. INTRODUCTION  

 Current internal balance calibration methods remain 
varied. These methods range from the determination of 
calibration coefficients using an OFAT (One Factor at a time) 
approach combined with a large calibration load set, to various 
levels of statistical analysis and MDOE approaches [1]. Work 
has been done on the application of neural network theory as 
well as corrections for the non-elastic behavior of the balance 
structure [2].  

MDOE methods are directed at obtaining an optimum 
balance loading scheme that can be applied to effectively 
determine the coefficients of a pre-defined calibration model: 
this model may be linear, quadratic or cubic. The most general 

of these models is the model recommended by the AIAA and 
reproduced below in (1) [2].  
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Ri is the electrical response of the i’th component, Fn is the 
n’th load component and the a,b,c and d’s are coefficients 
which need to be determined in the balance calibration process.  

 The linear, quadratic and cubic terms are easily identified 
in (1). The additional modulated terms are included to give a 
degree of functionality to balances whose characteristics are 
dependent on the sign of the applied load(s). In this paper, only 
the linear and quadratic terms are considered. Equation (1) then 
reduces to: 
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This reduces the number of coefficients that need to be 
determined for each of the six balance components, (Fi), from 
96 to 28. Note that (1) is a generalized formulation. Only a sub-
set of this may be valid for any particular balance. The 
calibration process must therefore not only determine the 
coefficient values but also the best sub-set of valid coefficients. 
Determination of the coefficient values is usually done by 
collecting a range of responses to applied loads for the balance 
in a calibration rig. A nonlinear least squares fit of this data, 
using a Gauss-Newton regression scheme for example, is used 
to determine the values of the coefficients. 

RSM and MDOE are useful techniques for comparing 
calibration loading schemes prior to actual calibration. 
Numerous statistical approaches enable, inter alia, the 
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identification of invalid calibration coefficients (e.g. co-linear 
coefficients) [3], the identification of coefficients with high 
Variance Inflation Factors [4] and ANOVA to further 
determine the best set of coefficients for the given data [5][[3]. 
Although these statistical techniques remain necessary tools, 
they are not considered by the author to be comprehensive. 
Some aspects requiring further investigation are described 
below: 

Current statistical techniques are geared towards obtaining 
a set of valid coefficients which will produce the best “curve-
fit” for a set of supplied data. Little attention is given to 
ultimate balance performance in a wind tunnel system. The aim 
of MDOE is to determine a small but adequate set of 
calibration loads for a particular calibration model, however, 
statistical analysis will always demand as much data as 
possible. This results in conflicting requirements.  

Although the statistical techniques are sound, there still 
remains an element of subjectivity which, if reduced rigorously 
to an objectively sound result, requires a substantial amount of 
expertise and costly analysis work. The uncertainty of the 
applied loads may be included in the current statistical analysis 
techniques, but it must be included as an average representative 
value. The load dependent nature of the calibration load 
uncertainties has yet to be included in current statistical 
approaches. The load dependency of the uncertainty leads to a 
fundamental question regarding the relevance of estimated pure 
error and generalized variance used in statistical analysis and 
load plan design respectively. The uncertainty of the balance 
electrical response to the applied loads similarly needs to be 
included in the analysis. 

Current techniques do not implicitly require reference to 
any standards. Methods for estimating error accumulation, 
originating in secondary standards, and propagating through 
the calibration process to the wind tunnel, do not exist in 
practice.  

An inherent assumption is that a valid calibration matrix 
having back calculated errors (BCE’s) with the lowest standard 
deviation is the best possible matrix. This drives the inclusion 
of higher order terms in the search of improving the BCE 
standard deviation. It should be kept in mind that, in a 
statistical analysis, a lack-of-fit test is performed relative to the 
pure error, which is in turn estimated using replicates. It is 
known that the pure error is load dependent. Therefore, using 
low load-level replicates may result in a low estimate of the 
pure error and result in a higher order model with low BCE’s. 
Using high load-level replicates will overestimate the pure 
error and result in a lower order model with high BCE’s and an 
apparently worse balance. The question arises as to the validity 
of using any single-value as an estimate of pure error. 

The uncertainty contribution that higher order terms 
generate in the wind tunnel is not considered in current 
approaches. 

The absence of a comprehensive approach to the calibration 
of an internal balance is best illustrated by the absence of a 
universally accepted metric for the comparison of balances. 
Ewald [6] suggested an equation for the specification of 
balance accuracy and repeatability. 
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Where: 

                   =Allowed error in component “i” (2σ) 
Fi,max       = Nominal balance range in component “i” 
Fi,act                =Actual load in component “i” 
A      =Global accuracy coefficient related to                                                            
nominal  range 
B                =Global accuracy coefficient related to 
actual  load 
ci  = accuracy coefficient of component “i” 
di                = accuracy coefficient of component “i” 
Fn                = Actual load of component “n” 
Fn,max   = Nominal load range of component “n” 
 

Conditions for the use and values used in this formula are 
extensively prescribed. This formulation has been tested and 
modified and inter-tunnel comparisons have been performed in 
Europe. Hufnagel [7] looks at the application of this 
formulation and concludes that although this method of 
expressing the expanded uncertainty for a wind tunnel balance 
is possible, the determination of a commonly accepted set of 
coefficients to be used in the formulation remains problematic. 
He also suggests the use of an uncertainty matrix to generate 
uncertainties for each specific load case since the uncertainties 
are load-dependent. He states that there is no known way of 
achieving this. One aspect is clear: the use of the word 
“accuracy” as used in all of these formulations does not 
provide for the general definition of accuracy as given in AIAA 
Standard S-071-1995 [8], namely, that “The word accuracy is 
generally used to indicate the closeness of the agreement 
between an experimentally determined value of a quantity and 
its true value”. 

Other approaches to the generation of an accuracy 
specification for a balance have been suggested [9]. These are 
similar in nature to that described by (3).  

Calibration rig load uncertainties have been determined by 
the author according to the AIAA Standard S-071-1995 [8] 
[10]. The propagation of bias limits into a computed result such 
as: 
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and the quantities   
 and   

  are the portions of the bias limits 
for measurements of variables    and     that arise from the 
same sources and are presumed to be perfectly correlated [11], 
and the bias limits    are estimates at 95-percent confidence of 
the magnitude of the bias errors in the measurements of the 
separate variables    [8]. 

 The propagation of precision limits    , is slightly simpler 
but still retains a dependence on the determination of the partial 
derivatives,   . The final uncertainty is then a combination of 
the bias and precision according to: 
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The use of this approach has been found to be analytically 
difficult to apply. That is, an accepted approach to the 
propagation of the load application uncertainties into a 
calibration matrix and its subsequent effect when used in a 
wind tunnel environment has yet to be agreed upon. At best, 
any approach will be analytically or computationally 
cumbersome.  

This overview of current approaches to matrix generation, 
balance uncertainty, and accuracy estimation, suggests that a 
single coherent system which caters for all of these 
requirements in an end-to-end manner has yet to be developed 
and demonstrated.  

It was this somewhat fragmented approach that led the 
author to investigate the use of a simulation which follows the 
data path from fundamental calibration rig uncertainties 
through to the final use of a balance in a wind tunnel. To this 
end it is assumed that the elemental uncertainties of the 
calibration system are known. These values are a combination 
of bias and precision as determined using (5).  

II. THE APPROACH AND SOME ILLUSTRATIVE 

RESULTS  

Fig. 1 illustrates a balance cycle from calibration through to 
utilization in a wind tunnel. Two distinct systems are 
illustrated; the calibration system and the wind-tunnel system. 
The problem is one of propagating elemental uncertainties 
which originate in the calibration system, through the complete 
calibration process, to determine uncertainties which will be 
applicable to a balance installed in the wind tunnel system. In 
order to do this, uncertainties accumulated in the balance 
calibration process must be reflected in the calibration matrix, 
which is moved, along with the balance, from the one system 
to the other. 

It is possible to simulate the balance calibration process in 
such a way as to include the accumulated effect of all of the 
elemental calibration uncertainties within the calibration 
coefficients. It is then possible to transfer these uncertainties 
into the wind tunnel system, and then add to them additional 
uncertainty due to the difference in systems, such as, for 
example, uncertainties in the wind tunnel data acquisition 
system. 

When installed in the wind tunnel, the wind tunnel system 
will compute, (using a matrix of calibration coefficients, Mi), 
and report a load for a given set of balance voltages generated 
by the balance under a “perfect” or actual aerodynamic load. 
Uncertainties due to model inaccuracies, model misalignment, 
the wind tunnel control system and so forth are not included. 
The focus at this point is the uncertainty of the reported balance 
loads. 

The uncertainty of the value of a load reported by an 
installed balance can be estimated by generating numerous 
loads through a range of matrices, (Min), whose coefficients 
collectively represent the calibration matrix, (Mi), and its 
uncertainty. In simulated in-tunnel application, the balance 
response voltages can be varied randomly within their expected 
uncertainties and be randomly used in combination with these 

matrices, (Min), to obtain total load uncertainties which are a 
result of both the calibration and the wind tunnel systems. 

If many random balance loads and their uncertainties are 
computed using several candidate polynomial functions, the 
matrix of coefficients for the polynomial function giving the 
lowest wind tunnel load uncertainties is considered to be 
preferable. In addition, if the starting point of such a simulation 
consists of elemental uncertainties, each of which can be traced 
to a standard, the final uncertainty will be a good estimate of 
balance accuracy.   

In Fig. 1, the points at which MDOE, RSM and ANOVA 
are applied to matrix generation are indicated. FMi-BCE 
indicates a balance load reported by the balance as calculated 
using a calibration matrix which has been generated using 
these techniques alone. 

 

Figure 1.  Seperate calibration and application environments (systems). 

 

A. Elemental Uncertainties 

The calibration system available for the evaluation of the 
proposed simulation scheme is a simple gravitational system. 
The calibration system simplicity makes inclusion of elemental 
uncertainties in the load calculations relatively easy and 
computationally fast. A φ12mm balance calibration body is 
illustrated in Fig. 2.  
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Figure 2.  Calibration body for a φ12mm balance. 

In this case the elemental quantities are gravity, the applied 
masses, the linear and angular dimensions of the calibration 
body and the leveling instruments. This particular calibration 
body requires an additional estimate of bearing friction which 
is not an elemental quantity. With the exception of the bearing 
friction, all quantities are easily related to a traceable standard.  

Each elemental, (dimension, mass etc.), can be expressed as 
a series of normally distributed random values, whose 
collective mean and standard deviation matches the mean and 
standard deviation obtained from a credited metrology facility. 
These values are used to obtain a range of possible actual loads 
that could have been applied to the balance for each and every 
nominal calibration load. Fig. 3 illustrates the expansion of a 
nominal 211.73 Nm pitching moment load into 1000 possible 
loads which might have actually been applied. This range of 
possible load values is a direct result of the accumulation of all 
of the elemental calibration loading uncertainties. The balance 
electrical response to this load can be similarly expanded using 
data on the balance signal uncertainty for each channel. In this 
case there are six responses. 

 

B. Static Force Uncertainty 

Loads generated in the wind tunnel are actual applied 

aerodynamic loads. Therefore, from the balance perspective, 

these aerodynamic loads have no error. (Uncertainties arising 

from model misalignment, model inaccuracies or any wind 

tunnel equipment are not relevant. The focus here is only on 

the uncertainty of the load reported by the balance.) A Monte 

Carlo simulation is used with the expansion of elemental 

quantities to include the calibration system uncertainties in the 

calibration matrix in the form of coefficient uncertainties.  

When installed in a wind tunnel, uncertainties arising from the 

installed balance signal, (sourced from both the balance itself 

and the wind tunnel data acquisition system), will propagate 

through the matrix of calibration coefficients. The propagation 

of these signal uncertainties can be included in the total 

uncertainty estimate by, once again, generating a normally 

distributed expansion for each signal and then passing them 

through a random selection of coefficient matrices (Min). The 

resulting computation results in numerous possible loads being 

computed for each balance output voltage. The uncertainty of 

the reported load is captured by the spread of the resulting 

computed loads.  

Fig. 4 shows the suggested simulation path and illustrates the 

difference between this end-to-end simulation approach and 

the use of MDOE, RSM and ANOVA alone as illustrated in 

Fig. 1. 

Figure 3.  Example of applied load and electrical response expansions. 

A characteristic of this approach worth mentioning is that 

the simulation compliments DOE, RSM and ANOVA 

methods in such a way that it promises to address some, or all, 

of the deficiencies discussed in the introduction in a single 

process. The three outputs labeled FMi-BCE, FMi-FULL and 

FMi-OPT-PWE, indicate loads calculated through three different 

calibration matrices. In this paper only the FULL and OPT-

PWE matrices are compared in any detail.  

 
Figure 4.  Simulation path for PWE driven matrix generation. 
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An overview of a simulation scheme that permits the 

estimation of installed balance uncertainty has been described. 

It is also a useful tool for the following: 

 the evaluation of the effect of load plan design on 

balance uncertainty 

 the improvement in calibration equipment by the 

identification of fundamental calibration uncertainties 

which most affect balance uncertainty 

 the provision of an alternative tool for the 

examination of current statistical approaches and 

methodologies for matrix generation 

 the provision of an alternative tool for the 

examination of uncertainty propagation as described 

by the AIAA [5]. 

 the use of installed uncertainty as a balance 

performance metric 

 automated matrix generation 

 

Instead of discussing each of these aspects in detail, the 

use of the simulation scheme as a tool for automated balance 

calibration matrix generation is introduced. Note that there is a 

feedback loop labeled “PWE” in Fig. 4. The PWE parameter 

is a metric which facilitates the selection of an optimum 

matrix for some given set of calibration data. This is discussed 

in the following paragraphs. 

C. Matrix Scanning 

One approach to matrix generation [12] includes either a 

“build-up” of a polynomial coefficient calibration matrix from 

linear to nth order using ANOVA to evaluate the relative 

significance each added coefficient.  Another method is to 

start with a large model, say a third order model (96 

coefficients per component), and then to evaluate the relative 

significance of removing coefficients from the model until a 

significant set of coefficients has been obtained. Both of these 

approaches are affected by the fact that the inclusion or 

exclusion of any coefficient affects the significance of the 

other coefficients. The order of exclusion or inclusion of 

coefficients is therefore relevant. In this paper an alternative 

approach is suggested.  

It has been described how a simulation can be used to 

propagate elemental calibration uncertainties into coefficient 

uncertainties. This uncertainty data presents an opportunity to 

develop a polynomial model using a more structured approach 

than either of those described above. Consider the ratio of the 

uncertainty to the mean value of a coefficient. Coefficients 

with small ratios are of more value than those with large 

ratios. Since the uncertainty and the mean value of a 

coefficient act on the same balance voltage(s), terms with very 

high ratios, (>>1), will contribute more to the computed load 

uncertainty than to the computed load value. Thus, starting 

with an infinitely large coefficient uncertainty-to-value ratio 

(C), coefficients may be discounted depending on the selected 

value of C. A matrix of coefficients (Mc) is then a matrix 

which contains only those coefficients whose uncertainty-to-

value ratio is below a certain threshold given by the parameter 

C. A range of C values can be used to generate a range of 

candidate polynomials for comparison. 

D. The PWE Parameter 

Once a range of calibration matrices, (Mc), have been 

generated, they need to be comparatively evaluated. In order 

to do this, the PWE metric is proposed. The following data is 

available from the simulation: 

 

 The standard deviation of the curve fit Back 

Calculated Errors (BCEs) for any generated matrix. 

 A mean representative uncertainty for each 

component over a range of random loads.  

 Calculation of the confidence interval (CIrand) at any 

random applied load additionally provides a quality 

of fit metric for off-calibration point loads.  

The PWE metric is then formulated as: 

 

PWE (Performance Weighted Efficiency) =  

     The standard deviation of the BCEs 

  + The computed uncertainty for N loads (UNC-tot) 

  + The computed Confidence Interval for N loads (CIrand ). 

                                                                                                (6)    

The N loads are chosen to be different from the calibration 

loads and should be randomly spread throughout the 

calibration space. Since the uncertainties and confidence 

intervals are different for each random load, the values used in 

(6) are defined as: 

 

   UNC-tot = Mean+2σ                                                           (7)                                                                                                                        

   CIrand    = Mean+2σ                                                           (8) 

                                           

In the results presented in the following paragraph, the 

computed balance uncertainty already includes a contribution 

from the random load confidence intervals. The addition of 

this data again in the PWE function results in a weighting in 

favor of the confidence interval data.  

E. Test Application 

1) The balance and calibration data set. 

As an example, matrix generation for a φ12mm balance is 

considered. This balance was calibrated both at the CSIR and 

at an independent wind tunnel facility on two fundamentally 

different calibration systems. The calibrations were in good 

agreement, both in terms of the calibration BCE standard 

deviations, and the values of the calibration coefficients.  

Calibration BCE data is given for the in-house and 

independent calibrations in TABLE I. The difference in axial 

force (AF) values is attributed to hysteresis. In the 

independent calibration full positive and negative loading was 

applied to the AF component. In the CSIR calibration, loading 

was applied in only one direction. This results in lower scatter 

due to a lower spread of hysteresis. In spite of this difference, 

the calibration data generated at the CSIR, and used in this 

example, is considered not to contain information which is 
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incorrect to the extent that it would directly result in 

misleading or incorrect results from the simulation analysis. 

TABLE I.   BCE DATA FOR Φ12MM BALANCE.  

 

BCE data for 12mmK balance 

 (1σ - % calibration Full Scale)  

 

INDEPENDENT CSIR 

NF 0.06 0.07 

PM 0.10 0.07 

SF 0.06 0.06 

YM 0.12 0.12 

RM 0.99 0.98 

AF 0.68 0.58 

 

2) Fundamental calibration uncertainties. 

Although the calibration masses used at the CSIR are 

calibrated to a secondary standard, the calibration body itself 

was not fully measured-up at the time of this writing. 

Representative uncertainty data were used in the absence of 

formally determined data. This data is given in TABLE II.  

Signal uncertainty attributable to the calibration data 

acquisition system and balance was assigned a value of ±2µV. 

The same value was used for the wind tunnel data acquisition 

system. 

TABLE II.  CALIBRATION SYSTEM UNCERTAINTY DATA.  

uncertainty-1σ Item 

0.00001 10kg mass uncertainty in kg 

0.000002 2kg mass uncertainty in kg 

0.0002 Loading station #1 - dimension in meters 

0.0002 Loading station #10 - dimension in meters 

0.0002 Roll station #11 dimension in meters 

0.0002 Roll station #12 dimension in meters 

0.0375 Calibration body radius in meters 

0.1 Pitch leveling in degrees 

0.1 Roll leveling in degrees 

0.1 Axial Force cable leveling in degrees 

0.1 Axial Force cable yaw angle in degrees 

0 Axial force pulley friction 

 

1) Feasible limits. 

Expanded calibration load uncertainties, such as that 

shown in Fig. 3, enable the generation of bounding values on 

what might be expected from a calibration. This can be done 

prior to any actual calibration and can be a useful tool for 

calibration system improvement. Consider the maximum 

deviation from the mean and assume this to be the final 

resulting curve fit error at this load point, (and similarly for all 

other calibration loads). It follows that, using these maximum 

values as an upper bound of what the final curve fit error 

might be, an upper bound of the calibration BCE’s can be 

calculated. Several other options are also possible. For 

example, a random selection of single data points may be 

taken from each calibration load’s expanded data, or, the 

standard deviation of the variance for any given load can be 

used as an estimate of what the final calibration BCEs might 

be.    

Several horizontal lines are visible in the following 

simulation results. Each of these represents an estimate of 

calibration BCEs using a range of possible values as have 

been described above.  These curves are labeled 2smax, 

2srand and 3srand. These are not discussed further except to 

comment that it is at least expected that the final data for the 

UNC-tot, CalBCE and CIrand values fall within, or close to, 

these predictive lines. 

A range of C values were used to generate a set of 

candidate matrices. It should be noted that the last point on the 

x-axis, in the data plot shown in Fig. 5, is actually an infinite 

ratio (C=1e99) – not a ratio of 30 as is used on the plots. The 

plotting limitations are obvious. 

A value of C=0.05, for example, is interpreted in the 

simulation as a request to retain only those coefficients whose 

uncertainty is less than 5 per cent of their mean value. It 

should be noted that because the inclusion or exclusion of any 

coefficients directly affects the values of the other coefficients, 

the 5 per cent level of coefficient retention needs to be 

approached incrementally. 

 

2) Simulation Results. 

The plots shown in Fig. 5, 6 are the same, except that the 

region above a C value of 5 on the x-axis has been omitted in 

the second plot.  The only plotted data discussed here are the 

PWE (Performance Weighted Efficiency), CalBCE (Back 

calculated Curve fit Errors), CIrand (Confidence Interval of 

random off-calibration loads) and UNC-tot (uncertainty 

obtained for a number of random loads).  

In Fig. 6 a region with a significantly lower PWE value 

can be seen. The region of interest is below a C value of 1 on 

the horizontal axis. This is reasonable since it is intuitively 

expected that a meaningful coefficient will have a mean value 

at least greater than its uncertainty. In this case the lowest 

PWE value occurs if only those terms whose variance is 

between 5 and 10 per cent of the terms value are retained. Fig. 

7 shows this point of minimum PWE value. It can be seen that 

although allowing the inclusion of more coefficients in the 

calibration model, (increasing C), will result in a decreasing, 

and hence improving, BCE value, it also results in increasing 

the final balance uncertainty (UNC-tot). This also occurs in 

the off-calibration point confidence intervals (CIrand). This is 

a compelling indication that calibration coefficients which 

give the best curve-fit of the calibration data, (as determined 

using the curve-fit BCE’s as the metric), do not necessarily 

result in the best operational calibration matrix. 
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Figure 5.  Data for a C scan of a φ12mm balance (Cmax=1e99). 

 

 

Figure 6.  Data for a C scan of a φ12mm balance (Cmax=5). 

 
Figure 7.  Optimum C for φ12mm balance (Normal Force). 

3) Comparison of Some Calibration data. 

Some comparative data is supplied in TABLE III. The 

“FULL” matrix is a 26 term matrix, (C=1e99), whilst the 

“OPT” matrix is one that has been reduced using the C value 

at the point of minimum PWE.  

The higher value of BCE for normal force (NF - full 

matrix) when compared with the data in TABLE I can be 

explained by additional on-going work on matrix generation. 

This work is not pertinent to this paper. The improvement in 

predicted balance uncertainty when using a PWE optimized 

matrix can be seen in TABLE III.  

TABLE III.  COMPARATIVE DATA FOR NORMAL FORCE.  

12mmK Balance - (Small Cal. Errors) 

OPT. MATRIX   FULL matrix(26) 

BCE(1σ) 

[%FS] 

UNC(2σ) 

[%FS] Coeffs. 

 

BCE(1σ) 

[%FS] 

UNC(2σ) 

[%FS] Coeffs. 

0.16 0.09 5 
 

0.11 0.61 26 

 

The increase in BCE value for the “OPT.MATRIX” 

compared to those for the “FULL matrix(26)” is considered 

small relative to the improvement in operational uncertainty.  

Note also that the UNC(2σ) uncertainty for the “OPT” matrix 

is less than the calibration  BCE(1σ) value. The reverse is true 

for the “FULL” matrix. The reason for this is that the 

calibration BCE data contains all the actual calibration rig 

loading errors. The UNC value however has no loading error: 

it contains only contributions from the calibration errors 

reflected in the matrix terms, the installed balance signal 

uncertainty, and the confidence interval data obtained from a 

range of simulated random loads. “Actual” calibration loading 

error has been eliminated except for its contribution to 

uncertainty of the coefficients – and this effect has been 

minimized by model selection. 

 

4) Wind tunnel test data. 

Comparisons such as that provided in TABLE III are 

interesting and can be used to further investigate balance 

calibration matrix generation; however, the final performance 

or usefulness of this alternative matrix needs to be 

demonstrated on real wind tunnel test data. In the following, 

only the axial force component is compared. This is done 

because the test data that was made available was a roll polar 

of an almost symmetrical body at low pitch angles. The 

resulting loads are therefore low. The result is that, apart from 

the differing uncertainty bands for each of the matrices, the 

computed loads are practically identical for all the 

components. Axial force (AF) loads are also low, 

(approximately 8% of balance full scale), but differences are 

discernible. 

Fig. 8 shows the AF data processed through both the full 

and PWE-optimized matrices. Uncertainty values are 

computed at each data point and plotted as bands about the 

data. 

For the full matrix, the uncertainty band is around 0.25N 

wide and for the PWE matrix the band is around 0.1N wide. A 

total load variation during the polar of around 0.4N is 

indicated using the full matrix, whist it is closer to 0.3N for 

the PWE matrix. (Data is read from the graph at data points 

just beyond 1.4e4). These differences are small, but it must be 

remembered that they are generated at a maximum load level 

of less than 8 percent of the balance full scale value of 100N. 

The total variation in load during the polar is less than 0.7 

percent. 
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Figure 8.  Axial force (AF) loads computed using a full and a PWE-
optimized matrix.  

The optimized AF uncertainty in this test region can be 

expressed as approximately +/-0.05% of the balance AF full 

scale. The standard deviation of the calibration BCEs for AF 

was reported as 0.71% of full scale. The significantly larger 

BCE value can be attributed to numerous factors. The most 

pertinent of these is the fact that the uncertainties calculated 

here are load dependent. The load dependent uncertainty 

results in low uncertainties at low loads. Significantly higher 

values of AF uncertainty can be expected at higher AF loads. 

The absence of any direct relationship between BCE values 

and uncertainty values is important.  

Finally, it is interesting to see that the optimized matrix 

data falls either on, or just inside, the upper uncertainty band 

of the full second order matrix. 

 

5) The PWE parameter as a metric. 

By considering the plots in Fig 4, 5 and 6, the effectiveness 

of the PWE parameter as a general balance metric becomes 

apparent. The parameter is the sum of the curve-fit back 

calculated errors (BCE), a value for the estimated installed 

balance uncertainty (UNC-tot), and a 95% confidence interval 

value (CIrand). The use of BCE alone to measure the 

effectiveness or quality of a calibration is clearly misleading 

because in this case it will result in a considerably larger 

operational uncertainty. An inadequate loading scheme will 

cause high values of CIrand. Over- or under- fitting of the data 

will also result in raised values of CIrand. In the absence of this, 

under-fitting will be indicated by the BCE. Thus, provided that 

the fundamental calibration uncertainties are determined and 

related to a secondary standard, no manipulation of the final 

value of the PWE function can be performed. The following 

characteristics of the PWE metric generated by this approach 

are noted: 

• generation of the PWE metric requires a 

reference to secondary standards 

• Manipulation or interpretation is difficult or 

impossible – it is objective 

• It is calibration system independent - it depends 

only on calibration load and balance signal 

uncertainties 

• It can be automated; this  implies that the need for 

human judgement  is eliminated 

• It provides a direct form of uncertainty matrix for 

the generation of on-line uncertainty data for each 

load point at low computational cost.  

 

It should be noted that this simulation approach is not 

intended to replace the currently used statistical methods. It is 

an additional end-to-end process intended to augment and 

assist in the further development of existing methods. The 

simulation process as presented here still requires additional 

procedures to internally identify aliasing or co-linearity for 

example. Examination and planning of calibration load 

schemes still relies heavily on RSM and DOE techniques. In 

fact, the calibration load plan and the calibration system, (and 

of course the balance itself), now become the only factors 

which can be used to improve the balance performance 

metric(s).  

 

III. DISCUSSION  

It often occurs with the proposal of any new approach that 

more questions are raised than are answered. This simulation 

approach is no exception.  

The first question the author was faced with was that of 

simulation size and computational time. To answer this, 

simulations were done with sizes ranging from 50 point 

expansions to 1000 point expansions. It was seen that after 

around 200 points there was no appreciable change in the 

simulation results.  

The question as to the effects of inadequately randomized 

data can only be answered by the statement that up to 1000 

random data points with a normal distribution having no 

repeats is achievable. Larger simulations may require 

additional attention to this aspect. The data presented in this 

paper used a 300 point simulation. This means that, at any 

single point, data is expanded to 300 random points, that 300 

matrices are generated for each (Mi) case, that 300 random 

loads were used in the estimation of balance uncertainty and 

so forth. A scan using the C value range 0.01,  0.05,  0.1,  0.2,  

0.3,  0.5,  0.7,  1,  2,  5,  8,  10,  15,  20 and 1e99 takes around 

2 to 3 hours on an Intel i5 processor in a laptop computer. The 

more detailed plots presented in this paper containing 75 C 

values are best generated overnight. 
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Because the data flow is simulated, aspects of the data may 

be investigated at any stage in the process. For example, 

identification of the terms removed for different values of C 

may be compared with computed parameters or with 

parameters from matrices generated using a statistical 

approach alone. The coefficients retained for each C were 

used to produce a table such as that given in Fig 9. Fig. 9 is a 

small section of Fig. 10 and is provided for clarity.  
The first two columns indentify a particular 

polynomial coefficient. The rows indicate the validity of the 
coefficients depending on the C value given in the topmost 
row. The next three columns show automatically selected 
terms for three different matrix generation schemes using 
statistics only. The first “Back” column is a backwards 
elimination scheme. The second is a forwards scheme and the 
last is a step-wise scheme [12]. In all schemes an Alpha of 
0.05 was used. Active coefficients have a unit value and are 
shaded, whilst invalid or eliminated coefficients are zero and 
have no shading. For example, a one percent uncertainty-to-
value ratio requirement for the coefficients, (or C=0.01), 
results in the retention of only the NF and SF coefficients. 

Similarly, a sixteen percent uncertainty-to-value ratio, (or 
C=0.16), results in the retention of ten coefficients. 

Fig. 10 shows the full C value scan with a plot of several 

parameters computed using the valid coefficients at each C 

value. Alignment of the graph with the table is approximate. 

The relevance and effect of each term may be investigated in 

plots such as these. The calibration coefficients for NF range 

from the full 26 term matrix, (FULL matrix), on the right hand 

side of the table, up to, and beyond, the optimum number of 

coefficients. On the upper end of the scale, (FULL matrix),  it 

can be seen that seven coefficients have very small values 

relative to their uncertainties and are removed at a C value of 

between 9 and 10. From the accompanying plot, the effect on 

the BCE value is seen to be negligible. Numerically, 

differences are seen only in the fourth decimal place. The 

effect on balance installed uncertainty, however, is to drop it 

from 0.65 percent to 0.28 percent. The primary driver of this 

drop in uncertainty is the improved confidence interval of the 

curve fit generated at random load points during the 

simulation. 

 
 

Figure 9. Sub-section of a coefficient validity map for a balance component. (normal force (NF)) 

Back Fore Step 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16

NF A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

PM B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SF C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

YM D 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

RM E 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

AF F 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NF.NF AA 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

PM.PM BB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SF.SF CC 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

YM.YM DD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM.RM EE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AF.AF FF 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NF.PM AB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NF.SF AC 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

NF.YM AD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NF.RM AE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NF.AF AF 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

PM.YM BD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PM.RM BE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PM.AF BF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SF.YM CD 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

SF.RM CE 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

SF.AF CF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

YM.RM DE 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

YM.AF DF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM.AF EF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CONST CONST 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Back Fore Step
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Figure 10.  A Coefficient validity Map and parameter plot as a function of C. 
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Towards the centre of the table in Fig. 10, in the C value 

range of 0.35 to 0.4, a set of coefficients most closely 

matching those obtained using the forward, backward or 

stepwise statistical approach is marked. Terms included in the 

simulation but excluded in the statistical approach are shaded 

(yellow). 

Two further significant drops in installed balance 

uncertainty can be seen at points around C=0.15 to 0.18 and 

C=0.1 to 0.13 respectively. The addition of the NF.AF cross-

coupling term can be seen to be the main source of the 

uncertainty jump at the latter location whilst the YM.RM 

cross-coupling term is the responsible term at the former 

location. It is interesting to see that both of these terms are 

included in the statistically generated model. 

The location of the minimum PWE value occurs at a C 

value of around 0.07. This C value identifies an optimal set of 

coefficients for NF, three of which are linear and two of which 

are quadratic. The quadratic terms are hierarchical in that their 

linear terms are also included. Non-linear components such as 

axial force (AF) and rolling moment (RM) generally contain 

numerous valid cross-coupling terms. 

“Bumps” in the plot of Fig. 10 prompted an additional 

investigation into the stability of the simulation. To this end, a 

simulation at a C value of 0.1 was repeated 10 times. It can be 

seen in Fig. 10 that, at some point close to this C value, the 

NF*AF cross-coupling coefficient is considered valid and is 

included.   

The results of repeated simulations at C=0.1 are shown in 

Fig. 11. The two bumps in the plot indicate that, due to the 

nature of the simulation, small variations prevent the 

identification of valid terms at very precise values of C. In this 

case the C value for a valid NF*AF cross-coupling coefficient 

is close enough to 0.1 to cause it to be included in two of the 

ten simulations. For the remainder of the data, the repeatability 

from simulation to simulation is sufficient to validate the 

inferences made thus far. 

Comparisons between statistically derived matrices and 

PWE derived matrices can also be investigated by performing 

a statistical evaluation of the PWE matrix. It should be noted 

at this point that the balance presented in this example is not 

of a particularly high standard. To some extent this was 

desirable because any techniques employed, either for matrix 

generation, or for accuracy estimation, should be capable of 

identifying such cases.  Standard error plots are provided 

below in Fig. 12 A and B for nf using a backwards term 

elimination scheme [12] only. Fig. 13 A and B are the same 

plots generated using terms as determined using the minimum 

PWE parameter approach. 

 

 
A.) PM=YM=RM=AF=0 

 
B.) PM=YM=AF=0  and  RM=-0.8Nm 

 

Figure 12. Standard Error for nf as a function of SF and NF using 
Backwards elimination. 

 

 
A.) PM=YM=RM=AF=0 

 
A.) PM=YM=RM=AF=0 

 
Figure 13. Standard Error for nf  as a function of SF and NF by the 

minimum PWE approach. 
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Figure 11.  Stability of repeated simulations. 
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The significant difference in the shape of these standard 

error surface plots, apart from the imposed load dependence in 

the PWE-optimized matrix, requires a more substantial 

explanation than is possible in this paper. 

 

IV. CONCLUSION  

 

A Monte Carlo simulation approach was used to model the 

propagation of uncertainty of a balance from calibration 

through to wind-tunnel installation. The Performance 

Weighted Efficiency (PWE) parameter is defined as a 

combination of the calibration BCEs, the installed uncertainty 

and the average 95% confidence interval for random loads 

throughout the calibration space as given in (6). The PWE 

parameter is further used as a metric to determine an optimum 

set of calibration coefficients based on predicted in-tunnel 

balance performance.  

The number of coefficients selected for optimum in-tunnel 

performance, as determined using the coefficient uncertainty-

to-value ratio (C) at the point of minimum PWE value, is 

generally fewer than are determined using current statistical 

methods. The inclusion of load-dependent uncertainty data 

and the effect on installed balance uncertainty plays a 

significant role in the selection of matrix coefficients. This is 

apparent when comparing standard error plots of a matrix 

generated using current statistical methods and a matrix 

obtained using the PWE metric. 

An additional and useful metric is defined as the ratio of 

the average confidence interval at many random points within 

the calibration space to the average confidence interval at 

calibration points. The difference in this ratio between a fully 

populated second order matrix and one that has been 

optimized is significant. 

Comparisons have largely been limited to a fully populated 

second order quadratic and a PWE optimized version of the 

same matrix. More extensive investigations involving the 

comparison of statistically derived matrices and PWE derived 

matrices are required.  

The simulation of uncertainty propagation in a balance 

from calibration to installation additionally provides a useful 

model for, inter alia, calibration system improvement, 

automated matrix generation, a basis for balance comparisons, 

the development of meaningful metrics, balance design 

investigations and the generation of direct-form uncertainty 

matrices. 

Using this simulation approach, attempts to align the 

different methodologies that are currently available can serve 

to promote a fuller understanding of internal wind tunnel 

balances and their accuracies. This increased understanding 

can be used to develop commonly accepted metrics and 

methodologies. In turn, this can only result in improved wind 

tunnel data quality.  
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