Electrochemical Deposition and Characterization of Platinum on Carbon Paper and Ni Foam

Eldah Louw, Mmalewane Modibedi, Leskey Cele, Kenneth Ozeomena and Mkhulu Mathe

13th Topical Meetings of the International Society of Electrochemistry

7–10 April 2013

Methanol Oxidation Mechanism

•
$$M + CH_3OH \rightarrow M-CH_3OH_{ads} \rightarrow M-CO_{ads} + 4H^+ + 4e^-$$
 (1)

•
$$M-CO_{ads} + H_2O \rightarrow M + CO_2 + 2H^+ + 2e^-$$
 (2)

• $CH_3OH + H_2O \rightarrow CO_2 + 6H^+ + 6e^-$ (3)

BARBIR, F. (2005). Elsevier Academic Pres.

Methanol Oxidation Mechanism

- $M + CH_3OH \rightarrow M-CH_3OHads \rightarrow M-CO_{ads} + 4H^+ + 4e^-$ (1)
- $M-CO_{ads} + H_2O \rightarrow M + CO_2 + 2H^+ + 2e^-$ (2)
- $CH_3OH + H_2O \to CO_2 + 6H^+ + 6e^-$ (3)
- M= Au, Co, Pd, Pt or Ru

BARBIR, F. (2005). Elsevier Academic Pres.

www.csir.co.za

© CSIR 2011 Slide 3

Methanol Oxidation Mechanism

- $M + CH_3OH \rightarrow M-CH_3OHads \rightarrow M-CO_{ads} + 4H^+ + 4e^-$ (1)
- $M-CO_{ads} + H_2O \rightarrow M + CO_2 + 2H^+ + 2e^-$ (2)
- $CH_3OH + H_2O \to CO_2 + 6H^+ + 6e^-$ (3)
- M= Au, Co, Pd, Pt or Ru

BARBIR, F. (2005). Elsevier Academic Pres.

Current Difficulties with Platinum

- Catalysts easily poisoned
- Cost too much

HAMMER, B., & NORSKOV, J. K. (2000). Academic Press Inc.

www.csir.co.za

© CSIR 2011 Slide 5

Current Difficulties with Platinum

- Catalysts easily poisoned
 - Binary or tertiary combinations
- Cost too much
 - Reducing Pt loading
 - Increasing surface area (Reactive area)

HAMMER, B., & NORSKOV, J. K. (2000). Academic Press Inc.

Pt Cost Consideration/Efficiency

• Reactions happen only on the surface

HAUG, A.(2002). Journal of The Electrochemical Society, 149, A284 - A287

Thin Film Deposition Techniques

- Aerosol assisted deposition
- Physical or thermal deposition (e.g. Sputter deposition)
- Ion beam deposition
- Electrodeposition and
- Electrochemical atomic layer deposition (ECALD).

Reasons for ECALD Utilization

- Simplicity of operation
- Ease of control of the deposition
- Low cost of fabrication
- High Pt utilization

ADZIC, R. et al. (2007). Topics in Catalysis, 46, 249-262.

ECALD Process: Synthesis of Pt Electrocatalyst

Redox-replacement reactions

BRANKOVIC, S. et al. (2001). Surface Science, 474, L173.

ECALD Process: Synthesis of Pt Electrocatalyst

BRANKOVIC, S. et al. (2001). Surface Science, 474, L173.

Ni Foam and Carbon Paper

- High surface area
- Electrically and thermally conductive
- Chemically stable
- Low cost

HAMMER, B., & NORSKOV, J. K. (2000). Academic Press Inc.

Time-Potential Curve

Time-potential curve recorded during Pt depositions on carbon paper (a) and Ni foam (b)

- i. Rinse with BE at 0.2V
- ii. OPD of Cu at -0.05V
- iii. Galvanic displacement of Cu by Pt at OCP

ECALD Instrument

MKWIZU, T. S., MODIBEDI, M., & MATHE, M. (2011). *219th ECS Meeting*. Montreal, Canada: Journal of the Electrochemical Society

www.csir.co.za

ECALD Flow-Cell

Cyclic Voltammograms

www.csir.co.za

our future through science

CO anodic Stripping

 Cyclic Voltammogram of Pt/Carbon paper(a) and Ni foam(b) at 50 mV/s in 0.1M HClO₄ and CO

© CSIR 2011 Slide 17

Chronoamperometry

Summary of Pt Electrochemical Activities

Catalyst	Maximum Current Density (mA/cm ²)	Onset Potential (V) for MOR	l _f /l _r	Current Density (mA/cm ²) after 100 s	Onset Potential (V) for CO stripping	Real Surface Area (cm ²)
Pt/Carbon paper	0.85	0.40	4.30	0.30	0.66	479.08
Pt/Ni foam	5.94	0.37	2.81	1.90	0.37	1615.59

SEM Images for Carbon Paper

SEM Images for Ni Foam

EDX Profiles

Conclusion and Future Work

- Preliminary results showed that the sequential electrodeposition of Pt on carbon paper and Ni foam were successful.
- Pt was detected with EDX and confirmed by the SEM images
- The sequential electrodeposited Pt on Ni foam showed better electrochemical activity towards hydrogen, methanol and CO adsorption.
- Fabricate and test MEA's performance in DMFC.

Acknowledgements

- Dr Mmalewane Modibedi (Co-Supervisor), Energy Material Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
- Dr Leskey Cele (Supervisor), Department of Chemistry, Tshwane University of Technology, Pretoria, South Africa
- Prof Kenneth Ozoemena, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
- Dr Mkhulu Mathe, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
- CSIR and NRF for the funding

Thank You

