Antiprotozoal Isoflavan Quinones from Abrus precatorius ssp. africanus

Yoshie Hata^{1,4}, Melanie Raith¹, Samad Nejad Ebrahimi^{1,5}, Stefanie Zimmermann^{1,2,} Tsholofelo Mokoka³, Dashnie Naidoo³, Gerda Fouche³, Vinesh Maharaj³, Marcel Kaiser², Reto Brun², Matthias Hamburger¹

Abstract

A library of 206 extracts from selected South African plants was screened in vitro against a panel of protozoan parasites, Plasmodium falciparum, Trypanosoma brucei rhodesiense, and Leishmania donovani. A CH₂Cl₂/MeOH (1:1) extract of Abrus precatorius L. ssp. africanus strongly inhibited P.falciparum (98%), T. b. rhodesiense (100%), and L. donovani (76%) when tested at a concentration of 10.0 μg/mL. The active constituents were tracked by HPLC-based activity profiling and isolated by preparative and semipreparative RPHPLC chromatography. Structures were established by HR-ESIMS, and 1D and 2D NMR (¹H, ¹³C, COSY, HMBC, HSQC, and NOE difference spectroscopy). Five compounds were obtained and identified as two isoflavan hydroquinones, abruquinone H (1) and abruquinone G (2), and three isoflavan quinones, abruquinone I (3), abruquinone B (4), and 7, 8, 3′,5′-tetramethoxyisoflavan-1′,4′- quinone (5). Compounds 1 and 3 were new natural products. The absolute configuration of compounds was determined by comparison of electronic circular dichroism spectra with calculated ECD data. Compounds 3 and 4 showed strong activity against T. b. rhodesiense (IC₅₀ values of 0.30 and 0.16 μM, respectively) and good selectivity (selectivity indices of 73.7 and 50.5, respectively).

¹ Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland

² Swiss Tropical and Public Health Institute and University of Basel, Basel, Switzerland

³ Biosciences, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa

⁴ Departament of Pharmacy, Faculty of Sciences, National University of Colombia, Bogota D.C., Colombia

⁵ Department of Phytochemistry, Medicinal Plant and Drugs Research Institute, Shahid Beheshti University, G. C., Tehran, Iran