ENCODING MUTUALLY UNBIASED BASES IN ORBITAL ANGULAR MOMENTUM FOR QUANTUM KEY DISTRIBUTION

A. Dudley¹, M. Mafu², S. Goyal², D. Giovannini³, M. McClaren¹, T. Konrad², M. J. Padgett¹, F. Petruccione², N. Lütkenhaus⁴ AND A. Forbes¹, ²

1. CSIR National Laser Centre, PO Box 395, Pretoria 0001, South Africa.
2. School of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
3. Department of Physics and Astronomy, SUPA, University of Glasgow, Glasgow, UK.
4. Institute for Quantum Computing & Department for Physics and Astronomy, University of Waterloo, 200 University Avenue West, N2L 3G1, Waterloo, Ontario, Canada.

Abstract

We encode mutually unbiased bases (MUBs) using the higher-dimensional orbital angular momentum (OAM) degree of freedom associated with optical fields. We illustrate how these states are encoded with the use of a spatial light modulator (SLM). We demonstrate how \((d+1)\)-mutually unbiased measurements can be made in both a classical prepare-and-measure scheme and on a pair of entangled photons. In the entanglement-based scheme we perform mutual unbiased measurements for dimensions ranging from \(d = 2\) to \(5\). The calculation of the average error rate, mutual information and secret key rate show an increase in information capacity as well as higher generation rates as the dimension increases.