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Abstract. Climate change is expected to have the greatest
impact on the world’s economically poor. In the Sahel, a cli-
matically sensitive region where rain-fed agriculture is the
primary livelihood, expected decreases in water supply will
increase food insecurity. Studies on climate change and the
intensification of the water cycle in sub-Saharan Africa are
few. This is due in part to poor calibration of modeled evap-
otranspiration (ET), a key input in continental-scale hydro-
logic models. In this study, a remote sensing model of tran-
spiration (the primary component of ET), driven by a time
series of vegetation indices, was used to substitute transpi-
ration from the Global Land Data Assimilation System real-
ization of the National Centers for Environmental Prediction,
Oregon State University, Air Force, and Hydrology Research
Laboratory at National Weather Service Land Surface Model
(GNOAH) to improve total ET model estimates for monitor-
ing purposes in sub-Saharan Africa. The performance of the
hybrid model was compared against GNOAH ET and the re-
mote sensing method using eight eddy flux towers represent-
ing major biomes of sub-Saharan Africa. The greatest im-
provements in model performance were at humid sites with
dense vegetation, while performance at semi-arid sites was

poor, but better than the models before hybridization. The
reduction in errors using the hybrid model can be attributed
to the integration of a simple canopy scheme that depends
primarily on low bias surface climate reanalysis data and is
driven primarily by a time series of vegetation indices.

1 Introduction

Precipitation and evapotranspiration (ET) are the processes
by which water moves across the land and atmosphere in-
terface, the latter being primarily a biophysical response
(Hartmann, 1994; note: acronyms are listed and explained
in Table 1, as they appear in the text). In the Sahel, latent
energy (LE: ET energy equivalent) during the rainy season
is the primary regulator after solar forcing of energy balance
seasonal variability, the strength of which changes signifi-
cantly across land cover types (Ramier et al., 2009). At inter-
annual and interdecadal timescales, the impact of ET on the
energy balance is more significant than solar forcing, which
after sea surface temperatures, explains much of the rain-
fall variability in the region (Zeng and Neelin, 2000). This
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is due to strong coupling between soil moisture and rainfall.
A decrease in rainfall and natural vegetation cover leads to
an increase in surface albedo and decrease in ET, which can
decrease moisture input to the West African monsoon, thus
contributing to persistent droughts there (Zeng, 2003). De-
clines in ET have been simulated over much of the Sahel
and correspond to a decoupling of ET from precipitation with
rising surface temperatures (Marshall et al., 2012a). Under-
standing ET and its relationship to rainfall is therefore cli-
matologically important in the region, particularly to farm-
ers who make up 70 % of the continent’s livelihoods (World
Bank, 2000) and rely almost entirely on rain (> 95 %) to
grow their crops (FAOSTAT, 2010). Near real-time ET esti-
mates driven by regional-scale vegetation dynamics therefore
can be a powerful tool to promote early warning response to
food insecurity, while remote sensing-based and operational
land surface modeling approaches utilize free and globally
available data, which overcome the institutional and infras-
tructural limitations of ground data collection in the region.

Literature reviews of regional to global scale ET model-
ing techniques can be found in Diak et al. (2004), Glenn et
al. (2007), Jiḿenez et al. (2011), Kalma et al. (2008), and
Mueller et al. (2011). Remote sensing-based modeling tech-
niques use near real-time visible, near infrared, and/or ther-
mal sensor and typically some meteorological data to esti-
mate LE as a residual of the energy balance. The vegeta-
tion fraction, which is the primary control on ET, can be up-
dated with readily available remote sensing data, while me-
teorological forcing can be estimated from ground, meteo-
rological satellite, and surface climate reanalysis data. Oper-
ational Land Surface Models (LSMs), like remote sensing-
based methods, provide near real-time continuous and global
estimates of ET using process-based techniques driven by
assimilated ground, satellite, and surface climate reanalysis
data (Rodell et al., 2004). Unlike remote sensing-based mod-
els, ET is driven primarily by precipitation, with ET being
solved as a residual of the water balance and corrected using
assimilated fields of the energy terms (Chen et al., 1996).

Remote sensing-based modeling techniques can be di-
vided into two broad categories: empirical and physics-
based. Physics-based approaches can be further subdivided
into indirect and direct. Empirical remote sensing-based ap-
proaches (e.g. Wang et al., 2007) either develop a statistical
model dependent on vegetation indices (e.g. the Normalized
Difference Vegetation Index – NDVI) alone or in combina-
tion with other ET drivers (e.g. net radiation and land sur-
face temperature). Empirical approaches suffer from trans-
ferability and scale-dependent non-linearity, as the models
are tuned to areas at a particular resolution with unique phe-
nological characteristics. Indirect approaches combine re-
mote sensing derived energy flux with ancillary meteorolog-
ical data using physically based relationships to estimate ET
as a residual of the energy balance. Indirect models are ei-
ther single source (e.g. Surface Energy Balance Algorithm
for Land: Bastiaanssen et al., 1998), meaning vegetation and

soil are considered as a single pixel, or two source (e.g. At-
mospheric Land Exchange Inverse Model; Anderson et al.,
1997), meaning vegetation and soil are considered at the
sub-pixel level. Indirect methods, though accurate at multi-
ple scales, can be highly uncertain in heterogeneous regions
and difficult to implement operationally at regional to global
scales, because of land surface temperature uncertainty and
scale dependencies, as well as the need for extensive ground-
based meteorological data (Kite and Droogers, 2000). Di-
rect remote sensing methods have been gaining popularity,
as they do not suffer from scale dependencies and can read-
ily be driven by global scale data. Direct approaches estimate
ET using a series of energy and moisture constraints on at-
mospheric demand (i.e. potential evapotranspiration – PET).
Algorithms which produce global estimates of ET in this way
are detailed in Nishida et al. (2003), Leuning et al. (2008),
Mu et al. (2007a), and Fisher et al. (2008). These models
have been used in sub-Saharan Africa to estimate water use
efficiency for arid rangelands (Palmer and Yanusa, 2011) and
to extrapolate biological nitrogen deposition from wildfires
(Chen et al., 2010). The major drawback of these approaches
and remote sensing methods in the tropics in general is the
presence of cloud cover, which can often obscure a target
from the sensor for several days. Land surface models over-
come this drawback by using long-term monthly averages of
remote sensing data and simulated alternatives.

The AMMA (African Monsoon Multidisciplinary Analy-
sis) Land-Surface Model Inter-comparison Project (Boone et
al., 2009) uses LSMs to better understand the impact of en-
ergy and moisture flux on the West African monsoon. Land
surface models use a highly parameterized and multi-layer
resistance-based approach to determine ET. Specifically, ET
for one or multiple leaf layers is a function of light use effi-
ciency, stomatal resistance to water loss and plant stress, at-
mospheric resistance to diffusion across the plant interface,
and atmospheric resistance to turbulent moisture in the sur-
face boundary layer (Anderson et al., 2000). Two of the ma-
jor drawbacks of LSMs is that their strong theoretical frame-
work can lead to greater uncertainty than remote sensing
methods, due to conspiring factors attributed to a multitude
of data types (most importantlyRN) and lack of ground-
based validation data in the region of interest (Rosero et al.,
2009). In addition, transpiration (the primary component of
ET) is driven by long-term monthly averages of NDVI, which
can increase bias in semi-arid regions with high seasonal
variability (Hogue et al., 2005).

Given the limitations of direct remote sensing and land
surface modeling approaches for estimating ET, the objec-
tive of this paper is to demonstrate how the two approaches
can be combined to create a hybrid which improves ET es-
timates across Africa. Examples of model hybridization in-
clude combining land surface temperature derived from re-
mote sensing data with a soil vegetation atmosphere transfer
model in Olioso et al. (1999) and an indirect, remote-based
model in Boni et al. (2001). Evapotranspiration estimates in
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Table 1.Acronyms and their definitions in order of appearance.

Acronym Definition

ET Evapotranspiration
LE Latent Heat
LSM Land Surface Model
NDVI Normalized Difference Vegetation Index
PET Potential Evapotranspiration
AMMA African Monsoon Multidisciplinary Analysis
PT-JPL Priestley–Taylor Jet Propulsion Laboratory Model
NOAH National Centers for Environmental Prediction,

Oregon State University, Air Force, and Hydrology
Research Laboratory at National Weather Service
Model

EVI Enhanced Vegetation Index
SAVI Soil-Adjusted Vegetation Index
TMAX Daytime Temperature
PAR Photosynthetically Active Radiation
LAI Leaf Area Index
MODIS Moderate Resolution Imaging Spectroradiometer
AVHRR Advanced Very High Resolution Radiometer
VPD Vapor Pressure Deficit
RH Relative Humidity
p Surface Pressure
q Specific Humidity
GLDAS Global Land Data Assimilation System
LIS Land Information System
GNOAH GLDAS realization of NOAH
IGBP International Geosphere-Biosphere Programme
H Sensible Heat

this study are improved further downstream in the model-
ing process by direct insertion using the Priestley–Taylor Jet
Propulsion Laboratory (PT-JPL) (Fisher et al., 2008) direct
remote sensing approach and National Centers for Environ-
mental Prediction, Oregon State University, Air Force, and
Hydrology Research Laboratory at National Weather Ser-
vice (NOAH) LSM (Chen et al., 1996). Specifically, NOAH’s
sophisticated transpiration component, driven by long-term
average NDVI and surface climate reanalysis, is substituted
with PT-JPL’s simple transpiration scheme, driven by a time
series of NDVI and the Enhanced Vegetation Index (EVI)
and surface climate reanalysis. NOAH is comparable to other
LSMs when modeling LE over large areas in western Africa
(Boone et al., 2009) and generally performs better than other
LSMs under semi-arid (sub-tropical) conditions (Hogue et
al., 2005). Unlike other remote sensing-based approaches,
PT-JPL does not employ the evaporative fraction, which is
used to extrapolate ET from once-a-day or coarser temper-
ature and energy flux measurements, and can be a major
source of error, as the evaporative fraction is assumed con-
stant over the time frame, which is rarely the case (Gentine
et al., 2011). The PT-JPL model tends to outperform other
ET models in the tropics (Fisher et al., 2009) when driven
and evaluated using observed data. It can be run readily using

remote sensing and surface reanalysis data over large areas,
though the sensitivity of the model with coarser resolution
surface climate reanalysis data has not been evaluated.

2 Methods

2.1 The PT-JPL model for Evapotranspiration

The PT-JPL model is based on the Priestley and
Taylor (1972) model for PET, then introduces ecophysiologi-
cal constraint functions to reduce PET to ET. A complete de-
scription of the model and bibliography of model component
origins can be found in Fisher et al. (2008). The Priestley–
Taylor formulation for PET reduces the advection term in the
original Penman (1948) formulation to a coefficient (α). α is
empirically derived and assumes the ratio of PET to equi-
librium PET (no advection) is constant. The Priestley–Taylor
model is therefore driven primarily by net radiation (RN) and
tends to perform best in humid areas and worse in arid areas,
due in part to the equilibrium assumption (DehghaniSanij et
al., 2004). The PT-JPL model retains the originalα (1.26)
and uses six parameters to modify PET for both humid and
arid areas. The equations have been arranged to express LE
in terms of its three components: bare soil evaporation (LES),
transpiration (LEC), and wet surface evaporation (LEI):

LES = fSM (1− fWET)(1− fC)
α1

1 + γ
(RN − G)

LEC = fCfGfTfM (1− fWET)
α1

1 + γ
(RN) (1)

LEI == fCfWET
α1

1 + γ
(RN) ,

wherefSM, fWET, fC, fG, fT, andfM are the soil mois-
ture constraint, relative surface wetness, fractional total veg-
etation cover, green canopy fraction, plant temperature con-
straint, and the plant moisture constraint, respectively. Ta-
ble 2 lists each parameter and the relevant equation used
in the computation of LE. The psychometric constant (γ :
0.066 kPa◦C−1), slope of the saturation-to-vapor pressure
curve (1), RN, andG make up the Priestley–Taylor formula-
tion for PET. Equation (1) is a modified version of the orig-
inal PT-JPL model, in which the soil and canopy contribu-
tion to RN are assumed to be a function of leaf area index
(LAI) and fC according to Beer’s Law (Kelliher et al., 1995).
Here,RN is discretized by NDVI, which has been shown to
be highly correlated withfC (Sellers, 1987). Fractional total
vegetation cover is expressed as a linear function of NDVI,
which is determined from the red and near-infrared bands of
standard multi-spectral remote sensing platforms. In Fisher
et al. (2008), the Soil-Adjusted Vegetation Index (SAVI) was
used instead of EVI to estimate the fraction of Photosyn-
thetically Active Radiation (PAR) absorbed by green veg-
etation (fAPAR): 1.2· (1.136· SAVI − 0.04) taken from Gao
et al. (2000). The Enhanced Vegetation Index is a remotely
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Table 2.Model parameters and equations for the PT-JPL Model, whereλ = TOPT, m1 = 1.2, m2 = 1.0, b2 = −0.05, andβ = 1.0.

Parameter Description Equation

fc Fractional total vegetation cover fIPAR
fg Green canopy fraction fAPAR/fIPAR

fT Plant temperature constraint e
−

(
TMAX −TOPT

λ

)2

fM Plant moisture constraint fAPAR/fAPAR,MAX
fAPAR Fraction of PAR absorbed by green vegetation coverm1EVI
fIPAR Fraction of PAR intercepted by total vegetation coverm2NDVI + b2
fSM Soil moisture constraint RHVPD/β

fwet Relative surface wetness RH10

Topt Optimum plant growth temperature TMAX at max{PAR× fAPAR × TMAX /VPD}

sensed spectral index that is more sensitive to the chlorophyll
content of vegetation than NDVI and can be derived from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
Earth Observing System-Terra platform (Huete et al., 2002).
Another modification includesfwet, a function raised to the
power of 4 in the original paper, changed to the power of 10
in this paper, because it was determined to be the optimal
value when compared with observed ET. It assumes that the
surface is not wet at a higher relative humidity than by using
4 in areas with extreme temperatures and PET.

The transpiration component of LE has the greatest num-
ber of constraints. The green canopy fraction is a biophys-
ical constraint expressed as the ratio offAPAR to the total
amount of PAR absorbed by the canopy (fC). The plant tem-
perature constraint is a physiological parameter and assumes
that vegetation photosynthesizes at an accelerated rate until
an optimal temperature (TOPT) is achieved, after which ef-
ficiency decreases (June et al., 2004). The optimal tempera-
ture is determined over the entire available time series and is
analogous to “relative greenness” in the remote sensing lit-
erature. It occurs during the primary growing season, when
the daytime temperature (TMAX ) at which plant investment in
light energy (fAPAR) and the availability of light (PAR) are
high, and the vapor pressure deficit (VPD) is low. The plant
moisture constraint is the ratio offAPAR to maximumfAPAR
over the available time series. It assumes that the amount of
light a plant absorbs varies with moisture availability:fAPAR
decreases only when the plant is stressed, thus lowering tran-
spiration when PAR is high. The effect of this constraint on
LEC is minimal, unless the plant is suffering from extreme
moisture stress.

The wet canopy and LES components are governed by rel-
ative humidity (RH), which can be determined from surface
pressure (p) and specific humidity (q) reanalysis. It is as-
sumed that bare soil evaporates water at the potential rate,
provided that the soil is saturated (Bouchet, 1963). When the
soil is not saturated, relative humidity above the surface de-
creases and LE decreases due to lower soil water conductiv-
ity. The soil moisture constraint is a power of function of RH
and VPD, which acts to reduce the supply of water to the

atmosphere as the soil dries. Midday relative humidity and
VPD are used, because the coupling between soil moisture
and atmospheric humidity is strongest at midday when ver-
tical mixing is high. Similarly,fWET is a power function of
relative humidity and indicates the probability that the sur-
face is wet; when relative humidity is 100 %, the soil and
canopy are completely wetted and evaporate moisture at the
potential rate.

2.2 NOAH Model for Evapotranspiration

The earliest version of NOAH can be traced back to Chen
et al. (1996), who integrated an explicit canopy component
with a simple soil water balance model developed at OSU
(Pan and Mahrt, 1987). NOAH is a community model which
has undergone several intermodel comparisons and ground-
based validations, leading to vast improvements in its pa-
rameterization since its inception at OSU. These include im-
provements to bare soil evaporation estimates with the in-
troduction of skin temperature and a dynamic soil moisture
component (Betts et al., 1997) and to transpiration estimates
with the introduction of a monthly fractional total vegetation
cover climatology (Chen and Dudhia, 2001).

As with the PT-JPL model, NOAH includes three compo-
nents of latent heat. Each energy term (LES, LEC, and LEI)

is summed after constraints on PET have been computed. Po-
tential evapotranspiration in the NOAH model is a modified
version of Penman (1948) described in Mahrt and Ek (1984):

LE =

(1− fC)β︸ ︷︷ ︸
LES

+fCBC

(
1−

(
WC

S

)n)
︸ ︷︷ ︸

LEC

+fC

(
WC

S

)n

︸ ︷︷ ︸
LEI

PET (2)

whereβ is the fraction of total soil moisture not used by the
canopy (Mahfouf and Noilhan, 1991),BC is a function of
atmospheric and stomatal resistance (Jacquemin and Noil-
han, 1990),WC is the water holding capacity of the canopy
defined as the residual of water balance terms, andS is the
maximum water holding capacity of the canopy (calibrated
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constant). As in the original PT-JPL formulation,fC is a
function of Leaf Area Index (LAI). It is computed from a
0.15◦ resolution climatology of Advanced Very High Res-
olution Radiometer (AVHRR) NDVI (Gutman and Ignatov,
1998). Soil moisture availability (β) includes a dynamic soil
moisture component constrained by the wilting point and
the field capacity of the soil, both of which are functions of
soil texture. The constraints are elaborated upon in Table 3,
while a more detailed description can be found in Chen and
Dudhia (2001).

2.3 PT-JPL and GNOAH hybrid model

In the hybrid model, the transpiration component of the
PT-JPL model replaces the transpiration component of the
GNOAH model:

LE =

[
fCfGfTfM (1− fWET) + (1− fC)β + fC

(
WC

S

)n]
PET. (3)

The Penman formulation for PET from GNOAH andfC
from PT-JPL are used to maintain consistency across the two
models and three components. The fractional total vegetation
from GNOAH is removed and the soil and interception terms
are then multiplied by the time-varying PT-JPLfC. Similarly,
Priestley–Taylor PET is removed from PT-JPL and the tran-
spiration component is multiplied by GNOAH PET, because
the GNOAH (Penman) approach is theoretically more rig-
orous than Preiestley-Taylor PET and using the later did not
show any improvement in the results compared to the former.

2.4 Data processing and handling

The PT-JPL model is run globally at a quasi- 0.05◦ resolution
daily time step from 2000–2008 for sub-Saharan Africa and
is aggregated to a monthly time step for visualization and
comparison purposes with field data. The choice of resam-
pling to 0.05◦ resolution assumes that spatial heterogeneity is
driven primarily by vegetation. The vegetation data consisted
of 16-day 0.05◦ resolution NDVI and EVI derived from re-
flectance detected by MODIS. A piecewise weighted least
squares regression filter (Swets et al., 1999) is applied to the
indices to further reduce atmospheric interference on the veg-
etation signal.

Daily values were aggregated to monthly values for sev-
eral reasons: (1) ground heat flux was not calculated in the
PT-JPL model (ground heat flux is near zero in warm regions
at a monthly time step), (2) daily station flux data was of-
ten spurious or missing, (3) the vegetation data used is ex-
tremely noisy at a daily time step, and (4) monthly timesteps
are adequate to address research questions in food security
monitoring and other continental scale studies.

The Global Land Data Assimilation System (GLDAS) at
0.25◦ resolution is used for the climatological forcing of
PT-JPL and NOAH. Global Land Data Assimilation System
forcing and parameters (Rodell et al., 2004), enabled by the

Table 3. Model parameters and equations for GNOAH, wherek

is Beer’s Law extinction coefficient, LAI is the leaf area index,r

is the atmospheric resistance,RC is the stomatal resistance,Ch is
the surface exchange coefficient for heat and moisture,21 is the
soil moisture in the top soil layer at a given timestep,2W is the
wilting point,2REF is the field capacity, andf is a scaling constant
typically equal to 1 or 2. The change in water holding capacity is
defined byP (precipitation),D (drainage) and LEC (in mass units).

Parameter Description Equation

fC Fractional total vegetation cover e−(kLAI )

BC Plant coefficient r+1
r(1+ChRC)+1

β Soil moisture availability
(

21−2W
2REF−2W

)f

WC Water holding capacity fCP − D − LEC
S Maximum water holding capacity Optimized constant

Land Information System (LIS) (Kumar et al., 2006), com-
pute surface fluxes using various LSMs. Details on GLDAS
forcing data and model outputs can be found on NASA’s
Hydrology Data and Information Services Center webpage
(http://disc.sci.gsfc.nasa.gov/hydrology). The dataset is pri-
marily used by end-users, as the LIS currently has lim-
ited functionality for exploratory research and requires large
computational resources. The version of NOAH used (2.7.1)
is run offline by the 0.25◦ resolution forcing data. It will
be referred to as GNOAH for the remainder the paper.
GLDAS uses NOAA/GDAS atmospheric fields, Climate Pre-
diction Center Merged Analysis of Precipitation fields, and
observation-driven shortwave and longwave radiation using
the Air Force Weather Agency’s AGRicultural METeorolog-
ical modeling system. These data are produced at 3-hourly
intervals and aggregated to a monthly time step. The latent
heat simulation from GNOAH is at 0.25◦ resolution and re-
sampled using the “nearest neighbor” approach to 0.05◦ res-
olution for comparison purposes with the PT-JPL model.

Energy and moisture flux and meteorological data was
gathered from eight sites representing major land cover types
in Africa. Table 4 lists the sites, along with the station iden-
tification and name, country, geographic coordinates, the pe-
riod data is obtained, ecosystem type using the International
Geosphere-Biosphere Programme (IGBP) naming conven-
tion, and mean climatology. The observed data are from
three online sources: AMMA (www.amma-international.
org), CarboAfrica (www.carboafrica.net) and Fluxnet (www.
fluxdata.org). Five of the sites (BW-Ma1, CG-Euc, NE-Waf,
NE-Wam, and ZA-Kru) include half-hourly data needed to
run the PT-JPL model: surface air temperature (◦C), in-
coming longwave and shortwave radiation (W m−2), outgo-
ing longwave and shortwave radiation (W m−2), relative hu-
midity (%), precipitation (mm), and latent heat (W m−2).
NE-Wam and NE-Waf were in close proximity and shared
a rainfall gauge between them (Ramier et al., 2009). La-
tent heat flux was measured using the eddy covariance
method (Baldocchi et al., 1988). With this technique, LE is
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Table 4. Eight micrometeorological stations throughout sub-Saharan Africa. Ecosystems are identified with the IGBP convention: crop-
lands/natural vegetation mosaic (CRO), evergreen broadleaf forest (EBF), open shrublands (OSH), savanna (SAV), and woody savanna
(WSA). P andTA are the annual total precipitation and average air temperature, respectively.

ID Name Country Latitude Longitude Period IGBPP (mm) TA (◦C) Source

BW-Ma1 Maun-Mopane Woodland Botswana 19.93◦ S 23.57◦ E 2000–2001 WSA 464 22.0 Fluxnet
CG-Euc Kissoko Eucalyptus Plantation Congo 4.79◦ S 11.98◦ E 2004–2006 EBF 1274 23.5 CarboAfrica
CG-Tch Tchizalamou Congo 4.29◦ S 11.66◦ E 2006–2008 SAV 1150 25.7 CarboAfrica
NE-Waf Wankama Fallow Niger 13.65◦ N 2.63◦ E 2006 CRO 519 28.5 AMMA
NE-Wam Wankama Millet Niger 13.64◦ N 2.63◦ E 2006 CRO 519 28.5 AMMA
SD-Dem Demokeya Sudan 13.28◦ N 30.48◦ E 2005–2008 SAV 320 26.0 CarboAfrica
ZA-Kru Skukuza South Africa 25.02◦ S 31.50◦ E 2000–2008 SAV 547 21.9 CarboAfrica
ZM-Mon Mongu Zambia 15.44◦ S 23.25◦ E 2007–2008 DBF 945 25.0 CarboAfrica

determined by correlating changes in water vapor concen-
tration at the surface and at height measured with hygrome-
ters and a sonic anemometer. The eddy covariance method
is considered the most accurate field LE technique. There
is on average, however, a 20 % difference between mea-
sured turbulent fluxes (sensible heat-H and LE) andRN for
most sites (Wilson et al., 2002). The data used are not cor-
rected for energy balance closure, because many of the en-
ergy terms were not available for most of the sites when the
data was accessed, as shown in Table 5. Half-hourly (un-
corrected) data from the flux towers are used, because the
PT-JPL model computes LE from daytimeRN only. Aver-
age daily (corrected) data is typically filled using look-up
tables (Reichstein et al., 2005) and/or artificial neural net-
works (Papale and Valentini, 2003), however these data are
not available, so persistent data gaps at many of the sites do
exist.

2.5 Statistical analysis

The analysis is done in three phases: (1) evaluation of the
PT-JPL model using station data to determine the appropri-
ateness of the LEC component, (2) sensitivity analysis of the
PT-JPL model to remote sensing and surface reanalysis forc-
ing and comparison of PT-JPL ground inputs with surface
reanalysis inputs to identify sources of error propagation in
model hybridization, and (3) development and performance
of the hybrid model. The coefficient of determination (R2)

and root mean squared error (RMSE) are the primary metrics
used for comparison between observations, models, and in-
puts. Near infrared and red reflectance are not available from
the stations, so NDVI and EVI from MODIS are used in-
stead when evaluating the PT-JPL model and conducting the
sensitivity analysis. In the sensitivity analysis, all input vari-
ables (RN, TMAX , q, p, NDVI, and EVI) are constrained to
mean values except for the test variable (Haan, 2002). The
test variable is perturbed 10 000 times between±3σ . The
model output (LE) is regressed against the test input and the
slope of the relationship is computed to determine the rel-
ative weight of each input to the output. This is considered
a conditional case, because only one variable is varied at a

time. An unconditional case (not shown) where variables are
varied together to look at synergistic effects on modeled LE
was also performed, but did not reveal any differences, lend-
ing to the strong independence of each model input.

3 Results

3.1 Input and parameter comparison: field data

The three components (LEC, LES, and LEI) from the PT-JPL
model are plotted, along with observed LE and precipitation
in Fig. 1. Transpiration is typically the primary contribution
to total LE, however during a rain event, LES and LEI can be
much more significant. NE-Wam was not included in the fig-
ure because it did not significantly deviate from the NE-Waf
signal. The magnitude and timing of modeled LEC for the
five stations with sufficient data to drive the PT-JPL model
are captured well at all the sites. Table 6 shows the correla-
tion and error between modeled LEC and observed LE for
the sites with available data. The highest correlation between
modeled LEC and observed LE is at the eucalyptus planta-
tion (CG-Euc: included in Fisher et al., 2009). The RMSE
and percent error are large, which can be attributed to the
significant contribution of LES at this humid site. Total LE
is overestimated fairly consistently throughout the year, but
without reliable observed LEC data, it is difficult to discern
which component is contributing to this overestimation the
most. Persistent data gaps in the ZA-Kru series are due to
the frequent turning off of instrumentation to prevent dam-
age from lightning and power surges. Some of the sustained
peaks in observed LE at ZA-Kru, notably in the first year,
are missed, lending to the lower correlation between mod-
eled LEC and observed LE. However, the model does well at
capturing the seasonal variability at this relatively drier and
more dynamic site. The largest errors between modeled LEC
and observed LE can be seen at the driest sites (NE-Waf and
NE-Wam). The only peak in the time series, corresponding
to the primary rain season, is captured, but the magnitude of
peak LE from the PT-JPL model is less than 50 % of actual
peak LE. In addition, dry season troughs are overestimated.
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Fig. 1.Monthly observed LEOBS (W m−2) and modeled LEPT-JPL(W m−2) plotted on the lower axis and precipitation (mm) plotted on the
upper axis using field data from ZA-Kru 2000–2003(a), CG-Euc 2004–2006(b), NE-Waf 2006(c), and BW-Ma1 2000–2001(d).

Table 5. Data availability (RN = net radiation, LE = latent heat,
H = sensible heat, andG = ground heat) for energy balance clo-
sure at eight micrometeorological stations throughout sub-Saharan
Africa.

ID RN LE H G

BW-Ma1 x x x x
CG-Euc x x x
CG-Tch x x
NE-WaF x x
NE-WaM x x
SD-Dem x x
ZA-Kru x x x x
ZM-Mon x x

3.2 Sensitivity analysis and GLDAS forcing errors

The relative strength of each input variable to PT-JPL LE
model variance is shown in Table 7 for ZA-Kru. No change
in sensitivity is observed across the sites. The slope and in-
tercept are generated from linear fits of model output data
to input data in normalized space. The slope of the fit there-
fore represents the average expected increase in LE due to
a standard deviation increase in the test variable. PT-JPL is
most sensitive to EVI andq, because these variables have the
largest slopes, while the model is least sensitive top. Specific
humidity andp are used primarily in thefWET component

(LES and LEI). Similarly, EVI is used in each component for
discretization, but its contribution is largest for LEC. After
EVI andq, PT-JPL is most sensitive toRN, which is common
to all three components of LE. Increases in NDVI andT act
to suppress LE, as indicated by the negative slopes. NDVI
in the PT-JPL model is in the denominator offG, since it is
used to indicate overall absorption of incoming radiation by
the canopy. As NDVI increases,fG decreases, since NDVI
tends to be more variable than EVI. Temperature is explicitly
handled in the plant temperature constraint function (LEC)

– increases in temperature above the optimum temperature
leads to increases in this constraint and lower LE.

The monthly aggregated GLDAS data used to drive the
PT-JPL model (RN, TMAX , q, andp) are plotted against ob-
served data for ZA-Kru in Fig. 2. Table 8 summarizes the
results for all of the stations with sufficient field data for the
comparison. Some of the relationships are clearly non-linear,
however statistics from a linear fit are chosen for comparison
purposes between inputs and across sites. It is expected that
GLDAS p andq data correlates well with observed RH. Ob-
servedq andp are not used for direct comparison, because
these data are not available for many of the sites. GLDASRN,
T , andq showed good agreement with observed data. Tem-
perature from the GLDAS dataset, which is used exclusively
in the LEC component, consistently shows high correlations
across all the sites. Net radiation, which is the third most sen-
sitive input, on the other hand, shows poor correlations across
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Table 6. Summary results from the comparison of observed
monthly LE and PT-JPL LEC.

Station ID LEC

BW-Ma1
R2 0.61
RMSE 26.96
% error 28.49

CG-Euc
R2 0.86
RMSE 56.09
% error 43.66

NE-Waf
R2 0.78
RMSE 93.91
% error 70.76

ZA-Kru
R2 0.61
RMSE 16.31
% error 43.55

most of the sites. Two sites (CG-Euc and ZA-Kru) show good
correlations forRN, but also large bias. Specific humidity is
the second best predicted input. It is also the most sensitive
PT-JPL model input after EVI, though not used extensively
in the LEC component. The inverse relationship betweenp

and RH is present, but obscured by outliers above 98.0 kPa
(Fig. 2d). The outliers are from the first year of the reanalysis
when the GDAS reanalysis fields are used exclusively. BW-
Ma1 is the only other site that showed such a relationship.

3.3 Hybrid model

Time series of observed LE and modeled LE using PT-JPL,
GNOAH, and the combined model (PT-JPL LEC + GNOAH
LEI,S) for six of the eight stations are shown in Fig. 3. Table 9
includes goodness-of-fit statistics for six of the eight stations:
ZM-Mon and NE-Wam are omitted, because the former had
less than one year of data and the latter showed no noticeable
difference from NE-Waf. Two of the stations (BW-Ma1 and
CG-Tch) showed obvious bad (flat) LE data at the beginning
and end of the time series when the sensors were just coming
online or not being monitored, so statistics are computed af-
ter these points were omitted. The last month of CG-Tch was
omitted as well, because the site was burned in July 2008.
Grass was absent after the burn and the soil humidity was
less than 2 % by volume, soH is the dominant energy flux.

The combined model outperforms the GNOAH model for
the majority of sites and equally as well for the remain-
ing sites. The greatest improvements are made between the
PT-JPL and hybrid model, particularly in the reduction in
RMSE. These improvements are greatest at the sites with
dense vegetation (CG-Euc and BW-Ma1). At these sites, the

Table 7.The slope (B1) and intercept (B0) of a linear fit of modeled
LE using the mean for all input data and 10 000 perturbations of one
test input variable (i) versus the test input variable in standard space.

i B1 (W m−2) B0 (W m−2)

EVI 29.61 92.61
NDVI −9.88 74.63
RN (W m−2) 16.77 74.63

p (kPa) 0.73 78.78
q (kg kg−1) 24.65 85.81
T (◦C) −16.18 78.78

Table 8.Summary statistics of PT-JPL model inputs from field data
versus Noah reanalysis data.B1 and B0 are the slope and inter-
cept of the linear fit andN is the number of monthly samples. The
statistics for Noah pressure and specific humidity were derived us-
ing relative humidity from the field.

Station ID RN (W m−2) T (◦C) q (kg kg−1) p (kPa)

BW-Ma1 (N = 23)
R 0.06 0.85 0.50 −0.11
B1 0.10 0.96 0.02 −0.33
B0 211.78 0.19 0.0067 91.17
RMSE 88.71 2.20

CG−Euc (N = 30)
R 0.72 0.72 −0.46 0.52
B1 0.23 0.62 −0.04 4.02
B0 169.17 11.24 0.04 97.92
RMSE 42.99 1.61

NE−Waf (N = 12)
R −0.38 0.97 0.94 0.29
B1 −0.18 1.07 0.03 0.26
B0 276.28 −0.90 0.002 98.23
RMSE 81.80 1.98

NE−Wam (N = 11)
R −0.17 0.93 0.98 0.27
B1 0.0012 1.13 0.03 0.23
B0 243.81 −2.28 0.0013 98.12
RMSE 109.52 2.71

ZA−Kru (N = 44)
R 0.88 0.70 0.71 0.06
B1 1.29 0.44 0.02 −0.58
B0 83.43 13.94 0.0029 97.11
RMSE 118.46 2.33

hybrid model tends to underestimate the peaks and overesti-
mate the troughs. At the driest sites (NE-Wam, NE-Waf, and
SD-Dem), all three models grossly underestimate peak LE,
however the combined model performs the best. The major
limitation of GNOAH, namely lack of a time-varying vegeta-
tion component, is reflected in the time series at the ZA-Kru
site. The smooth LE signal produced by the GNOAH model
does not capture the interannual variability of this semi-arid
site. The PT-JPL model represents the other extreme, as it
overestimates the variability in observed LE. The combined
model is a compromise between the two. All three models
tend to perform poorest for CG-Tch, missing the peak in
2007 and the secondary peak in 2008.

Hydrol. Earth Syst. Sci., 17, 1079–1091, 2013 www.hydrol-earth-syst-sci.net/17/1079/2013/



M. Marshall et al.: Improving operational land surface model canopy evapotranspiration 1087

 42 

Figure 2: Plot of Berkeley model inputs from monthly field data versus Noah 

reanalysis data for ZA-Kru.  Net radiation (a), maximum daily temperature (b), 

specific humidity (c), and surface pressure (d). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Plot of Berkeley model inputs from monthly field data versus Noah reanalysis data for ZA-Kru. Net radiation(a), maximum daily
temperature(b), specific humidity(c), and surface pressure(d).

Table 9. Summary results from the comparison of ob-
served monthly LE to the PT-JPL, Noah, and hybrid (PT-JPL
LEC + GNOAH LE(I,S)).

Station ID PT-JPL GNOAH Hybrid

BW-Ma1
R2

RMSE
% error

0.70
30.03
32.23

0.75
23.58
27.79

0.76
22.06
24.99

CG-Euc
R2

RMSE
% error

0.53
42.15
29.85

0.71
67.89
53.10

0.80
25.31
16.44

CG-Tch
R2

RMSE
% error

0.34
101.34
163.85

0.39
29.13
40.25

0.38
65.27
92.82

NE-Waf
R2

RMSE
% error

0.82
85.71
67.82

0.91
94.97
71.20

0.91
74.38
56.02

SD-Dem
R2

RMSE
% error

0.55
58.69
54.84

0.53
67.93
65.86

0.60
51.56
45.00

ZA-Kru
R2

RMSE
% error

0.44
48.40
87.70

0.45
34.80
59.80

0.55
36.00
56.67

4 Discussion

The study represents an initial attempt to use a suite of new
flux tower data in sub-Saharan Africa to improve ET estima-
tion using remote sensing and surface climate reanalysis data
for regular near real-time continental scale monitoring. The
integration of the evaporation components from GNOAH
with the PT-JPL transpiration component further improves
the correlations and reduces the RMSE for both humid and
semi-arid sites compared to the models before hybridization.
The fractional total vegetation cover of GNOAH is the sin-
gle most important variable controlling transpiration. This is
consistent with other findings that showed LAI was a strong
control on the ratio of ET/PET at savanna sites (Williams et
al., 2009). The use of climatology to derive this component
often suffers in semi-arid climates where variability in veg-
etation can be high. This is most apparent at the drier sites,
where GNOAH shows low interannual variability. The intro-
duction of a time-varying component dramatically improves
the correlation between observed and modeled LE. The PT-
JPL and GNOAH model use two different satellite sensors
(AVHRR and MODIS) to determine vegetation indices, and
this undoubtedly plays a role in the results, which should be
considered along with other products in the future.

The greatest improvements in modeled LE using the com-
bined model are at the sites with dense vegetation, while
only modest improvements can be seen at the drier sites.
The predictability of LE for the various vegetation using the
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Fig. 3.Monthly time series of available LE data (–) plotted with Fisher LE (�), Noah LE (1), and Fisher LEC + GNoah LE(I,S) for ZA-Kru
(a), CG-Euc(b), BW-Ma1 (c), SD-Dem(d), CG-Tch(e), and NE-Waf(f).

combined model can be attributed in part to light and wa-
ter limitation (Mu et al., 2007b). Dense vegetation in the
wet tropics is light limited because soil is sufficiently wetted
throughout the year, so one would expect that LE is driven
primarily by RN. Sparse vegetation in the dry tropics on the
other hand is water limited (humidity driven), because light
is sufficient to maximize stomatal conductance throughout
the year and plants close their stomata in response to dry
conditions to conserve water and avoid stress. The CG-Euc
observed time series was one of the longest available. The
high correlation between surface reanalysis and observedRN
could therefore be inflated, due to the presence of outliers
reflected in the large bias. Given the low sensitivity of the
PT-JPL model toRN compared to EVI andq at this site,
however, the bias appears to have little impact on the hy-
brid model. Similar model dependence on surface tempera-
ture and the high correlation, low bias, and inverse sensitivity
of the reanalysis temperature could be offsetting the effects
of reanalysisRN, however, the unconditional sensitivity anal-
ysis revealed no strong interdependencies. The correlation
between specific humidity from the reanalysis and observed
relative humidity are highest at the two driest sites (NE-Waf
and NE-Wam) and this lends to modest and less significant
improvements in model performance compared to the hu-
mid sites. Although PT-JPL is least sensitive to pressure,

erroneous values can lead to a 16 % difference between the
PT-JPL and the hybrid model. This is most apparent in 2000
at ZA-Kru, where pressure values from the GDAS fields were
several kPA higher than for other years. Improvements in
GLDAS reanalysis will undoubtedly reduce the variability
in future studies that use the PT-JPL model driven by surface
reanalysis. Vapor pressure could be used, for example, from a
study that determined it from MODIS estimates of dew point
temperature in Korea (Ryu et al., 2008).

The large discrepancy of the models from peak ET at the
driest sites could be due to several factors. Although energy
balance closure problems are typically associated with errors
in measuring turbulent fluxes, measurement error inRN re-
mains a possibility. Ramier et al. (2009) reported only mod-
est daily average energy balance biases of 14.2 W m−2 for
NE-Wam, which does not account for the model underesti-
mation of peak LE with observed input data by more than
30 %. Another possibility in LE underestimates at NE-Wam
and NE-Waf could be the result of unexpectedly low average
daytimeRN during the wet season that appear to result from
large increases in longwave outgoing minus longwave in-
coming (1LW) near sunset. The increase in absolute1LW
can be attributed to increases in soil moisture (lower sensi-
ble heat and longwave outgoing) and cloud cover (increased
longwave incoming) that is typical during the wet season
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(Ramier et al., 2009). These factors could lead to a drop in
LE of nearly 17 W m−2, assuming a one standard deviation
drop inRN from the sensitivity analysis, which still does not
account for the underestimation of LE. It is expected that the
large positive bias from the reanalysis data would act to im-
prove the correlations at the driest sites, unless offset by other
factors. The largest contributor to the underestimation of LE,
therefore, is most likely due to the resolution of EVI and
NDVI data and strong dependence of PT-JPL LEC on EVI: a
0.05◦ resolution pixel is too coarse to adequately capture the
dynamics of a sparse canopy. Even with gross underestima-
tion of RN and EVI, the comparison of observed data with
PT-JPL reveals that LE remains difficult to model in the very
driest areas. Improvements to PT-JPL LEC, such as the use of
an EVI ratio to formulatefC as in Mu et al. (2007b), spectral
unmixing, calibration ofS in NOAH for semi-arid regions,
or the use of different forcing data when the LIS becomes
more operationally available, should be addressed in future
studies to reduce uncertainties in semi-arid regions.

It is difficult to make a more detailed assessment on the
performance of the hybrid model, because the comparison is
done using limited flux tower data. Firstly, the satellite and
surface climate reanalysis scale data in this paper is assumed
to capture the average of a grid cell corresponding to the sta-
tion used for validation. This assumption can be problem-
atic and scaling flux tower data to coarser scales therefore
remains an active area of research. The greatest challenge is
finding flux towers that lie within homogenous and flat ter-
rain corresponding to the spatial resolution of satellite or sur-
face reanalysis data. If the fetch of the flux tower includes
heterogeneous and/or rough terrain, eddy formation can be
highly variable and may not be consistent with the areal av-
erage (Baldocchi et al., 1988). A possible solution could be
to evaluate these models using several flux towers within a
grid cell, representing the various land cover types and tak-
ing a weighted average to compare with coarser scale data.
Secondly, the data for many of the flux towers is incomplete,
leading to potential uncertainties with monthly aggregation.
Even with these inconsistencies, it is clear that all three mod-
els underestimate dry area peaks (GNOAH the most with
low interannual variability) and in humid areas where data is
more consistent, the hybrid model shows the highest corre-
lation and lowest bias with observed data. Finally, the model
could be further validated using larger scale surrogates of ET.
In one example, the hybrid model is used to develop a crop
stress index that successfully tracked multi-year district-level
crop yield and identified historical, insecure food hotspots in
Kenya (Marshall et al., 2012b). In another example (Marshall
et al., 2012a), runoff data is combined with precipitation to
validate the model in an annual water balance. Runoff data
is extremely limited after the year 2000 for basins in sub-
Saharan Africa, so GNOAH at 1.0 degree resolution and
the Land Long Term Data Record AVHRR vegetation in-
dices (http://ltdr.nascom.nasa.gov/cgi-bin/ltdr/ltdrPage.cgi),
which extends back before 2000, are used instead.

5 Conclusions

The need to understand energy and water fluxes in data-
sparse regions of the world is an important field of research
that demands the use of cost-effective and efficient model-
ing approaches. In this paper, a new approach to modeling
ET, an important energy and moisture flux, has been intro-
duced. For the first time, an ET model has been evaluated
using the eddy covariance technique over areas represent-
ing major land-cover classes in sub-Saharan Africa. The pa-
per highlights many of the obstacles and limitations of such
an analysis. Even with these shortcomings, the substitution
of transpiration from an LSM that uses climatological aver-
age NDVI with a direct remote sensing-based transpiration
model that uses a time series of NDVI and EVI effectively
leverages the information on vegetation phenology with re-
mote sensing observations, while retaining details on the soil
physics controlling surface fluxes.
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