Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites

J. Jayaramudua,b,∗, G. Siva Mohan Reddya, K. Varaprasada, E.R. Sadikua, S. Sinha Rayb, A. Varada Rajuluc

a Department of Polymer Technology, Tshwane University of Technology, CSIR Campus, Building 14D, Private Bag X025, Lynwood Ridge 0040, Pretoria, South Africa

b DST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, P.O. Box 835, Pretoria, South Africa

c Department of Polymer Science & Technology, Sri Krishnadevaraya University, Anantapur 515003, A.P., India

Abstract

The development of commercially viable “green products”, based on natural resources for the matrices and reinforcements, in a wide range of applications, is on the rise. The present paper focuses on Sterculia urens short fiber reinforced pure cellulose matrix composite films. The morphologies of the untreated and 5\% NaOH (alkali) treated S. urens fibers were observed by SEM. The effect of 5\% NaOH treated S. urens fiber (5, 10, 15 and 20\% loading) on the mechanical properties and thermal stability of the composites films is discussed. This paper presents the developments made in the area of biodegradable S. urens short fiber/cellulose (SUSF/cellulose) composite films buried in the soil and later investigated by the (POM), before and after biodegradation has taken place. SUSF/cellulose composite films have great potential in food packaging and for medical applications.