Applied Vegetation Science

May 2013/ doi: 10.1111/avsc.12048

Savanna woody vegetation classification-now in 3-D

Jolene T. Fisher^{1,*}, Barend F.N. Erasmus², Ed T.F. Witkowski¹, Jan van Aardt³, Konrad J. Wessels⁴ & Gregory P. Asner⁵

¹Centre for African Ecology, Restoration and Conservation Biology Research Group, School of Animal, Plant & Environmental Sciences, University of the Witwatersrand, WITS, Johannesburg, 2050, South Africa

²Centre for African Ecology, School of Animal, Plant & Environmental Sciences, University of the

Witwatersrand, WITS, Johannesburg, 2050, South Africa

³Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY, 14623, USA

⁴*Remote Sensing Research Unit, Council for Scientific and Industrial Research (CSIR)-Meraka Institute, P.O. Box 395, Pretoria, 0001, South Africa*

⁵Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA

*corresponding author, jolenefisher@gmail.com

Abstract

The co-existence of woody plants and grasses characterize savannas, with the horizontal and vertical spatial arrangement of trees creating a heterogeneous biotic environment. To understand the influence of biogeophysical drivers on the spatial patterns of 3-D structure of woody vegetation, these patterns need to be explained over large areas to capture the context. Is there a spatially explicit, ecologically meaningful way to capture the patterns and context of 3-D woody vegetation structure?