A study of polymerization of aspen (Populus) wood lipophilic extractives by SEC and Py-GC/MS

BRUCE SITHOLE*, LUC LAPIERRE and CHU WATANABE
1 Forestry and Forest Products Research Centre
University of KwaZulu-Natal/CSIR Natural Resources and the Environment
Durban, South Africa
2 FPlInnovations
Pointe Claire, Qc, Canada
3 Frontier Laboratories
Fukushima, Japan
* Corresponding author (bsithole@csir.co.za)

SUMMARY
Studies have been conducted on the formation of polymerised wood resin in model compounds and in lipophilic extractives of aspen. Our studies indicate that polymerization of wood resin components occurs during seasoning of aspen wood. The polymerization probably occurs via oxidation of fatty acids, especially the unsaturated ones, and glyceride components. It results in formation of products that are difficult to dissolve in normal solvents, depending on the extent of the polymerization. Also, the polymerization seems to result in the formation of sterols, compounds that are typically associated with “aspen wax”. This implies that the seasoning practices used in aspen mills can result in the formation of polymerized wood resin that will be difficult to remove if present in pulp and paper products. On the other hand, these problems may be minor compared to using unseasoned wood.

INTRODUCTION
Aspen is a particularly resinous wood species (1) that sometimes leads to pitch deposition problems in aspen pulp production. The deposition problems are attributed to “aspen wax” and can occur in the brownstock (2-4) in the bleach plant (5) and on paper machines (6). Consequently, considerable efforts are expended to minimize the amount of residual lipophilic extractives in aspen pulp (2,3,5,7-10). They can include wood or chip seasoning, good barking practices especially in winter when the frozen bark is difficult to remove, addition of tall oil in the digester to improve the saponifiable:unsaponifiable ratio of aspen extractives, maintenance of effective residual alkali in kraft digesters, good brownstock washing, good white liquor clarification, and addition of wetting agents in the washing process. Kraft mills that use an aspen furnish find it advantageous to periodically swing to a softwood furnish as the higher soap content of the softwood wood resin helps to clean out the pitch deposits accumulated on mill equipment from aspen runs.

Despite all the preceding measures, it is difficult to reduce the residual extractives in the bleached pulp to undetectable levels. The residual level of extractives is higher than desirable for some customers. Questions arise as to why there are measurable residual levels of extractives in fully bleached aspen pulps, considering the extensive processing and washing of the pulps. Could this be due to polymerization of wood resin? Are the seasoning conditions conducive to the polymerization? Several reports have indicated that wood resin components, in both softwoods and hardwoods, can polymerize to give products that cause troublesome pitch. For example:

a) Ohtani and co-workers (11) studied the polymerization of unsaturated fatty acids and alcohols by conditioning model compounds in an oven at 105 °C. In the compounds studied, namely, oleyl alcohol, oleic acid and linoleic acid, polymerization started to occur after about 3 hours to form polymeric compounds with molar masses that exceeded 6000 Daltons. Beyond 50 hours, the polymerization resulted in compounds that were insoluble in organic solvents. Size exclusion chromatograms of the compounds that formed after 50 hours of conditioning exhibited the same profiles as those of pitch deposits that had occurred in hardwood kraft mills thus confirming the occurrence of polymerized wood resin compounds in the pitch deposits.

b) Raymond and co-workers (6) characterized polymeric material in paper machine deposits. Their results indicated that polymerised pitch deposits contained saturated carbon bonds, was composed of approximately 30% chlorine by weight, and had molecular weights that ranged up to 7500 Daltons.

c) Bialczak et al. (13) studied changes in the chemistry of extractives during ageing of TMP paper. Their data indicate
that extractives polymerise to such an extent that there was incomplete removal of the extractives by solvent extraction of the paper. Analysis by GC and size exclusion chromatography demonstrated that the chemistry of the extractives changed with ageing to form compounds that were not extractable. However, the chemistry of the polymerized extractives was alluded to but not studied.

The objective of our work was to determine whether or not the current wood procurement practices in an aspen bleached kraft pulp mill, which include a year of seasoning as roundwood and about three weeks as chips, give conditions under which polymerization of some components in the resin occurs to give particularly depositable extractives.

**EXPERIMENTAL**

The following samples were obtained from the aspen kraft mill: fresh log, seasoned log (one year), and a grab sample of chips from the pile. The logs were debarked, by hand, and then chipped in the laboratory. The chip and bark samples were milled and then freeze-dried before extraction with acetone to ascertain their extractives contents.

**POLYMERIZATION STUDIES**

The polymerization of aspen extractives was studied by conditioning aliquots of the extracts, in glass cover slips, in an oven at 105 °C for 24 and 48 hours. An unsaturated fatty acid, linolenic acid, was processed likewise. Solvent soluble and insoluble portions of the samples were subsequently characterized by size exclusion chromatography (SEC), FTIR and pyrolysis-gas chromatography with mass spectrometry detection (Py-GC/MS).

**SIZE EXCLUSION CHROMATOGRAPHY**

The acetone extracts were characterized by SEC, a technique that separates compounds according to their molecular weights. The extracts were first dissolved in THF, injected, and then separated in SEC columns. Extractives were detected as they exited the columns by a UV detector (254 nm), and the initial concentration was set to obtain a maximum of 0.2 AU. The SEC parameters were as follows:

- Waters 515 HPLC pump
- Waters 486 Tunable Absorbance detector (set at 254 nm)
- Column set: Shodex KF-806L, KF-805L and KF-804L
- Solvent: THF analytical grade (Fisher Scientific)
- Flow rate: 0.7 cm/3/min.
- Concentration of the injected solution: 1-3 mg/cm³
- Injection volume: 50 µL
- Temperature: 55 °C
- Detector: UV at 254 nm.
- Data acquisition: achieved using ASTRA software

The chromatographic columns were calibrated with polystyrene as there are no known standards for polymerized wood resin. After a reconstruction of the distribution, different moments (statistical averages) of the distribution were calculated. These moments are:

- \( MW_\alpha \): Number-average molecular weight
- \( MW_\beta \): Weight-average molecular weight
- \( MW_\gamma \): Z-average molecular weight

which respectively give more statistical weight to low, medium, or high molecular weight portion of the distribution. The ratios \( MW_\alpha / MW_\beta \), \( MW_\beta / MW_\gamma \) and \( MW_\alpha / MW_\gamma \) represent the polydispersity of the samples. The narrower the distribution, the closer to 1 the polydispersity values are. Due to the absence of standards to compare the extractives to, the results of the analyses are expressed as polystyrene equivalent; therefore they are not absolute values.

**PYROLYSIS-GAS CHROMATOGRAPHY WITH MASS SPECTROMETRY DETECTION**

Py/GC/MS is an instrumental method that enables a reproducible characterization of intractable and non-volatile macromolecular compounds. It entails application of thermal energy in a helium atmosphere to produce volatile fragments and products from a macromolecule – compounds capable of being analyzed using GC/MS. It differs from GC/MS in the type of sample analysed and the method by which it is introduced to the GC/MS system. Instead of the direct injection of a highly refined organic solution, a few µg of the original natural material is analysed directly. Thus compounds that are not amenable to analysis by GC and GC/MS are ideal candidates for Py-GC/MS analysis.

The analytical conditions were as follows:

**PYROLYSER:**

- PY-2020 (Frontier Laboratories, Japan) attached to a capillary column
- Oven temperature: 300 °C
- Pyrolysis temperature: 450 °C for 20 s and 650 °C for 20 s
- Pyrolysis feature: sequential, 450 °C to detect lower polymeric matter and then 650 °C to detect recalcitrant polymers
- 10-30 µg samples loaded into quartz tubes
- 0.5 µL of tetramethyl ammonium hydroxide (25% in methanol) methylating agent were added onto the samples to enable in-situ methylation of the components

**GC:**

- Varian 3900
- Injection temperature: 300 °C
- Injection method: 1:25 split
- Column: DB5-HT: 30 m x 0.25 mm i.d. x 0.10 µm film thickness
- Flow rate: 1.6 mL/min
- Temperature programming: 50 °C for 2 min, 8 °C/min to 310 °C, hold for 0.5 min

**MS:**

- Varian Saturn 2100T ion trap
- Interface temperature: 300 °C
- Ion trap temperature: 250 °C
- Electron ionization
- Scan range: m/z 50-650

**RESULTS**

**EXTRACTIVES CONTENT**

The data on extractives contents of the samples in Table 1 show that seasoning about 1 year in log form reduced the extractives content by about 60%. The extractives content of the mill chip samples was between that of the fresh log and seasoned logs, indicating that they were partially seasoned. The bark samples contained much more extractives than the wood samples; this illustrates the importance of good barking practices.
MOLECULAR WEIGHT DISTRIBUTIONS

Table 2 summarizes the MW results obtained from the different extractives. Comparing fresh and seasoned chips, and also fresh and seasoned bark, we see that aging results in an increase in the average MW of the extractives. The MW distributions of the extractives of mill chips fell in between those of the fresh and seasoned chips; the mill chips could thus be regarded as moderately aged.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Extractives content [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chips from fresh log</td>
<td>4.22</td>
</tr>
<tr>
<td>Chips from seasoned log</td>
<td>1.70</td>
</tr>
<tr>
<td>Mill chips</td>
<td>2.54</td>
</tr>
<tr>
<td>Bark from fresh log</td>
<td>32.8</td>
</tr>
<tr>
<td>Bark from seasoned log</td>
<td>7.68</td>
</tr>
</tbody>
</table>

Table 1. Acetone extractives content of aspen samples.

These results can also be visualized in Figures 1-2, where the MW distributions (SEC results) are plotted as relative extractive concentration vs. molecular weight, expressed again in PST equivalent. In Figure 1, all the results for chips are plotted. The three profiles have similar peaks, but of different intensities. The fresh chips profile has its highest peak at a lower molecular weight than the highest peak of the seasoned chips profile. The high molecular weight extractives of the seasoned chips have increased at the expense of the low molecular weight extractives. Thus the aging process results in their polymerization, explaining their increase in molecular weight. The mill chips profile displays an in between profile, i.e., no peaks really stand out and there are 2-3 major peaks spread between the low and the high molecular weight regions. All polydispersions are similar.

The SEC results comparing fresh bark and seasoned bark are presented in Figure 2. Here, the two profiles are not really similar, and they also show different polydispersities; the seasoned bark profile is broader than the fresh bark one. The fresh bark has two main peaks encompassing most of the extractives, while for the seasoned bark there are 5-6 distinct peaks of similar intensities, and the intensities of the high MW peaks are significantly greater than those for the fresh bark. Nevertheless, a polymerization mechanism is consistent with the difference between the fresh bark profile and the seasoned bark profile.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Molecular weight</th>
<th>Polydispersities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MWn</td>
<td>MWw</td>
</tr>
<tr>
<td>Fresh chips</td>
<td>1400</td>
<td>1840</td>
</tr>
<tr>
<td>Seasoned chips</td>
<td>1690</td>
<td>2270</td>
</tr>
<tr>
<td>Mill chips</td>
<td>1590</td>
<td>2150</td>
</tr>
<tr>
<td>Fresh bark</td>
<td>1290</td>
<td>1610</td>
</tr>
<tr>
<td>Seasoned bark</td>
<td>1610</td>
<td>2230</td>
</tr>
</tbody>
</table>

Table 2. Summaries of the average MWs of the different extractives.

Figure 1. SEC of extracts from fresh and seasoned chips. Results are expressed as relative concentration vs. log MW (PST equivalent).

Figure 2. SEC of extracts from fresh and seasoned bark. Results are expressed as relative concentration vs. log MW (PST equivalent).

As seen in Figures 1-2, the seasoned chips and seasoned bark profiles are quite similar, being different mostly in one peak intensity. On the other hand, fresh bark and fresh chips have quite different profiles.
### POLYMERIZATION STUDIES

**LINOLENIC ACID**

Polymerization of linolenic acid showed that the sample became sticky with time and formed a film after 48 hours of conditioning. The film that formed was 100% soluble in dichloromethane solvent after 24 hour conditioning but partially soluble after 48 hours of conditioning. The solubility of the film was assessed in several common laboratory solvents (hot and cold) and it was impossible to completely dissolve it in any of the solvents tested.

Characterization of the samples by FTIR yielded spectra shown in Figures 3 and 4. After polymerization, the following observations were made for linolenic acid: the 3011 cm⁻¹ absorption band disappeared; the 1712 cm⁻¹ absorption band split into a doublet (1711 and 1737 cm⁻¹); peak broadening and loss of resolution occurred in absorption bands below 1410 cm⁻¹; peaks that stand out after polymerization are at 2924, 2854, 1711, 1733, 1462, 1176, 973, 726 cm⁻¹. The main wavelengths in the FTIR functional groups of the linolenic acid are shown in Table 3. The FTIR spectra of the soluble and insoluble portions of polymerized linolenic acid (Figure 4) are similar to that of the polymerized compound, except that the doublet at 1711 and 1737 cm⁻¹ occurs only in the soluble fraction and the absorption bands below 1410 cm⁻¹ are better resolved than in the original non-extracted polymer. From these observations, it appears that the appearance of a doublet at 1711 and 1737 cm⁻¹ might possibly be used to indicate the presence of polymerized wood resin in the extracts.

---

**Figure 3.** FTIR spectra of polymerised and non-polymerised linolenic acid.

**Figure 4.** FTIR spectra of the soluble and insoluble fractions of polymerized linoleic acid.

<table>
<thead>
<tr>
<th>Wavelength [cm⁻¹]</th>
<th>Functional group</th>
</tr>
</thead>
<tbody>
<tr>
<td>3011</td>
<td>CH stretching of cis double bond (=CH)</td>
</tr>
<tr>
<td>2924, 2854</td>
<td>Symmetric and asymmetric stretching vibrations of aliphatic</td>
</tr>
<tr>
<td>1711</td>
<td>CH₃ groups</td>
</tr>
<tr>
<td>1462</td>
<td>C=O stretching vibration (carboxylic acid)</td>
</tr>
<tr>
<td>1410</td>
<td>Bending vibration of CH₂ and CH₃ aliphatic groups</td>
</tr>
<tr>
<td>1176</td>
<td>Rocking vibration of CH₂ and CH₃ aliphatic groups</td>
</tr>
<tr>
<td>949, 988</td>
<td>Stretching vibration of C-O ester groups</td>
</tr>
<tr>
<td>993</td>
<td>Cis trans doublet</td>
</tr>
<tr>
<td></td>
<td>Trans trans singlet</td>
</tr>
</tbody>
</table>

**Table 3.** The main wavelengths in the FTIR functional groups of linolenic acid.

Results of studies on polymerization of extracts of fresh aspen mimicked those of the linolenic acid in that the extractives became tacky as the polymerization progressed. The polymerised material was soluble after 24-hour conditioning and partially soluble (14%) after 48-hour conditioning. The solubility behaviour of the polymeric film was the same as that of polymerised linolenic acid.
The FTIR spectra of the polymerised sample are displayed in Figure 5. Overall, the changes in spectral pattern upon polymerization mimic those of linolenic acid, e.g., the appearance of a doublet at 1711 and 1737 cm$^{-1}$.

Figure 5. FTIR spectra of polymerised and non-polymerised fresh aspen extractives

Molecular weight distribution data of the polymerised matter are shown in Table 4 and in Figure 6. The figure shows that polymerization significantly broadens the elution profile; what was mainly a single narrow peak at time 0 became a wide convolution of peaks, with a large portion extending towards higher molecular weights. As a result, average MW's and polydispersities of the extracts increased when exposed to high temperatures. The data show that the polymerization is quite extensive, especially in the DCM extracts of the polymeric matter. The values are much higher than that of seasoned wood (values in Table 4). This is not surprising as it should be expected that seasoning in an oven would induce more rapid and drastic seasoning than outside wood storage.

<table>
<thead>
<tr>
<th>Sample</th>
<th>MW$_{n}$</th>
<th>MW$_{w}$</th>
<th>MW$_{z}$</th>
<th>MW$<em>{w}$/MW$</em>{n}$</th>
<th>MW$<em>{w}$/MW$</em>{z}$</th>
<th>MW$<em>{z}$/MW$</em>{n}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracts of aspen at time 0</td>
<td>1470</td>
<td>1560</td>
<td>1630</td>
<td>1.1</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>DCM extracts at time 0</td>
<td>1460</td>
<td>1550</td>
<td>1620</td>
<td>1.1</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Extracts of aspen after 48 h</td>
<td>1120</td>
<td>1780</td>
<td>3450</td>
<td>1.6</td>
<td>3.1</td>
<td>1.9</td>
</tr>
<tr>
<td>DCM extracts after 48 h</td>
<td>1500</td>
<td>2950</td>
<td>7170</td>
<td>2.0</td>
<td>4.8</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Table 4. Effect of polymerisation on molecular weight distribution of extracts of fresh aspen.

Figure 6. SEC of extracts of polymerised and non-polymerised aspen extractives. Results are expressed as relative concentration vs. log MW (FST equivalent)

PY-GC/MS ANALYSES

The polymerised extracts were characterized by Py-GC/MS. This technique has previously been used for quantitative determination of organic compounds in various matrices (14-16).

24-H POLYMERIZATION

Pyrograms of the original extracts and the soluble and insoluble portions of the polymerised extracts are shown in Figure 7. The data show that:

1. The saturated fatty acids decrease upon polymerization.
2. The unsaturated fatty acids decrease upon polymerization; they are present in lower amounts in the soluble fraction and completely absent in the insoluble fraction.
3. New compounds, viz., nonadecenoic and octadecenoic acids, are present in the soluble and insoluble fractions of the polymerized matter.
4. The presence of peaks that elute at high retentions times (beyond 20 minutes) are evidence for the formation of higher molecular weight fatty acids.

Figure 7. Pyrograms of polymerised and non-polymerised aspen extracts after conditioning for 24 hours.

48-H POLYMERIZATION

Pyrograms generated by 48 hour pyrolysis shown in Figure 8, indicate the following:
1. The dioic acids are present in both the soluble and insoluble fractions of the polymerized extracts, albeit in higher amounts in the insoluble fraction.
2. There is a significant decrease in the amounts of the saturated and most of the unsaturated fatty acids in the polymerized fractions, more so in the insoluble fraction.
3. The insoluble fraction of the polymerized extracts displays evidence of higher amounts of high molecular weight fatty acids than the soluble fraction.

Pyrograms of polymerised and non-polymerised aspen extracts after conditioning for 48 hours.

Pyrogram at 650 °C shows that the components remaining after initial pyrolysis at 450 °C are mainly sterol type compounds as shown in Figure 9. The amounts of sterols increase significantly after polymerization. Identification of the sterols via the NIST mass spectral library database indicated the presence of sterol acetates. The mechanism for the survival or formation of these compounds in the polymeric matrix is not clear.

CONCLUSIONS

Our studies indicate that polymerization of wood resin components occurs during seasoning of aspen wood. The polymerization probably occurs via oxidation of fatty acids, especially the unsaturated ones, and glyceride components. The polymerization results in formation of products that are difficult to dissolve in normal solvents, depending on the extent of the polymerization. Also, the polymerization seems to result in the formation of sterol-like compounds, compounds that are typically associated with “aspen wax”. This implies that the seasoning practices used in aspen mills can result in the formation of polymerized wood resin that will be difficult to remove if present in pulp and paper products. On the other hand, these problems may be minor compared to using unseasoned wood.

ACKNOWLEDGEMENT

Many thanks to B. Ambayec for technical assistance.

REFERENCES

(1) Rowe, J.W. and Conner, A.H., Extractives in eastern hardwoods – a review, General Technical Report FPL 18, Forest Products Laboratory, Madison, WI, US. (1979)


The polymerization of aspen wood resin results in the formation of products that are difficult, especially the unsaturated ones, and glyceride components. Our studies indicate that polymerization of wood resin causes more pitch problems than softwoods in kraft pulping, bleaching, and causes more pitch problems in paper during ageing, Tappi J., 94(10): 25-28, 31 (1980).

References:

Original manuscript received 23 June 2012, revision accepted 30 October 2012"