Reaction Kinetics, Mechanisms and Catalysis

January 2012/ Vol. 106 (1), DOI 10.1007/s11144-012-0423-7

Preparation and characterization of WO₃/Bi₃O₄Cl nanocomposite and its photocatalytic behavior under visible light irradiation

Chakraborty AK¹ and Kebede MA²

1Department of Applied Chemistry and Chemical Technology, Islamic University, Kushtia 7003, Bangladesh

2CSIR. Materials Science and Manufacturing

Email: <u>akc_iu@yahoo.co.uk</u>

Abstract

The highly efficient and visible light ($\lambda \ge 420$ nm) responsive composite photocatalyst WO₃/Bi₃O₄Cl was prepared by the simple incipient wetness method. The heterojunction structure WO₃/Bi₃O₄Cl demonstrated notably higher photocatalytic activity than the individual components WO₃ or Bi₃O₄Cl for the complete mineralization of gaseous 2-propanol, aqueous 1,4-dichlorobenzene and several other organic compounds in aqueous phase under visible-light irradiation. The photocatalytic efficiency of the composite was optimized at 7 mol% WO₃/Bi₃O₄Cl and annealed at 700 °C for 1 h. In comparison with Degussa P25, the photocatalytic activity with optimized composition was 5.9 times in evolving CO₂ and 8.8 times in decomposing IP in gas phase. While in aqueous phase, its photocatalytic efficiency was 19–22 times and 9–10 times, respectively, compared to that of Degussa P25 and Bi₂O₃. Remarkably, its efficiency was estimated to be 1.6 times that of typical N-doped TiO₂ in the evolution of CO₂. The obviously enhanced photocatalytic performance of WO₃/Bi₃O₄Cl composite has been discussed on the basis of the relative energy band positions of the Bi₃O₄Cl and WO₃ semiconductors.