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This paper presents a weakly compressible volume-of-fluid formulation for modelling
immiscible high density ratio two-fluid flow under low Mach number conditions. This fol-
lows findings of experimental analyses that concluded the compressibility of the gas has a
noteworthy effect on predicted pressure loads in liquid–gas flow in certain instances. With
the aim of providing a more accurate numerical representation of dynamic two-fluid flow,
the solver is subsequently extended to account for variations in gas densities. A set of gov-
erning equations is proposed, which accounts for the compressible properties of the gas
phase in a manner which allows for a computationally efficient numerical simulation. Fur-
thermore, the governing equations are numerically expressed so that they allow for large
variations in the material properties, without introducing notable non-physical oscillations
over the interface. For the discretisation of the governing equations an edge-based vertex-
centred finite volume approach is followed. The developed solver is applied to various test
cases and demonstrated to be efficient and accurate.

� 2013 Published by Elsevier Inc.
38
1. Introduction

As computational hardware and modelling techniques improve, the fidelity of numerical models increase along with their
ability to model more complex flow phenomena with greater efficiency. One of the fields that enjoys continuous interest is
the modelling of immiscible two-fluid flow or free-surface modelling (FSM) as it is commonly referred to. Examples of indus-
tries that benefit from accurate modelling of dynamic two-fluid flow include: The casting industry; maritime and naval engi-
neering (where impact loads on fixed and floating structures are studied); as well as the transportation of fuel and other
fluids by means of surface or air.

To date, most free-surface models treat both gas and liquid as incompressible [1–4], neglecting the effect of density
changes due to pressure variations in the fluid. Though this is a reasonable assumption for most free-surface flow regimes,
with high density ratio systems entrapped gas pockets may be subjected to notable fluctuations in pressure. Therefore, in
these cases the compressibility of the gas cannot be neglected as it would influence the predicted pressures.

In a sensitivity analysis of two-fluid sloshing, [5] concluded that under near resonant conditions the inclusion of the com-
pressibility of the gas has an noteworthy effect on the predicted pressure loads. Furthermore, experiments conducted by
[6,7] as well as [8] showed that the compressibility of air has a significant effect on the impact pressures measured during
Harms),
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sloshing on the tank walls. They note that the presence of the compressible air reduces the peak pressure levels, but in-
creases the duration of the impact.

Various authors ([9–11]) have presented high fidelity compressible multi-fluid models. These typically employ the seven
equation Baer–Nunziato type model, where two-fluid flow is described by two continuity equations, two momentum equa-
tions, two energy equations and a topological or interface equation. It is noted that with liquid–gas systems the material
properties may vary by three orders of magnitude, introducing large discontinuities over the interface. Furthermore, for
low Mach number flows, the time scales permitted for long wavelength acoustic wave propagation is not aligned with
the physical time scales typically of interest. Using the above cited high fidelity approach to model low Mach number
liquid–gas systems for an extended period of time is, therefore, deemed computationally overly expensive.

To account for the compressibility of single phase low Mach number flow, [12] presented a weakly compressible formu-
lation. By means of a non-dimensional analysis the governing equations were reconstructed and only the dominant terms
retained, allowing for a computationally efficient formulation. [13] subsequently applied this approach to an averaged
two-fluid free-surface model and used a single compressibility parameter to describe the two fluids. The compressibility
parameter is, however, a function of the square of the acoustic velocity and for liquid–gas systems may vary by an order
of magnitude, introducing a discontinuity in the temporal term over the interface. In passing it is noted that though
[14,15] have presented a weakly compressible formulation for free-surface flows; their formulations, however, only account
for the liquid and neglects the description of the low density gas.

This work endeavours to extend on the above work and to this end presents a weakly compressible volume-of-fluid (VOF)
formulation for modelling immiscible liquid–gas flow under low Mach number conditions. A set of volume-of-fluid govern-
ing equations are proposed that describe the flow of an immiscible liquid–gas system and accounts for the compressible
properties of the gas phase. The formulation furthermore allows the solution to be free from significant non-physical oscil-
lations when large differences in material properties are considered.

For spatial discretisation purposes, a compact stencil, edge-based finite volume approach is followed which is shown to
be accurate as well as computationally efficient ([16–18]), while being applicable to hybrid unstructured meshes. Further-
more, the VOF approach in conjunction with an existing blended higher resolution surface capturing scheme ([19,4,20]) can
be used to describe the evolution of the free-surface interface. For solution purposes, an efficient implicit matrix free meth-
odology is employed. Finally, the developed formulation is evaluated via the application to a number of test cases.
2. Weakly compressible liquid–gas solver

If an Eulerian volume-of-fluid approach ([21]) is followed, a control volume partially filled with liquid and gas can be con-
sidered, where the volume fraction occupied by the liquid and the gas are respectively denoted al and ag . The averaged liquid
and gas volume fractions for an arbitrary cell n are respectively calculated using the volume ratios, al ¼ Vl=Vn and
ag ¼ Vg=Vn. Furthermore, for this work a homogeneous flow model is employed, which assumes a cell-averaged velocity
and pressure, so that in a given cell ul ¼ ug ¼ u and pl ¼ pg ¼ p hold. Dias et al. [22] explain that an averaged velocity can
be assumed if the time scales on which the turbulent drag forces equalise the velocity are much smaller than the time scales
on which the flow is averaged.

Considering the low Mach number application of this work, a weakly compressible formulation which assumes barotropic
compression and expansion of the fluids is employed. Based on these assumptions, the continuity and momentum equations
of respectively the liquid and gas simplify to read
Please
ume-o
@ðalqlÞ
@t

þ @ðalqlujÞ
@xj

¼ 0 ð1Þ

@ðalqluiÞ
@t

þ @ðalqluiujÞ
@xj

þ @ðalpÞ
@xi

¼ Si
l ð2Þ

@ðagqgÞ
@t

þ
@ðagqgujÞ

@xj
¼ 0 ð3Þ

@ðagqguiÞ
@t

þ
@ðagqguiujÞ

@xj
þ @ðagpÞ

@xi
¼ Si

g ð4Þ
where ql and qg represent respectively the density of the liquid and the gas, and uj denotes the averaged cell velocity in the
coordinate direction j. The compatibility relation for the volume fractions is al þ ag ¼ 1 and the liquid and gas volume frac-
tions can, therefore, be expressed as al ¼ a and ag ¼ ð1� aÞ. The source terms, Sl and Sg , contain the hydro-static pressure
terms as well as the viscous terms. If Newtonian flow is assumed then the following holds
Si
l ¼ aqlgi þ

@

@xj
all

@ui

@xj

� �
ð5Þ

Si
g ¼ ð1� aÞqggi þ

@

@xj
ð1� aÞlg

@ui

@xj

� �
ð6Þ
where l denotes viscosity.
cite this article in press as: J.A. Heyns et al., A weakly compressible free-surface flow solver for liquid–gas systems using the vol-
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By adding Eq. (2) and Eq. (4) an averaged momentum equation for homogenous two-fluid flow is found
Please
ume-o
@ðquiÞ
@t

þ @ðquiujÞ
@xj

þ @p
@xi
¼ Si ð7Þ
where the mixture density and dynamic viscosity, expressed in terms of the volume fraction, are
q ¼ aql þ ð1� aÞqg

l ¼ all þ ð1� aÞlg
From the isentropic relation for the speed of sound, c2
l ¼ @p=@ql, and by using the product rule, the liquid continuity

Eq. (1) can be expanded and written as
a
c2

l

@p
@t
þ auj

c2
l

@p
@xj
þ ql

@a
@t
þ @auj

@xj

� �
¼ 0 ð8Þ
To evaluate the order of each term’s contribution, Eq. (8) is cast into a non-dimensional form. The reference values for
pressure, qou2

o , density, qo, velocity, uo, time, to, and length, lo yield the non-dimensional form
aSM2
l
@p�

@t�
þ aM2

l u�
@p�

@x�
þ q�l S

@a�

@t
þ
@a�u�j
@xj

� �
¼ 0 ð9Þ
where � denotes the non-dimensional quantities and Ml ¼ uo=cl is the liquid Mach number and S ¼ lo=uoto is the Strouhal
number.

For low Mach number liquid–gas systems it is noted that the square of the liquid Mach number, M2
l , is of order 10�7. If the

reference density, qo, is taken to be of the same order as the gas density, the term q�l would be of order 103. It is, therefore,
acceptable to neglect the first two terms of Eq. (8) and as the liquid density will always be non-zero the following holds
@a
@t
þ @ðaujÞ

@xj
¼ 0 ð10Þ
which is similar to the VOF equation for incompressible FSM.
Next, the product rule is again applied to the gas continuity Eq. (3) and by rearranging the terms the following expression

is found
ð1� aÞ
@qg

@t
þ ð1� aÞuj

@qg

@xj
þ qg

@uj

@xj
� qg

@a
@t
þ @ðaujÞ

@xj

� �
¼ 0 ð11Þ
where the last term in square brackets is the volume fraction Eq. (10) and equal to zero.
As pointed out previously, [12] presented a weakly compressible formulation for single phase flow with low Mach num-

bers. They showed via a non-dimensional analysis that in the expanded continuity equation the spatial derivative of pressure
is negligibly small. A similar approach can be followed here by casting the equation given above into its non-dimensional
form and evaluating the contribution of the respective terms. Again, from the isentropic relation for speed of sound,
c2

g ¼ @p=@qg , it follows
ð1� aÞ
c2

g

@p
@t
þ ð1� aÞuj

c2
g

@p
@xj
þ qg

@uj

@xj
¼ 0 ð12Þ
with the non-dimensional version reading
ð1� aÞSM2
g
@p�

@t�
þ ð1� aÞM2

g u�j
@p�

@x�j
þ q�g

@u�j
@x�j
¼ 0 ð13Þ
where Mg ¼ uo=cg is the gas Mach number and the square of Mg is of the order 10�6. As previously noted, the reference den-
sity is of the same order as the gas density and q�g is therefore of order unity. When considering low Mach number liquid–gas
systems, the order of the terms would suggest that the contribution of the spatial derivative of pressure to the gas density
can be neglected. When modelling the high frequency pressure oscillations during the compression and expansion of en-
trapped gas pockets, relatively small time scales are required. If, however, larger length scales are considered, the effect
of the temporal term cannot be neglected due to the increased contribution of the Strouhal number. From the non-dimen-
sional analysis the gas continuity equation for weakly compressible flow thus simplifies to
ð1� aÞ
qg

@qg

@t
¼ � @uj

@xj
ð14Þ
which also holds for the incompressible liquid phase as it then reads @ui=@xi ¼ 0.
For the weakly compressible formulation the barotropic compression and expansion of the gas can be approximated

using a linear form of the ideal gas law
cite this article in press as: J.A. Heyns et al., A weakly compressible free-surface flow solver for liquid–gas systems using the vol-
f-fluid approach, J. Comput. Phys. (2013), http://dx.doi.org/10.1016/j.jcp.2013.01.022
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Please
ume-o
qg � qgo ¼
1
c2

g
ðp� poÞ ð15Þ
where qgo and po is the initial gas density and pressure.
Following the non-dimensional analysis, it is implied that the effect of the pressure gradient in the gas phase on the gas

density is negligible. To ensure consistency in the momentum equation, it is required that the hydro-static source term in the
gas phase be neglected. This is, however, acceptable as the hydro-static pressure is a function of the density, which for the
gas is up to three orders of magnitude smaller than the hydro-static pressure of the liquid.

To conclude, the proposed weakly compressible VOF equations describing low Mach-number liquid–gas flow read
@a
@t
þ @ðaujÞ

@xj
¼ 0 ð16Þ

ð1� aÞ
qg

@qg

@t
¼ � @uj

@xj
ð17Þ

@ðquiÞ
@t

þ @ðquiujÞ
@xj

þ @p
@xi
¼ @

@xj
l @ui

@xj

� �
þ qlgi ð18Þ
The formulation takes into consideration changes in gas density due to variations in pressure, describing both fluids and
accounts for differences in the liquid–gas material properties. Apart from neglecting the gas hydrostatic pressure contribu-
tion, only the continuity equation differs from the incompressible VOF formulation as it now contains a conditional temporal
term. As the conditional temporal term is only activated in the gas phase, it results in a discontinuity in the velocity gradient.

3. Numerical flow solver

In this section a general introduction to the finite volume, vertex centred, edge-based approach is presented. For a more
detailed discussion of the spatial discretisation it is asked that the reader refers to the work of [16,23]. The weakly compress-
ible FSM formulation derived previously can be described with a single unified governing equation
A
@W
@t
þ @Fj

@xj
� @Gj

@xj
¼ S ð19Þ
where
W ¼
a
qg

qui

0
B@

1
CA; Fj ¼

auj

uj

quiuj þ dijp

0
B@

1
CA; Gj ¼

0
0

l @ui
@xj

0
B@

1
CA;

A ¼
0

1�a
qg

0

0
B@

1
CA; S ¼

0
0

qlgi þ Si

0
B@

1
CA
With the said finite volume approach, the spatial domain, V, is subdivided into a finite number of non-overlapping
volumes Vn 2 V. The dual-mesh construction for the vertex-centred approach as proposed by [24] is illustrated in Fig. 1.
By integrating over the finite volume, Vn, the governing equation can be cast into the integral form and from the divergence
theorem can subsequently be written in terms of surface integrals
Z

Vn

A
@W
@t

dV þ
Z
An

ðFj � GjÞnjdA ¼
Z
Vn

SdV ð20Þ
Fig. 1. Schematic of the median-dual-mesh construction on hybrid grids.

cite this article in press as: J.A. Heyns et al., A weakly compressible free-surface flow solver for liquid–gas systems using the vol-
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where An is the surface bounding Vn and n is the unit vector normal to the boundary segment A pointing outward.
To exploit the computational advantages of an edge-based assembly, the bounding surface information is stored in an

edge-wise manner, as edge-coefficients, which is defined as
Please
ume-o
Cf ¼ nf1Af1
þ nf2

Af2
ð21Þ
where f denotes the face value.
3.1. Volume-of-fluid approach

The volume-of-fluid or liquid continuity Eq. (10) remains unchanged from the incompressible FSM formulation
([19,4,20]) and is, therefore, solved using a blended High-Resolution Artificial Compressive (HiRAC) formulation ([25]). HiR-
AC employes a Jacobi type dual time stepping formulation with second-order Crank–Nicholson for the temporal discretision
of the VOF equation. It also introduces an artificial compressive term ([26]) which is only activated in the interface to reduce
the numerical smearing associated with the VOF method. The semi-discrete form of the VOF equation reads
asþ1 � as

Dts
¼ �1

2
@ðuiaÞ
@xi

����
s

þ @ðuiaÞ
@xi

����
n� �
� @

@xi
ðucjiað1� aÞÞjs � as � an

Dt
ð22Þ
where Dts is the pseudo-time step size and uc is the compressive velocity which acts normal to the free-surface interface. The
volume fraction face value, af , is discretised using a blended high-resolution scheme ([4]), switching between compressive
and higher resolution schemes based on the alignment of the free surface interface and the edge face. The combination of the
higher-resolution scheme and the addition of an artificial term reduces numerical diffusivity, ensuring a sharp interface is
maintained, while the integrity of the interface shape is preserved.

It should, however, be noted that according to Godunov’s theorem no linear convection scheme of second-order accuracy
or higher can be monotonic ([27]). Therefore, to maintain a bounded solution, non-linear higher-resolution schemes employ
second-order interpolation in regions with smooth gradients, but revert back to first-order interpolation when sharp changes
in the gradient are encountered ([27,28,4]). This results in the accuracy of VOF schemes varying between first- and second-
order.
3.2. Split solver with artificial compressibility

For incompressible flow, [29] proposed a matrix-free solver which combines the projected pressure (PP) method ([30])
and the artificial compressibility (AC) approach ([31]). It is said to provide the stability and robustness of the PP method
while retaining the computational efficiency of the AC approach. The split solver with AC was extended for application to
edge-based finite volume by [32].

Following a similar procedure, the continuity and momentum equations are solved using an upwind-stabilised pressure-
projection split with artificial compressibility. It is found that by employing the pressure-projection split with non-linear
higher-order upwind interpolation of the face fluxes sufficient numerical diffusion is introduced to ensure a stable solution.
Furthermore, by employing a Jacobi-type dual time-stepping approach the velocity, pressure and volume fraction is solved in
a fully coupled manner. The solver consists of three steps, first an intermediate momentum equation, from which the pres-
sure gradients are removed, is solved viz.
Dqu�i
Dt
¼ � @ðquiujÞ

@xj

����
s

þ l @

@xj

@ui

@xj

� �s

ð23Þ
where Dqu�i ¼ qu�i � quijn;Dt ¼ ts � tn and ts denotes dual time-stepping pseudo time.
Next, the pressure is calculated using an implicit pressure–projection equation with artificial compressibility
1
c2
s

psþ1 � ps

Dts
¼ � @

@xj
us

j þ Du�j þ
Dt
q
� @psþ1

@xj
þ aqlg

� �� �
� ð1� aÞ

qg

1
c2

g

psþ1 � pn

Dt
ð24Þ
where cs is the artificial acoustic velocity and Dts the pseudo time step size. The artificial acoustic velocity is calculated as
proposed by [33].

Finally, the velocities are calculated from the corrected momentum equation which contain the updated values
qusþ1
i � qus

i

Dts
¼ Dqu�i

Dt
� @psþ1

@xi
þ aqlg �

qus
i � qun

i

Dt
ð25Þ
where equation tends to the implicit solution as it converges in pseudo time.
To improve the solution convergence rate the pressure-projection equation is solved using a Generalised Minimal Resid-

ual (GMRES) algorithm with Lower–Upper Symmetric Gauss–Seidel (LU–SGS) preconditioning [34,35].
cite this article in press as: J.A. Heyns et al., A weakly compressible free-surface flow solver for liquid–gas systems using the vol-
f-fluid approach, J. Comput. Phys. (2013), http://dx.doi.org/10.1016/j.jcp.2013.01.022

http://dx.doi.org/10.1016/j.jcp.2013.01.022
Original text:
Inserted Text
Crank-Nicholson 

Original text:
Inserted Text
Lower-Upper 

Original text:
Inserted Text
Gauss-Seidel (LU-SGS) 

Original text:
Inserted Text
(

Original text:
Inserted Text
).

adam
Sticky Note
Double brackets

adam
Sticky Note
Double brackets

adam
Sticky Note
Double brackets

adam
Sticky Note
Double brackets

adam
Sticky Note
Double brackets

adam
Sticky Note
Double brackets

adam
Sticky Note
 Nithiarasu [27]

adam
Sticky Note
Double brackets

adam
Sticky Note
Double brackets

adam
Sticky Note
Malan and Lewis [30].




249

250

251

252

253

254

255

257257

258

259

260

261

262

264264

265

266

267

269269

270

271

273273

274

275

276

277

279279

280

281

283283

284

285

286

287

288

289

6 J.A. Heyns et al. / Journal of Computational Physics xxx (2013) xxx–xxx

YJCPH 4424 No. of Pages 14, Model 3G

5 February 2013
3.3. Treatment of discontinuities in the spatial derivatives

Löhner et al. [3] note that if the density of the liquid and gas varies significantly, small changes in the pressure gradient
over the interface will induce inaccurate acceleration of the gas. This consequently results in the formation of spurious oscil-
lations in the velocity field over the interface. To overcome this, [36] discretised the spatial pressure derivative in a piece-
wise linear manner. They noted that for incompressible free-surface flow the velocity field is continuous throughout the do-
main, so that for a given edge, !,
Please
ume-o
1
q
@p
@x

����
!

� c ð26Þ
In Eq. (26) the edge face value of the pressure is calculated using a piece-wise linear approximation, while the density is
treated as a nodal value which is interpolated in a stepwise manner (see Fig. 2). For the weakly compressible formulation the
contribution of the hydro-static pressure in the gas phase are neglected, resulting in a discontinuous source term. The piece-
wise linear interpolation of [36] is extended to include the discontinuous source term
1
q
@p
@x
� Sg

q

� �
!

¼ c ð27Þ
Similar to the density, the newly introduced discontinuous source term is computed using a piece-wise constant approx-
imation. Eq. (27) is integrated from node, g, to the edge face, f, to find an expression for pf in terms of the pressure at node g
Z f

g

1
q
@p
@x
� Sg

q
dx ¼

Z f

g
cdx ð28Þ
which yields
pf � pg ¼
qgL

2
Sg

qg
þ c

 !
ð29Þ
where L is the edge length.
In a similar fashion, by integrating from the edge face, f, to node n a face pressure in terms of the pressure and source term

at node n is obtained
pn � pf ¼
qnL
2

Sn

qn

þ c

 !
ð30Þ
The face pressure in terms of the pressures and source terms at node g and n is found by subtracting Eq. (29) from Eq. (30)
pf ¼
qgpn þ qnpg

qg þ qn

þ
qgqnL

2ðqg þ qnÞ
Sg

qg
� Sn

qn

 !
ð31Þ
The extension of the incompressible FSM formulation to account for changes in the density involves the addition of a
temporal term to the gas phase. It is found that this may result in a sharp change in the gradient of the velocity over the
free-surface interface (as demonstrated in the Numerical evaluation). To ensure an oscillatory free and stable solution,
the discretised velocity face flux is interpolated using a non-linear third-order slope limiting scheme. It is found that accept-
able results where obtained by employing third-order upwinding with the Sweby limiter ([27,37]). In this study the exten-
sion to unstructured meshes presented by [38] is used.
Fig. 2. Interpolation of the edge face values of pressure and density.
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4. Numerical evaluation

In this section, the implementation of the proposed weakly compressible formulation is verified by considering test cases
with known analytical solutions, where after it is evaluated by means of application focussed problems. The problems con-
sidered in the validation of the governing equations describe the expansion and compression of the gas in one- and two-
dimensions. In the application focussed test cases the results from the weakly compressible solver are compared to that
of an incompressible solver. The material properties are given in Table 1 and the gravitational acceleration of
g ¼ 9:81 m=s2 is used.
4.1. Forced compression and expansion of the gas phase

To validate the newly proposed weakly compressible formulation, two test cases which model the forced compression
and expansion of a gas pocket are presented. The first considers the linear filling of a quasi one-dimensional tube whereby
a gas pocket entrapped at the end of the tube is compressed, whereas, in the second the two-dimensional implementation of
the formulation is evaluated by considering the sinusoidal compression and expansion of a gas bubble.

For both cases the analytical solution can be obtained by evaluating the conservation of the liquid and gas mass. It is
noted that the liquid density should remain constant as it is assumed to be incompressible and the gas density follows from
evaluating the change in volume due to the liquid inflow. The relation between the gas density and pressure is obtained by
means of the ideal gas law.
4.1.1. Quasi one-dimensional tube
As mentioned, the first test case considers the linear filling of a quasi one-dimensional tube that is sealed off at the end.

Liquid enters the tube at a constant velocity and compresses the entrapped pocket of gas at the end of the tube (Fig. 3). The
velocity of the liquid at the inlet is 0.1 m/s and during the 5 s of the analysis, the initial liquid–gas interface propagates from
x = 0.25 m to x = 0.75 m. For the purpose of assessing mesh dependence, three structured meshes are used: A coarse mesh
with 3 � 30 nodes; an intermediate mesh with 3 � 50 nodes; and a fine mesh with 3 � 100 nodes. Slip boundary conditions
are specified on the sides of the tube and gravity is neglected.

In Fig. 4(a) the averaged pressure in the gas is shown for the three meshes. It shows the non-linear growth in pressure
over time and that for the fine mesh the analytical solution is recovered. In Fig. 4(b) the velocity profile for the coarse mesh
is shown at various time frames during the analysis (t = 1 s, t = 2 s, t = 3 s and t = 4 s). Even for the coarse mesh a good cor-
relation between the numerical and analytical solution is found. Importantly, it is noted that the predicted solution is free of
non-physical oscillations, despite the sharp change in the velocity gradient over the free-surface interface. As it is expected,
the velocity is constant within the incompressible fluid and reduces linearly in the compressible gas.
4.1.2. Two-dimensional gas bubble
To validate the two-dimensional implementation, a 0.2 m diameter gas bubble subjected to sinusoidal compression and

expansion is considered. The bottom of the domain (see Fig. 5) is open and a sinusoidal velocity prescribed
Please
ume-o
ui ¼ a sinð2phtÞ ð32Þ
where the amplitude and frequency are respectively a ¼ 0:05 and h ¼ 2. As with the previous case, gravity is neglected and
slip boundary conditions are specified on the sides of the tube.
Table 1
Material properties for the liquid and gas at 20 �C.

Liquid (water) Gas (air)

Density (kg=m3) 998 1:21

Viscosity (kg=ðm sÞ) 1:002� 10�3 1:812� 10�5

Acoustic velc (m=s) � 343.2

Fig. 3. Schematic of the quasi one-dimensional tube.
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In Fig. 6(a) the average pressure in the gas bubble is shown. For the analysis three different structured meshes are used
with respectively 40 � 50 nodes, 60 � 75 nodes, and 80 � 100 nodes. It is noted that the numerical results of all three meshes
very closely approximates the analytical solution, with only a 1.7% difference at the point of highest compression (t ¼ 0:25 s).
The velocity vectors and bubble contour lines at t ¼ 0:125 s are plotted in Fig. 6(b).

4.2. Horizontal shaker

The next test-case involves an application study. For this purpose, a liquid pocket trapped between two gas pockets in a
long horizontal tube (Fig. 7) is subjected to variable sideways excitation. The liquid pocket is placed at the centre of the tube
and is evaluated under two different horizontal accelerations. In the first analysis, a smooth sinusoidal acceleration is applied
to the tube and, in the second, a step function with a sharp ramp in acceleration is applied. These are expressed as
Please
ume-o
asin
x ¼ 10 sinð2ptÞ ð33Þ

astep
x ¼

0 if 0 < t < 0:1
10 if t > 0:1

�
ð34Þ
where ax is the lateral acceleration and t denotes time. For the purpose of this test case gravitational acceleration as well as
the liquid and gas viscosity are neglected.

4.2.1. Sinusoidal excitation
In Fig. 8 the left side wall pressures are plotted over time, where numerical results for different acoustic velocities are

compared to an incompressible model. The incompressible model assumes an infinitely large acoustic velocity, which im-
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plies no relative liquid–gas movement and the pressure on the side-wall can be approximated as the product of mass times
acceleration.

Similar to a spring-mass system, the gas initially absorbs the energy where after it is released, resulting the oscillating
behaviour seen in the predicted pressures. From Fig. 8 it is noted that as the gas acoustic velocity increases the numerical
solution approaches the incompressible limit. It is found that for the gradual sinusoidal excitation the effect of the compress-
ibility of the gas is less pronounced and the computed maximum pressure is of the same order as the predicted maximum
pressure. Only for an acoustic velocity of c = 200 m/s a notable difference is present.
Please cite this article in press as: J.A. Heyns et al., A weakly compressible free-surface flow solver for liquid–gas systems using the vol-
ume-of-fluid approach, J. Comput. Phys. (2013), http://dx.doi.org/10.1016/j.jcp.2013.01.022
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4.2.2. Step function excitation
For the liquid pocket subjected to a sharp step-like acceleration the predicted pressures on the left side-wall is show in

Fig. 9. The results for different meshes are compared to the analytical solution as well as the incompressible model describe
previously. The meshes used for this analysis are refined in the surroundings of the free-surface interface, so that the hor-
izontal spatial resolution in these areas are respectively 0.01 m, 0.005 m and 0.0025 m. For this analysis an acoustic velocity
of 343.2 m/s is assumed.

For this problem an analytical solution is obtained by evaluating the forces acting on the liquid pocket. These include the
gas pressure acting on the liquid at the left and right liquid–gas interfaces as well as the acceleration of the liquid mass. The
gas pressures can be computed in a similar fashion as described in Section 4.1, by considering the conservation of mass. Then
by applying the said acceleration to the system, the resulting acceleration of the liquid pocket can calculated and subse-
quently the relative liquid–gas movement as well as gas density.

From Fig. 9 it is noted that with the sharp step like excitation, the compressibility of the gas greatly influences the pres-
sure measured on the side-wall and the predicted maximum pressure is a factor 2 larger than the pressure predicted by the
incompressible model. From the figure it is further noted that as the mesh is refined the numerical results approach the ana-
lytical solution. For the coarse mesh where the degree of interface smearing is large compared to the amount of interface
movement, it is found that the numerical dissipation fairly quickly dampens out the pressure oscillations, deteriorating
the solution accuracy.

In an attempt to quantify the order of the VOF solver along with the weakly compressible extension, the relative L2 norm
error of the left side-wall pressures is shown in Fig. 10. From the figure, it appears the solver is approximately first-order. The
order of the solver is influenced by both the spatial non-linear interpolation, which ensures a bounded solution at the
numerical discontinuity over the liquid–gas interface, as well as the discretisation of the additional temporal term in the li-
quid continuity Eq. (14). In Section 3.1 it is noted that the accuracy of the non-linear spatial interpolation varies between
first- and second-order accuracy. As the projected pressure Eq. (24), which contains the additional temporal term, is solved
in pseudo time it approaches a first-order implicit solution. In this problem where the flow is highly dependent on variations
in gas density, the effect of the the first-order approximation of the temporal term is clearly evident.

For large systems subjected to violent sloshing conditions it is not always practical to refine the mesh to the degree stated
above, suggesting that these problems will be subjected to poor numerical accuracy. It is, however, noted that for sloshing
type analyses the maximum pressure amplitudes and load frequencies are typically of importance and from Fig. 9 it is noted
that even with the intermediate mesh acceptable levels of accuracy are obtained during the first oscillation. It is, therefore,
suggested that despite these restrictions the weakly compressible FSM formulation provides a measurable improvement in
predicting pressure loads of two-fluid flow subjected to irregular accelerations.
4.3. Sloshing analysis of a partially filled tank

Finally, the new weakly compressible formulation is evaluated by means of a comparative study, where a partially filled
tank with a baffle configuration under lateral excitation is considered. The tank, shown in Fig. 11, is 70% filled with liquid and
is subjected to lateral sinusoidal excitation with an amplitude of 8 m/s2 and a frequency of 2 Hz. For the analysis a 5000 node
structured mesh (see Fig. 11) is used; the pseudo time-step is computed using a CFL number of 0.1 and for the VOF equation
the real time step is restricted to a similar Courant number.
Fig. 9. Left side-wall pressure for the shaker subjected to a step-like function.
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Fig. 11. Schematic representation mesh of the tank with baffle subjected to sinusoidal lateral excitation as well as the 5000 node structured mesh.

Fig. 12. Difference in average pressure between the left and right side wall of the partially filled tank.
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By evaluating the predicted average side-wall pressures, the compressible and incompressible results are compared. As
only the change in pressure can be computed for the incompressible flow and not the absolute pressures, the difference be-
tween the average left and right side wall pressures is plotted in Fig. 12. The difference between the average pressure mea-
sured on the left and right side of the baffle is plotted in Fig. 13.

A notable difference between the compressible and incompressible formulations are the sharp pressure spikes at t = 0.5 s
and t = 0.62 s, which correspond to the times that the top baffle opening is covered by liquid. As the incompressible formu-
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lation is incapable of accounting for the compression of the gas, it results in sharp spikes in the predicted pressure. For the
weakly compressible formulation the maximum pressure calculated at these points are slightly less, but as expected, oscil-
lations in pressure are noted as the gas stores and releases energy. Considering the pressures measured on the baffle, it ap-
pears the weakly compressible formulation predicts larger variations in the forces acting on the sides as well as an increase
in their frequency.

The numerical results seems to indicate the same behaviour as the experimental findings reported by [6–8] which note
that the presence of the compressible air may reduce the peak pressure levels, but increases the duration of the impact. For
the weakly compressible formulation it is noted that there is a slight improvement in the solution time as the solution con-
verges quicker. As the latter takes into account the compressibility of the gas, it is suspected that the scheme softens the
numerical system leading to a quicker convergence of the solution.
5. Conclusion

In conclusion, to take into account the compressible properties of the gas of a low Mach number immiscible liquid–gas
system, a new weakly compressible formulation using the VOF approach is developed. Considering liquid–gas systems under
low Mach number flow conditions, a new set of governing equations is derived through a non-dimensional analysis. From
this it follows that the liquid may be treated as incompressible and the gas modelled using a weakly compressible approx-
imation. The governing equations are implemented in a vertex-centred edge-based solver and the spatial interpolation is
done in a manner that ensures an oscillatory free solution. In the application to various test cases the new formulation is
validated by demonstrating its capability to accurately represent the compression and expansion of the gas. Furthermore,
it is found that the compressible gas has a pronounced effect on pressure predictions for sharp, violent excitation of high
density ratio two-fluid flow. In pressure predictions of sloshing analyses it is found that the presence of the compressible
gas reduces the peak impact pressures, but increases the duration and frequency of the pressure variations.
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