
The International Journal of Condition Monitoring | Volume 2 | Issue 2 | December 2012
1

MACHINE CONDITION MONITORING | FEATURE

T Heyns is with the Council for Scientific and Industrial Research South 
Africa, MSM, SST, Pretoria, South Africa, 0081. Tel: +27 7214 3879; 
Email: theoheyns@gmail.com

P S Heyns is with the Dynamic Systems Group, Department of Mechanical 
and Aeronautical Engineering, University of Pretoria, Pretoria, South 
Africa, 0081. Tel: +27 8244 76068; Email: stephan.heyns@up.ac.za 

Radoslaw Zimroz is with the Diagnostics and Vibro-Acoustics Science 
Laboratory, Wroclaw University of Technology, Pl Teatralny 2, Wroclaw, 
50-051, Poland. Tel: +48 71 320 6849; Email: radoslaw.zimroz@pwr.
wroc.pl 

This paper proposes a novel framework for monitoring the 
condition of a rotating machine ( for example a gearbox or a 
bearing) that may be subject to load and speed fluctuations. 
The methodology is especially relevant in situations where 
no (or only noisy) shaft angular position measurements are 
available. Shaft angular position reference measurements are 
often not available due to physical constraints that render it 
difficult to install tachometers or encoders on the shaft of 
interest. The proposed methodology aims to simplify the 
task of monitoring a time-varying vibration signal by using a 
neural network to filter out the normal vibration components 
that generally tend to dominate the signal. The neural 
network may be optimised without the need for extensive 
datasets that are representative of different machine fault 
conditions. The envelope of the filtered signal is referred to 
as a discrepancy transform, since the discrepancy signal 
indicates the presence of fault-induced signal distortions. 
The discrepancy signal tends to be significantly simpler 
(smoother) than the original vibration waveform and may 
thus be resampled using a less accurate reference signal 
than would be required to resample the original waveform. 
A numerical gear model is used to illustrate the diagnostic 
potential of the proposed methodology. 

1.	 Introduction
The performance of many conventional machine condition 
monitoring strategies (for example spectral analysis) tends to 
be impeded if the machine is subject to fluctuating operating 
conditions[1]. Fluctuating operating conditions tend to induce 
amplitude, frequency and phase modulation in the vibration 
signals, hence destroying the wide-sense stationarity of the signal, 
which is implicitly assumed when applying Fourier analysis[2]. 

Order tracking, where the time domain signal is resampled at 
fixed angular intervals, tends to suppress some of the frequency 
modulating effects induced by speed fluctuation[2]. Angular signal 
resampling requires a shaft angular position reference signal. Due 
to physical and financial constraints, it is not always possible to 
install the additional equipment (for example an optical encoder 
or tachometer) that is required to accurately measure the shaft 
angular position[3]. For this reason, research[3,4,5] has been 
conducted to determine how the shaft angular position may be 
directly estimated from the vibration signal. Bonnardot et al[3] 
consider a phase demodulation technique, where a shaft harmonic 
is selected and isolated by means of appropriate filtering. The 
Hilbert transform of the signal is used to represent the signal 
in its analytic form. This subsequently allows for the extraction 
of the phase angle of the identified frequency component. 
Urbanek  et al[4] investigate the relative performance of the phase-
based methodology first proposed by Bonnardot et al[3] with an 
amplitude-based method. In addition, they also briefly refer to a 
methodology that allows for estimating the relative shaft speed 
by inspecting the local maxima in a spectrogram of the vibration 
signal. The proposed methodology avoids the need for expensive 
additional transducers to measure the shaft angular position, but 
is somewhat limited both in terms of the accuracy and the range 
of speeds to which it may be applied[3,4]. Combet and Gelman[5] 
extend the algorithm proposed by Bonnardot et al[3] by allowing 
for a method whereby the mesh harmonic, which will be narrow-
band demodulated and used to estimate the shaft phase, may 
automatically be selected based on the local signal-to-noise ratio. 
Further research on sensorless frequency/speed estimation 
via timescale and time-frequency analysis can also be found in 
works by Combet and Zimroz[6], Millioz and Martin[7], as well 
as Zimroz et al[8,9]. Interesting results have also been obtained 
by the research team led by Antoniadis, by means of parametric 
modelling and by implementing the Teager-Kaiser operator[10,11].

Residual signal analysis refers to a collection of techniques that 
aim to remove the regular components from a vibration signal, 
so that only fault-induced signal components remain. A number 
of different approaches for obtaining residual signals have been 
investigated in literature. Stewart[12] computes a residual signal by 
removing the gear meshing harmonics and its adjacent sidebands 
from the signal average spectrum before converting the signal back 
to the angle domain. Wang and Wong[13] use an autoregressive 
(AR) filter to model the vibration waveform, which is recorded 
when the gearbox is still in a good condition. A novel signal may 
be subsequently transformed to a residual signal by computing 
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the difference between the measured signal and the one-step-
ahead AR predictions. Heyns et al[14] extend Wang and Wong’s 
idea to better deal with time-varying operating conditions by 
implementing multiple parallel AR models. The different AR 
models represent the machine behaviour for different operating 
conditions. Apart from the abovementioned techniques, it 
should be recalled that Antoni and Randall used so-called self-
adaptive noise cancellation (SANC) techniques based on a least 
mean squares (LMS) adaptive filter[15]. Zirmoz and Bartelmus 
have applied normalised LMS in order to extract a residual signal 
from a vibration signal measured on a belt conveyor pulley drive 
unit in the presence of time-varying speed/load conditions[16]. 
An advanced approach that uses an adaptive Schur filter was 
recently proposed by Makowski and Zimroz[17].

This paper proposes a novel framework for monitoring the 
condition of a rotating machine (for example a gearbox or a 
bearing) that may be subject to load and speed fluctuations. 
The methodology is based on the combined use of envelope 
residual signal analysis along with approximate signal resampling. 
This allows for vibration-based condition monitoring under 
time-varying operating conditions, even when no accurate shaft 
angular position measurements are available. A feed-forward 
neural network is used to filter the time-varying vibration signal 
in order to remove the signal components that correspond to a 
healthy vibration signal. The envelope of the residual signal is 
then computed by means of the Hilbert transform. The obtained 
transform is referred to as a discrepancy transform, since the 
discrepancy signal indicates the presence of fault-induced signal 
distortions (discrepancies) that are not present in the baseline 
(healthy) signal. The discrepancy signal tends to be significantly 
simpler and smoother than the original vibration waveform. The 
instantaneous shaft angular speed may then be estimated from the 
original vibration signal and used to approximately resample the 
discrepancy signal. The resampling stage accounts for significant 
(but slowly varying) frequency modulation, while the smooth 
character of the discrepancy signal renders the transform more 
robust to noise in the estimated shaft angular reference signal. 

This paper uses a numerical gear model to briefly illustrate 
how the combined use of discrepancy analysis and approximate 
signal resampling may be used to monitor the condition of a 
rotating machine that is subject to time-varying operations, even 
when no angular position sensor is available.

2.	 Methodology
The methodology implemented in this paper is summarised in 
Figure 1. 

The first step is concerned with computing a residual signal 
by means of comparing a novel vibration signal to the reference 
neural network (NN) model. The reference model represents 
the vibration response from the gearbox while it is in a good 
condition. It is assumed that the baseline vibration response is 
representative of the different possible operating conditions. 
These conditions are represented by multiple snippets of time 
series, which are appended to the training data. A single non-
linear NN regression model is used to represent the complete 
training dataset. The performance of the NN is compared to 

that of a linear AR model. Once the residual signal is available, 
its analytic representation is obtained by means of the Hilbert 
transform. The analytic representation is used to compute the 
signal envelope, which is also referred to as a discrepancy signal. 
The discrepancy signal indicates the time instances and the extent 
to which the measured signal deviates from the baseline model.

The information contained in the discrepancy transform 
is much simpler (lower bandwidth) compared to the original 
vibration waveform and is hence less sensitive to noise in the 
reference signal that will be used for resampling. The relative 
shaft rotational velocity may be estimated from the vibration 
waveform. In this paper, a simple clustering approach that 
considers the local maxima in the spectrogram is used to 
estimate the relative shaft speed. Depending on the application, 
more advanced signal resampling methodologies may be 
desirable, however, the aim of this paper is to illustrate that the 
methodology may be implemented even with only approximate 
relative speed measurements. Lastly, the spectrum and cepstrum 
of the discrepancy transform are computed and interpreted.

2.1	 Time-series modelling 
The residual signal rt at time instant t is computed as the difference 
between the observed signal value xt at time instant t and the one-
step-ahead model prediction x̂t  , so that rt = xt − x̂t .

2.2.1	 Autoregressive (AR) model
An AR model of order p is described by x̂t = akxt−kk=1

p∑ , so 
that the expected value x̂t  differs from the real waveform xt by 
some white noise b0σt. The AR spectral model, which is an all-
pole model, may be shown to be good for modelling spectra 
with sharply-defined peaks[18]. The AR coefficients are optimised 
based on a least squares error criterion.

2.2.2	 Neural network regression
A simple feed-forward neural network (NN) is also used to 
represent the time-series data. Similar to the AR model, the NN is 

Figure 1. Flowchart of the proposed methodology
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implemented so as to estimate the one-step-ahead prediction x̂t  
based on the p most recent signal observations xt−k{ }k=1

p . A NN 
architecture with sigmoid activation functions in the hidden layer 
and a linear activation function in the output layer is selected. To 
account for a possible constant offset, a bias value of one is added 
to the inputs. It has been shown that when this architecture is 
employed with a sufficient number of nodes in the hidden layer, 
it is a universal approximator that is capable of representing any 
continuous function to arbitrary precision[19].

The training dataset consists of n input vectors, which 
correspond to the n target values (which are the one-step-
ahead predictions). The neural network may be summarised 
by Equation (1), where g(º) represents the sigmoid activation 
function: 

                      x̂t = wjg wjkxt−k +wjk=1

n∑( )+wbj=1

p∑( ) ..................  (1)

The network is trained in Matlab by using backpropagation 
(efficient gradient descent) optimisation, whereby the weights 
of the networks are adjusted so as to minimise the sum squared 
error (SSE) between the predicted values x̂t  of the network and 
the target values. The optimisation procedure is terminated 
(convergence assumed) when the neural network’s performance 
on an independent validation dataset reaches a minimum.

2.3	 Hilbert transform envelope 
To compute the residual envelope, the residual signal must first 
be represented in its analytic form z. The analytic form comprises  
the real component r (the original residual signal) and the 
imaginary component jH(r):

                                                 z = r + jH r( ) ......................................(2)

The imaginary part is computed by means of the Hilbert 
transform:

                                      H r( ) = 1
π

r τ( )
−∞

∞

∫
1

t −τ
dτ .............................(3)

and the residual envelope (or discrepancy signal) d is subsequently 
computed as the complex modulus:

                                           d = r2 − jH r( )2( ) .................................(4)

2.4	 Sensorless relative speed estimation and 
resampling

The relative shaft speed is estimated directly from the vibration 
signal. As discussed in the introduction, there are different 
methodologies that may be followed to estimate the shaft 
angular position (or velocity) directly from the vibration signal. 
The speed estimation method employed in this paper is based 
on a time-frequency analysis. In essence, the local maxima of a 
spectrogram (magnitude of the short-time Fourier transform) are 
computed. Each local maximum point is associated with a unique 
time t*, magnitude m* and frequency f* value.

Visual inspection is used to select a frequency component 
(the gear meshing frequency or one of its higher harmonics) that 
is synchronous with the frequency modulation. The selected 
frequency component needs to be free from other parasite 
(interfering) frequency components.

Beginning at a manually selected point, a clustering algorithm 
is employed that groups together local maxima based on a nearest 
neighbour criterion. The distance δij between neighbouring 
points i and j (local maxima) is based on the modulus of the 
scaled time difference Δtij , magnitude difference Δmij and 
frequency difference Δfij between the two points:

                           δ ij =
Δtij
a

⎛
⎝⎜

⎞
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2

+
Δmij

b
⎛
⎝⎜

⎞
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+
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c

⎛
⎝⎜

⎞
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.....................(5) 

In this paper, the scaling factors a, b and c are selected so as to 
unit normalise the standard deviation for each of the clustering 
dimensions. It is expected that the scaling factors will require 
different criteria for different problems. 

Once all the maxima that are related to the frequency 
component of interest have been clustered, they are low-pass 
filtered and used to resample the vibration signal.

3.	 Case study
3.1	 Gear model
The proposed methodology is briefly investigated on a dataset, 
which is simulated based on the same gear model as implemented 
by Heyns et al[14]. This dynamic gear model is inherently very 
simple and comprises a set of second-order differential equations 
that relate the forcing function (applied torque), as well as the 
lumped mass, stiffness and friction coefficients, to the vibration 
response of the gear casing. The simple gear model is preliminarily 
used to investigate the efficiency of the proposed methodology. 
There are several assumptions that could be improved for gearbox 
dynamic-oriented modelling as provided in[20] or recently in[21,22]. 
Research conducted by Jia et al[23] indicates that it is appropriate 
to approximate the gear mesh stiffness as a square function. The 
magnitude of the meshing stiffness km is selected to fluctuate 
by approximately 20% around the mean value. It is common to 
model the effects of tooth faults, such as a tooth root crack, by 
reducing the stiffness of the affected tooth[23].

The stiffness coefficients k1, k2, k3 and k4 are assumed to satisfy 

Figure 2. Gear model diagram
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Hooke’s Law by being linear in x. Standard viscous damping is 
assumed for all of the damping elements, with values that ensure 
that the system is highly underdamped. The gear is driven by the 
pinion, which in turn is subject to the pinion input torque Tp. 
The load on the gear is proportional to the second power of the 
gearwheel speed Tg = Ks

θ2
2  through the proportionality constant 

Ks. This allows the system to accelerate until equilibrium is 
reached. The proportionality constant Ks is selected at 0.4, so 
that the pinion rotates at about 240 r/min under an applied load 
of 500 Nm.

In this paper, a single gear fault is simulated by reducing the 
tooth mesh stiffness by 6% for the duration that the individual 
tooth that is affected is in mesh.

The differential equations are rewritten in state space notation 
and solved using Matlab’s ode45 solver. The reader is referred 
to[14] for the written-out differential equations and parameter 
values. White noise is added to the signal so as to obtain a signal-
to-noise ratio of 25 dB.

3.2	 Operating conditions
Two loading conditions are investigated, namely a steady-
state operating condition (constant torque) and also a loading 
condition where the applied torque varies with time. The time-
varying load is chosen as arbitrary, and simply aims to illustrate 
the effect on the signal of both applying a slow and a slightly faster 
time-varying torque component. Since the speed is proportional 
to the applied torque, the time-varying torque induces amplitude, 
frequency and phase modulation. The operating conditions are 
summarised in Table 1. 

Table 1. Instantaneous applied torque

Applied load

Steady-state operations  Td(t) = 500

Fluctuating operations  Td(t) = 500 × [1+0.1sin(2πt)+0.03sin(6πt)]

The time domain vibration responses as simulated on the gearbox 
casing for fluctuating operating conditions are indicated in 
Figures 3(a) and (b). Amplitude modulation is clearly observed, 
and under closer zoom significant frequency modulation is also 
seen.

The power spectral densities (PSDs) of the gear casing 
vibration simulated under steady-state operating conditions and 
fluctuating operating conditions, respectively,  are illustrated in 
Figures 4(a) and (b). The dotted red lines correspond to the gear 

meshing frequency (GMF) components at approximately 90 Hz. 
The GMFs, along with their higher harmonics, dominate the 
vibration signal.

Figure 4(b) also indicates how the higher-order harmonics 
are increasingly prone to spectral smearing due to the frequency 
modulation.

4.	 Implementation and results
4.1	 Residual signals
Both the AR and the NN filters were implemented using 20 time 
series datum points (ie p = 20). Separate models were trained for 
the stationary and the time-varying operating conditions. The 
abundance of training data (healthy data are readily available) 
simplifies the requirement to perform cross-validation.

The results for the stationary operating conditions are not 
illustrated, but both the AR and the NN residual signals clearly 
indicate the presence of the fault-induced signal deviations.

The highly non-linear signals, as simulated for the fluctuating 
operating conditions, are investigated next. Figures 5(a) and (b) 
illustrate the residuals computed for the damaged gearbox using the 
AR and NN filters, respectively. The AR model completely fails to 
detect the fault-induced outliers, while the NN successfully detects 
them. Figures 5(c) and (d) illustrate the envelopes as computed for 
the obtained AR and NN residuals, respectively. 

It should be noted that the amplitudes of the impulses 
indicated in Figure 5 are fairly consistent. In some scenarios, it 

Figure 3. (a) Time domain waveform of the healthy gearbox 
(fluctuating operating conditions); (b) time domain waveform 
of gear casing response for one damaged tooth (fluctuating 
operating conditions)

Figure 4. (a) PSD of gear casing response (steady-state 
operations); (b) PSD of the gear casing (fluctuating operating 
conditions)

Figure 5. (a) AR residuals for damaged gearbox (fluctuating 
operating conditions); (b) NN residuals for damaged gearbox 
(fluctuating operating conditions); (c) envelope of AR 
residuals; (d) envelope of NN residuals 
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may be expected that the fault-induced amplitudes may be more 
stochastic due to the physical mechanism of the damage, or be 
more load dependent. In those cases, both envelope spectrum 
and cepstrum will be prone to greater inaccuracies.

4.2	 Sensorless relative speed estimation
The relative speed is subsequently estimated based on the 
spectrogram of the vibration signal. 

Figure 6(a) illustrates a contour plot of the local maxima as 
estimated from the spectrogram of the vibration signal, where 
the damaged gearbox was simulated under fluctuating operating 
conditions. 

Figure 6(b) indicates the local maxima, which were 
clustered together based on the distances (modulus of the time, 
frequency and amplitude differences) between neighbouring 
points. Beginning at a manually selected point (0 s, 280 Hz), 
the clustering algorithm is used to group together all the local 
maxima, which are related to the third GMF harmonic.

Figure 6(c) plots both the true values (continuous blue line), 
which correspond to the third GMF harmonic (computed based 
on the true shaft angular velocity), as well as the values estimated 
based on the spectrogram (dashed red line). The estimated values 
are obtained by low-pass filtering the clustered local maxima. 
The estimated shaft angular speed corresponds fairly well to the 
global trends of the true angular speed, however, it fails to detect 
the rapid speed fluctuations (shaft jitter).

Figure 6(d) illustrates the contour plot of the local maxima for 
the resampled vibration signal. The low-frequency components 
are now fairly well corrected for, however, some of the higher-
order frequency components (for example at approximately  
360 Hz and 450 Hz) are still significantly smeared. 

Figures 7(a) and (b) illustrate the log PSDs of the original 
vibration waveform and the PSD of the resampled vibration 
waveform, respectively. When these spectra are compared to the 
undamaged PSDs, very little or no difference could be discerned 
in the amplitude of the gear meshing component (91 Hz or 22nd 
pinion shaft order). A log scale is used in this Figure to illustrate 
that no significant sidebands can be detected around the GMF, at 

intervals which correspond to the pinion shaft frequency. 
Figures 8(a) and (b) illustrate the PSDs of the original 

discrepancy signal and the PSD of the resampled discrepancy 
signal of the damaged pinion, respectively. A clear difference in 
magnitude at the first pinion shaft order (4.1 Hz) component is 
observed when these PSDs are compared to their counterparts 
for the undamaged gearbox. 

The discrepancy signal is impulsive in nature and thus not 
well suited to frequency analysis, which assumes sinusoidal base 
functions. Spectral analysis of an impulsive waveform tends to 
give rise to a spectrum that exhibits multiple harmonics, which 
are spaced at regular intervals. These intervals correspond to 
the periodicity of the impulses. Cepstrum analysis is efficient in 
collecting those families of harmonics and representing them in 
a concise manner. 

Figure 9(a) represents the real cepstrum of the NN 
discrepancy signal, where the damaged gearbox was subjected 
to fluctuating operating conditions. Energy is observed at 
approximately 0.24 s, which corresponds with the rotational 
period of the pinion. Figure 9(b) represents the real cepstrum of 
the resampled NN discrepancy signal. The unit of the transform 

Figure 6. (a) Contour plot of the local spectrogram maxima; 
(b) the clustered local maxima, which corresponds to the third 
harmonic of the GMF; (c) the estimated and true instantaneous 
values of the third harmonic of the GMF; (d) contour plot of 
the local spectrogram maxima of the resampled vibration signal 

Figure 7. PSDs for the damaged gearbox (fluctuating 
operations) computed based on (a) the time domain vibration 
waveform and (b) the resampled vibration waveform. The 
continuous red line indicates the meshing frequency while the 
dashed red lines correspond to the expected sidebands, which 
correspond to the pinion shaft rotational frequency

Figure 8. PSDs for the damaged gearbox (fluctuating 
operations) for (a) the discrepancy signal and (b) the 
resampled discrepancy signal 

Figure 9. (a) Cepstrum of the NN discrepancy signal 
(fluctuating operations); (b) cepstrum of the resampled NN 
discrepancy signal (referred to as deror)
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is referred to as derors (based on the cepstrum convention of 
frequency-quefrency and order-deror). Significant energy is 
clearly observed at 1 deror, which corresponds with the rotational 
period of the pinion.

As an interesting side note, it might be mentioned that smaller 
levels of pinion tooth damage generally tend to be more visible in 
the PSD of the resampled discrepancy signal than in its cepstrum. 
For this reason, it is advised that both the spectra and the cepstra 
of resampled discrepancy signals should be monitored.

5.	 Conclusion
This paper proposes that discrepancy (envelope residual) 
analysis and approximate signal resampling may jointly be used 
to monitor the condition of rotating machines that are subject 
to fluctuating operations and where an accurate measurement 
of the shaft angular position is not available. The proposed 
methodology firstly employs a neural network to remove 
the regular components from the time-varying vibration 
waveform. The envelope of the residual signal is subsequently 
computed so as to obtain a discrepancy signal. It is argued that 
the discrepancy signal is generally more informative and is also 
simpler (smoother) than the original waveform. This renders 
the discrepancy signal less sensitive to noise in the shaft angular 
velocity reference signal. It subsequently becomes more viable to 
use a shaft speed reference speed that has been directly estimated 
from the vibration signal to resample the discrepancy signal. 

The methodology was investigated on data from a simple gear 
model, where a single tooth was damaged and where the gearbox 
was subject to a time-varying torque and angular speed. The 
results appear encouraging and future work should be conducted 
that investigates the proposed methodology on a range of real 
vibration datasets.
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