
ABox abduction in ALC using a DL tableau

Ken Halland
School of Computing

University of South Africa
Pretoria, South Africa

hallakj@unisa.ac.za

Katarina Britz
Centre for Artificial Intelligence Research

UKZN and CSIR Meraka Institute
South Africa

arina.britz@meraka.org.za

ABSTRACT
The formal definition of abduction asks what needs to be
added to a knowledge base to enable an observation to be
entailed by the knowledge base. ABox abduction in descrip-
tion logics (DLs) asks what ABox statements need to be
added to a DL knowledge base, to allow an observation (also
in the form of ABox statements) to be entailed. Klarman
et al [8] have provided an algorithm for performing ABox
abduction in the description logic ALC by converting the
knowledge base and observation to first-order logic, using a
connection tableau to obtain abductive solutions, and then
converting these back to DL syntax. In this paper we de-
scribe how this can be done directly using a DL tableau.

Categories and Subject Descriptors
1.2.8 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods

General Terms
Algorithms, Theory

Keywords
Description logics, abduction, semantic tableaux

1. INTRODUCTION
Abduction is a form of non-standard reasoning where expla-
nations are sought for certain observations in the context
of some background knowledge. This is as opposed to de-
duction – the standard form of reasoning where the logical
consequences of some knowledge are determined.

A typical use of abduction is in the process of medical di-
agnosis. Say a patient displays some symptoms. A doctor
uses abductive reasoning to generate hypotheses about the
possible ailment(s) causing the symptoms. These hypothe-
ses can then be tested by collecting corroborating evidence
so that deduction can be used to make a correct diagnosis.

Abductive reasoning is non-monotonic in that the solutions
to an abduction problem involving some background knowl-
edge and an observation may no longer hold if we add new
statements to the background knowledge. For example, if a
doctor observes further symptoms, this may change her hy-
potheses of the ailment causing them. Deductive reasoning
on the other hand is monotonic in that conclusions are not
invalidated by new information.

Different forms of abduction have been formally defined in
different logics. In their programmatic paper, Elsenbroich et
al [6] define and describe various forms of abduction in de-
scription logics (DLs). A number of researchers have taken
up the challenge and developed algorithms for some of these
forms of abduction in selected DLs [4, 5].

In particular, Klarman et al [8] have provided a resolution-
based algorithm and a tableau-based algorithm for perform-
ing ABox abduction in ALC. The tableau-based algorithm
involves translating the knowledge base and the observa-
tion for an abductive problem from its DL specification to
first-order logic (FOL), then constructing a FOL connec-
tion tableau and harvesting abductive solutions from open
branches. These solutions are then translated back to a DL
notation.

In this paper, we describe an algorithm for doing this di-
rectly by means of a DL semantic tableau.

A potential advantage of this approach over Klarman’s [8]
is that it can utilise optimisation techniques used in DL
tableaux.

Section 2 describes the syntax and semantics of the descrip-
tions logics ALC and ALE , Section 3 includes a definition of
ABox abduction in ALC, and Section 4 gives a description
of the standard semantic tableau algorithm for ALC. Sec-
tion 5 then describes how this algorithm can be adapted to
perform ABox abduction. It includes subsections describ-
ing the complexity of the algorithm, and its soundness and
(in)completeness. Finally, Section 6 discusses the prospects
for future work.

2. DESCRIPTION LOGICS
Description Logics (DLs) are a family of fragments of first-
order logic, suitable as knowledge representation formalisms
and amenable to the implementation of efficient reasoners
[1]. There is a trade-off between the expressivity of differ-

ent DLs and the efficiency of the algorithms that have been
defined to reason over them. For our purposes, we are inter-
ested in two forms of description logic, ALC and ALE .

2.1 ALC
Syntax: The language of ALC allows three sets of names
for concepts, roles and individuals. Apart from these names,
the language includes symbols for two special concepts: >
and ⊥ (called top and bottom respectively). These are com-
bined using the constructors ¬,u,t, ∃ and ∀, to form concept
descriptions as follows:

C ::= > | ⊥ | A | ¬C | C uD | C tD | ∃R.C | ∀R.C1

Using such concept descriptions, a knowledge base can be
specified by a set of statements partitioned into an ABox
and a TBox. ABox assertions are statements of the form
C(I) and R(I, J) (called concept assertions and role asser-
tions, respectively), and TBox axioms are statements of the
form C v D (sometimes called general concept inclusions,
or GCIs).

The example below serves as a running example. Admit-
tedly it is not very good knowledge representation, but we
have chosen the given formulation for the sake of illustration.

Example 1. The following knowledge base is intended to
express the ideas that Influenza A is a form of influenza,
Malaria vivax is a form of malaria (caused by Plasmodium
vivax), and someone infected with influenza or malaria will
be feverish:

Influenza(FLU A)
Malaria(MAL V)
∃infectedWith.Influenza t ∃infectedWith.Malaria v Feverish

Semantics: The semantics of ALC is defined in terms of
an interpretation I = (∆I , ·I), where ∆I is the domain
consisting of a (possibly infinite but non-empty) set of values
and ·I is a function which interprets the names in terms of
the domain as follows: Each concept name A is mapped to
a set of values AI ⊆ ∆I , each role name R is mapped to
a set of ordered pairs RI ⊆ ∆I × ∆I , and each individual
name I is mapped to a value II ∈ ∆I . Top and bottom are
interpreted as >I = ∆I and ⊥I = ∅ in all interpretations.

Such an interpretation is extended inductively to complex
concept descriptions as specified in Table 1. Axioms of the
form C v D and assertions of the form C(I) and R(I, J)
are true in an interpretation I if CI ⊆ DI , II ∈ CI and
〈II , JI〉 ∈ RI , respectively.

An interpretation I is a model of a knowledge base K if all
the statements (i.e. assertions and axioms) of K are true in
I. A concept description C is satisfiable with respect to a
knowledge base K if there is some model of K such that the
interpretation of C is not empty. A statement φ is entailed
by a knowledge base K if φ is true in all models of K, in

1In this and the following specifications, A represents a con-
cept name, C and D represent arbitrary concept descrip-
tions, and R represents an arbitrary role name. Further on,
I and J are used to represent arbitrary individual names.

Concept description Interpretation

¬C ∆I \ CI

C uD CI ∩DI

C tD CI ∪DI

∃R.C {x | ∃y : 〈x, y〉 ∈ RI ∧ y ∈ CI}
∀R.C {x | ∀y : 〈x, y〉 ∈ RI → y ∈ CI}

Table 1: Interpretation of concept descriptions

which case we write K |= φ. In an abuse of notation, we
often write K |= Φ where Φ is a set of statements. By this
we mean that K |= φ for all φ ∈ Φ. A knowledge base K is
consistent if it admits a model.

2.2 ALE
The description logic ALE is a subset of ALC. In particu-
lar, it omits the disjunction constructor t, and only allows
primitive negation, i.e. negation of concept names. Concept
descriptions are therefore of the form:

C ::= > | ⊥ | A | ¬A | C uD | ∃R.C | ∀R.C

Otherwise, the syntax and semantics of ALE are identical
to those of ALC.

3. ABDUCTION
An abduction problem is normally specified in terms of an
observation (in the form of one or more statements) which
is not entailed by some background knowledge (i.e. a set
of statements), and asks what needs to be added to the
background knowledge to entail the observation.

Example 2. Using the knowledge base given in Example 1,
say we observe that John is feverish. An abduction problem
would be to ask what should be added to the knowledge base
to allow us to infer Feverish(JOHN). We expect abduction to
allow us to hypothesize that John is infected with influenza,
i.e. ∃infectedWith.Influenza(JOHN), or that he is infected
with malaria, i.e. ∃infectedWith.Malaria(JOHN). More spe-
cific hypotheses would be that he is infected with Influenza
A, i.e. infectedWith(JOHN,FLU A), or that he is infected
with Malaria vivax, i.e. infectedWith(JOHN,MAL V). The
reader might like to check that adding any of these assertions
to the knowledge base will allow us to infer Feverish(JOHN).

One problem with a formal definition of abduction is how
to narrow down the possibly infinite number of solutions to
an abduction problem. Various criteria have been defined
for this purpose. Like other authors [6, 8], we restrict our
attention to the following three:

(i) Consistency: A solution should not create a contradic-
tion with the background knowledge.

(ii) Relevance: A solution should be expressed in terms of
the background knowledge; it shouldn’t introduce an
independent theory.

(iii) Minimality: A solution should not hypothesize more
than necessary.

Example 3. The solutions given in Example 2 are consis-
tent, relevant and minimal (i.e. minimal at least in a syn-
tactic sense). The following solutions do not comply with
these criteria:

(i) {¬Malaria(MAL V)}
If this assertion were added to the knowledge base,
it would cause a contradiction, and would allow us
to infer anything. But this would not be a helpful
solution.

(ii) {∃infectedWith.ScarletFever v Feverish,
∃infectedWith.ScarletFever(JOHN)}
This is an abductive solution, since if both these state-
ments were added to the knowledge base, it would al-
low us to infer Feverish(JOHN). However, it would
also allow us to make this inference independently of
the knowledge base and is therefore not a relevant solu-
tion. (Incidentally, the observation itself, in this case
{Feverish(JOHN)}, is also always a non-relevant solu-
tion, since adding it to the knowledge base would allow
the observation to be trivially inferred.)

(iii) {∃infectedWith.Influenza(JOHN),
∃infectedWith.Malaria(JOHN)}
Although this is a valid solution, it is not minimal
because it hypothesizes too much, namely that John
is infected with both influenza and malaria.

3.1 ABox abduction
As stated in the introduction, attempts have been made to
define abduction and implement reasoners that can make
abductive inferences in many logics, including description
logics. ABox abduction (as opposed to general or so-called
knowledge base abduction [6]) asks what ABox assertions
need to be added to a DL knowledge base to allow an obser-
vation (also in the form of ABox assertions) to be inferred.

The astute reader will note that apart from not being rele-
vant, Example 3(ii) is also not an ABox abduction solution,
since it contains a TBox axiom.

Definition 1. Given a knowledge baseK and a set of ABox
assertions Φ (both in ALC) such that K does not entail Φ
and K∪Φ is consistent, then a set of ABox assertions Θ (in
ALE) is an abductive solution for (K,Φ) if K ∪Θ |= Φ.

(Note that we follow Klarman [8] in only allowing solutions
in the less expressive ALE . This is explained in Section 5.)

We can narrow down the solutions in three ways:

(i) Consistency : K ∪Θ is consistent.
(ii) Relevance: Φ is not entailed by Θ.
(iii) Minimality : We distinguish two kinds of minimality:

(a) Syntactic: No proper subset of Θ is a solution.
(b) Semantic: There is no non-equivalent solution Θ′

such that K ∪Θ |= K ∪Θ′.

Note that our definition of semantic minimality induces a
partial ordering on the set of solutions, and that there can be
a number of semantically minimal (non-equivalent) solutions
to a particular abductive problem. We say that a solution
Θ is closer to semantic minimality than a solution Θ′ if
K ∪Θ′ |= K ∪Θ and K ∪Θ 6|= K ∪Θ′.

4. SEMANTIC TABLEAU ALGORITHM
The standard semantic tableau algorithm for description log-
ics (and for ALC in particular) is a decision procedure for
the consistency of a knowledge base. It tries to find (i.e. con-
struct) a model of the knowledge base by applying so-called
expansion rules to its statements.

The expansion rules only apply to assertions, so before the
algorithm can commence, the TBox axioms in the knowledge
base must be converted to concept assertions by a process
called internalisation. In particular, each axiom C v D
is written as ¬C t D. These are called universal concepts
because they are applied to all the individual names used in
the knowledge base and are added to the set of assertions
on which the algorithm works.

If the algorithm detects a contradiction (also called a clash),
i.e. the current set of assertions contains a concept assertion
and its negation, it backtracks and tries another branch of
its search. If it gets to a point where the current set of
assertions are saturated, i.e. no more expansion rules can
be applied and there is no contradiction, then a model has
been found, the algorithm terminates and reports that the
original knowledge base is consistent.

Here are some comments on Algorithm 1:

Line 1: Function negNF takes a set of ABox assertions and
transforms all its concepts into negation normal form.
This is an equivalent form for any concept description,
where negation is “pushed inwards” so that it only ap-
pears before concept names.

Line 2: Function universal takes a set of TBox axioms and
transforms them into universal concepts. In particular,
each axiom C v D is written as ¬CtD and then negNF
is called to transform it into negation normal form.
(In some implementations of the tableau algorithm, all
the TBox axioms are converted into one long universal
concept. We rather store them as separate concepts
– one per TBox axiom – to save having to repeatedly
expand the long concept.) Note that U is a global
variable that is used by function isConsistent.

Lines 3 to 5: The so-called GCI rule is applied to each
individual mentioned in the ABox to assert that they
are members of all the universal concepts.

Line 7: Function isConsistent takes a set of assertions A as
an in parameter to ensure that its correct contents
are used when the algorithm backtracks from a branch
with a contradiction.

Lines 9 & 10: Test for a contradiction (or clash), and if
so, backtrack.

Lines 11, 13, 18 & 20: The expansion rules are applied
to split complex concepts into their component parts.
Each rule has an additional condition (not given in the

Input : Knowledge base consisting of ABox and
TBox

Output: true if the knowledge base is consistent,
false otherwise

1 iA ← negNF(ABox);
2 U ← universal(TBox);
3 foreach individual I used in iA do
4 foreach concept D in U do
5 iA ← iA ∪ {D(I)}

6 return isConsistent(iA)

7 function isConsistent(in A): boolean
8 while true do
9 if A contains assertions of the form C(I) and

¬C(I) then
10 return false
11 else if A contains an assertion of the form

C uD(I) then
12 A ← A ∪ {C(I), D(I)}
13 else if A contains an assertion of the form

∃R.C(I) then
14 choose a new individual name J not used in A;
15 A ← A ∪ {R(I, J), C(J)};
16 foreach concept D in U do
17 A ← A ∪ {D(J)}
18 else if A contains assertions of the form ∀R.C(I)

and R(I, J) then
19 A ← A ∪ {C(J)}
20 else if A contains an assertion of the form

C tD(I) then
21 return isConsistent(A ∪ {C(I)}) or

isConsistent(A ∪ {D(I)})
22 else
23 return true

Algorithm 1: Semantic tableau algorithm for ALC

algorithm) to prevent it from being applied more than
once to the same assertion. For example, for the u-rule
in Line 11, the additional condition is: ... and A does
not contain both C(I) and D(I).

Lines 11 & 12: This is the u-rule. An assertion involv-
ing a conjunction is split into two assertions which are
added to A.

Lines 13 to 17: This is the ∃-rule. It adds a role assertion
and a concept assertion for a new (dummy) individual
to the current set of assertions (on the additional con-
dition that such assertions are not already present).
The GCI rule is also applied to assert that the new
individual is a member of all the universal concepts.

Lines 18 & 19: This is the ∀-rule. If the current set of
assertions contains the universal restriction of an in-
dividual and a role assertion involving that individual
as the first participant, then a concept assertion of the
second participant in the role assertion is added.

Lines 20 & 21: This is the t-rule. It calls isConsistent re-
cursively, once for each of the disjuncts. The recursion
allows backtracking to these branching points. Note
that the logical or between the two calls generally uses
short-circuit boolean evaluation to ensure that the al-
gorithm stops if it finds a satisfying model in the first

branch.

Line 23: If no expansion rules can be applied, the set of
assertions is saturated, and represents a model of the
original knowledge base. Terminate the entire process
and return true to indicate that the knowledge base is
consistent.

An additional optimisation rule is generally included before
the t-rule to deal with a simplified version of disjunction:
If A contains C t D(I) as well as the complement of C(I)
(or D(I)), then D(I) (or C(I) respectively) is added to A.
This saves branching and having to backtrack. This rule is
generally inserted between lines 10 and 11 to ensure that it
is always applied before the other rules.

In ALC it is possible to specify a knowledge base that has
infinite models (by means of a so-called cyclic TBox). This
issue is dealt with in the semantic tableau algorithm by
a technique called blocking, which essentially detects when
more than one individual is asserted to belong to the same
concepts. This test is performed whenever the set of asser-
tions is augmented (indicated by the set union operator in
Algorithm 1).

For a more detailed description of the semantic tableau al-
gorithm for ALC, the reader is referred to the Handbook of
Knowledge Representation [2].

The algorithm described above performs consistency check-
ing of a knowledge base. It can easily be adapted to perform
the related reasoning task of instance checking, i.e. decid-
ing whether a concept assertion is entailed by a knowledge
base, as follows: The negation of the concept assertion be-
ing tested is added to the knowledge base and the algorithm
described above is executed. If the resulting knowledge base
is consistent, we conclude that the assertion is not entailed
by the knowledge base (and vice versa).

5. ADAPTION OF THE ALGORITHM FOR
ABOX ABDUCTION

The basic idea is to perform instance checking of an observa-
tion in the context of a knowledge base. If the observation
does not follow from the knowledge base, the tableau will
not close. The ABox assertions that would close all such
open branches (if added to the original set of assertions),
form the abductive solutions.

The standard semantic tableau algorithm is therefore ex-
tended to do a complete search for models, i.e. it doesn’t
terminate when the first open branch is attained. Every
time an open branch is attained, the current set of asser-
tions (representing a model of the original knowledge base)
is stored, the algorithm backtracks and continues its search.

We immediately have a problem with the standard algorithm
for instance checking if we allow multiple assertions and/or
role assertions in the observation, as permitted by Definition
1, because instance checking only deals with a single concept
assertion.

The problem is that we need to negate the observation. Such
a set of assertions is actually the conjunction of its elements,

so its negation needs to be a disjunction of the negations of
its elements. Unfortunately, DL syntax does not allow us to
express the disjunction of assertions, particularly when they
involve different individuals.

To deal with this problem, we store the negations of the
assertions of the observation in a separate set (instead of
adding them to the set of assertions from which the semantic
tableau algorithm starts). Whenever all other rules cannot
be applied, we select one of the assertions in this set, and
branch with it. This works exactly like the application of
the t-rule.

The other problem is if the observation involves a role asser-
tion. For example, we want to be able to deal with observa-
tions such as hasSymptom(JOHN, INTERMITTENT FEVER).
Once again, we need to add the negation of such an assertion
to the knowledge base, but we cannot express the negation
of a role assertion in ALC. To get around this, we augment
our notation to allow negated role assertions, and store them
as ¬R(I, J).

We also want to be able to produce abductive solutions
that involve role assertions. For example, we want to be
able to infer the more specific solutions mentioned in Ex-
ample 2, namely infectedWith(JOHN, FLU A) and infected-
With(JOHN, MAL V). Stated more generically: Consider a
knowledge base containing the assertion ∀R.A(I), and say
we want an abductive explanation of the observation A(J).
An obvious solution is R(I, J). But our abductive solutions
are always the complements of assertions needed to close
the open branches of a semantic tableau. Since the standard
tableau algorithm does not infer negated role assertions, this
solution will not be generated.

Our trick is to add R(I, J) to the current set of assertions
whenever it is saturated and contains an assertion of the
form ∀R.C(I), for all non-dummy individuals J in the cur-
rent set of assertions. If any of these attempts are inconsis-
tent, then R(I, J) is part of an abductive solution, because
it closes the branch.

When all the models have been extracted, Reiter’s minimal
hitting set algorithm [10] is used to generate abductive solu-
tions from them. Simply put, one unexpanded concept as-
sertion2 (involving a non-dummy individual) is chosen from
each model found by the extended algorithm. Each combi-
nation of the complements of such assertions forms an ab-
ductive solution.

Finally the algorithm outputs all solutions that are consis-
tent with the knowledge base and that are relevant.

Here are some comments on Algorithm 2:

Line 2: Set iO is used to store the initial set of negated
observations.

Lines 3 & 7: Both U and M are global variables used by
procedure extendedST. U is the set of universal con-
cepts (as in Algorithm 1) and M is a set of models

2By an unexpanded concept assertion we mean a concept
assertion to which an expansion rule has not been applied.

Input : ABox, TBox and Obs
Output: ABox abduction solutions

1 iA ← negNF(ABox);
2 iO ← negNF(¬Obs);
3 U ← universal(TBox);
4 foreach individual I used in iA do
5 foreach concept D in U do
6 iA ← iA ∪ {D(I)}

7 M ← {};
8 SSet ← {};
9 extendedST(iA, iO);

10 if M = {} then
11 print "The observation follows from the

knowledge base";
12 return SSet

13 minimalHS(M, H);
14 foreach S in H do
15 if isConsistent(iA ∪ S) and isRelevant(S, Obs) then
16 SSet ← SSet ∪ {S}

17 return SSet

18 procedure extendedST(in A, in O)
19 while true do
20 if A contains assertions of the form C(I) and

¬C(I) then
21 return
22 else if A contains an assertion of the form

C uD(I) then
23 A ← A ∪ {C(I), D(I)}
24 else if A contains an assertion of the form

∃R.C(I) then
25 choose a new individual name J not used in A;
26 A ← A ∪ {R(I, J), C(J)};
27 foreach concept D in U do
28 A ← A ∪ {D(J)}
29 else if A contains assertions of the form ∀R.C(I)

and R(I, J) then
30 A ← A ∪ {C(J)}
31 else if A contains an assertion of the form

C tD(I) then
32 extendedST(A ∪ {C(I)}, O);
33 extendedST(A ∪ {D(I)}, O)

34 else if O 6= {} then
35 D ← next(O);
36 extendedST(A ∪ {D}, O)

37 else
38 if A contains an assertion of the form

∀R.C(I) then
39 foreach J in A and O do
40 if not isConsistentO(A ∪ {R(I, J)}, O)

then
41 A ← A ∪ {¬R(I, J)}

42 M ← M ∪ {unexpanded(A)};
43 return

Algorithm 2: ABox abduction algorithm for ALC

(where each model is a set of unexpanded assertions
obtained from an open branch).

Line 8: SSet is a set of all the solutions. It is initialised as
empty.

Lines 10 to 12: If the observation is entailed by the knowl-
edge base, then all branches will close and M will be
empty. This means that we are not dealing with a
proper abduction problem.

Line 13: M is sent to procedure minimalHS to generate the
minimal hitting sets and store them (in fact, the nega-
tions of their assertions) in H. minimalHS ensures the
syntactic minimality of solutions.

Line 15: Function isConsistent is the same as the one in Al-
gorithm 1. isRelevant is also a version of the semantic
tableau procedure that determines whether the obser-
vation is not entailed by the solution.

Lines 16 & 17: Each consistent and relevant solution is
added to the set of all solutions, which are finally re-
turned as the output of the algorithm.

Line 20: Contradictions are detected between complemen-
tary concept assertions. Instead of handling R(I, J)
and ¬R(I, J) as a contradiction, we rather implement
a variation of the optimization rule described above
for Algorithm 1. (See the discussion below these com-
ments.)

Lines 22 to 30: These are identical to the corresponding
expansion rules of Algorithm 1.

Lines 31 to 33: The t-rule is different to that in Algo-
rithm 1 in that it searches both branches, even if one
or more models are found in the first branch.

Lines 34 to 36: If no other rules can be applied, the al-
gorithm extracts one negated assertion from O and
branches with it. Function next removes such an as-
sertion from O and returns it.

Lines 38 to 41: These lines are to allow role assertions to
be generated as possible solutions. note that, like all
the other expansion rules, we need an additional condi-
tion (not shown in the algorithm) to prevent this rule
from being applied when the assertion involving uni-
versal restriction has been expanded already. All pos-
sible candidates for J are tried, and the negations of
any R(I, J)s that cause the branch to close are added
to A. Function isConsistentO is like isConsistent except
that it takes O as a second parameter and includes lines
34 to 36 (and the optimisation rule explained below).

Line 42: Whenever an open branch is attained, the current
set of unexpanded assertions is added to M and the
algorithm backtracks.

The additional optimisation rule explained in Algorithm 1
for absorbing one of a pair of complementary concepts in-
volved in a disjunction, is again not indicated. It should be
inserted as early as possible in the code, namely between
lines 21 and 22. We can use a similar optimisation rule to
get rid of as many assertions in O as possible: If A contains
an assertion C(I) (or R(I, J)), and O contains the com-
plement of C(I) (or of R(I, J) respectively), then remove
the corresponding assertion from O. This can avoid a lot of
branching and backtracking, and should also be inserted as
early as possible in the code, namely just after the above-
mentioned one.

Although extendedST also implements blocking (whenever
assertions are added to A by means of the set union op-
erator), this is not used in any way for the generation of
solutions. The argument is as follows: Since ALC has the
finite model property ([1], Chapter 5), every knowledge base
that has an infinite model (handled by blocking) also has at
least one finite model (represented by an open branch of the
tableau). Since our algorithm closes all open branches and
so removes all finite models, the infinite models will also be
removed.

5.1 Solutions only in ALE
Our algorithm suffers from the same problem described in
[8], namely that the abductive solutions do not contain dis-
junctions, i.e. assertions of the form C t D(I). For ex-
ample, it does not generate the following solution to the
problem described in Example 2: (∃infectedWith.Influenza)
t (∃infectedWith.Malaria)(JOHN). Note that a solution with
such a disjunction is closer to semantic minimality than the
corresponding two solutions with the individual disjuncts.

One reason for this problem is that our algorithm only con-
siders unexpanded concept assertions for forming solutions.
Allowing expandable concept assertions to be selected for
solutions would allow some disjunctions, but not all. For ex-
ample, say we replaced the axiom of Example 1 with the two
axioms ∃infectedWith.Influenzav Feverish and ∃infectedWith.
Malaria v Feverish. In this case, the solution with the dis-
junction above would be a valid solution, but would not be
generated.

One could construct some such solutions from their con-
stituent parts, e.g. CtD(I) could be constructed from C(I)
and D(I), but more complex solutions involving disjunctions
inside quantifiers would be more difficult, e.g. ∃R.(CtD)(I)
will not be generated when ∃R.C(I) and ∃R.D(I) are.

Nevertheless, like Klarman et al [8], we get around the prob-
lem by defining it away: We define ABox abduction in ALC
as only providing solutions in ALE which does not allow
disjunctions.

5.2 Complexity
The complexity of the standard semantic tableau algorithm
for consistency checking with general TBoxes in ALC is Ex-
pTime ([2], Section 3.5.2). In our extended semantic tableau
(in procedure extendedST), the worst case involves maximal
branching where every branch is open, since we have to store
all the assertion sets of all open branches. Nevertheless, the
maximum number of branches is linear in the size of the
initial assertion set (as measured in [2]), and the number of
assertions in each such branch is also linear in the size of the
initial assertion set. This means that the space required to
store all the assertion sets in all the open branches is poly-
nomial in the size of the initial assertion set. This at least
means that the space requirements don’t blow up to Ex-
pSpace, which means that the extended semantic tableau
algorithm is at worst in ExpTime.

Reiter’s minimal hitting set algorithm (in general) is NP-
complete [11]. In our case (in procedure minimalHS), the
number of sets and their size is polynomial in the size of the

initial assertion set. This means that the time required in
our case is also in NP.

Finally, the algorithm invokes the functions isConsistent and
isRelevant twice for each candidate solution. Although the
space required for isRelevant is only polynomial (because it
does not deal with the TBox), isConsistent is in ExpTime in
the worst case because it must deal with the TBox. Since the
number of hitting sets is polynomial in the size of the initial
assertion set, the total space requirement for this process is
in ExpTime.

The entire algorithm is therefore in ExpTime.

5.3 Soundness and completeness
Taking Definition 1 as the standard for ABox abduction in
ALC, Algorithm 2 is sound but not complete.

It is sound because all solutions that it generates are proper
abduction solutions according to the definition. Consider
the following argument: Each solution is a set comprised of
the complements of assertions in the open branches of the
extended semantic tableau, such that each open branch has
a representative in the solution. So if the assertions of such
a solution were to be added to the knowledge base (and the
satisfiability test were to be performed again), all branches
would close, indicating that the observation is now entailed
by the knowledge base. This is precisely the definition of an
abduction solution.

It is not complete due to the often infinite number of solu-
tions to an abduction problem. Narrowing down the spec-
trum of solutions by means of criteria such as consistency,
relevance and minimality only partially addresses this issue.
Many solutions within these criteria are difficult to obtain,
particularly by means of the techniques described here.

The following section explains why the solutions that our
algorithm generates are not semantically minimal.

5.4 Semantic minimality
Our algorithm only enforces the syntatic minimality of solu-
tions (by means of the minimal hitting set algorithm), but
not semantic minimality. This problem is best explained by
means of an example.

Say we add the axiom ∃bloodTestIndicates.Plasmodium v
∃infectedWith.Malaria to the knowledge base of Example 1.
Using the observation of Example 2, the algorithm now
generates the solutions ∃infectedWith.Influenza(JOHN) and
∃bloodTestIndicates.Plasmodium(JOHN). One of the solutions
we got previously, namely ∃infectedWith.Malaria(JOHN) has
gone! In fact, a solution that is closer to semantic minimality
has been lost.

Many such solutions that are closer to semantic minimality
can be obtained by allowing expanded concept assertions as
part of solutions (including the above example). However,
this will not solve all problems: Consider the knowledge
base consisting of TBox = {A1 t A2 v A3, ∃R.A3 v A4}
and ABox = {R(I, J)}, and say we want abductive solu-
tions for the observation {A4(I)}. If we apply the algorithm

to this problem, three solutions are generated: {A1(J)},
{A2(J)} and {A3(J)}. If we allow expandable assertions,
we get {A1 t A2(J)} and {∃R.A3(I)} as solutions, but not
{∃R.A1(I)} or {∃R.A2(I)}. These are closer to semantic
minimality than {∃R.A3(I)}.

Whether we manage to find a way of generating all semanti-
cally minimal solutions, or just those attainable by allowing
expandable assertions, we imagine that the user of a system
implementing an abduction algorithm would want to be able
to explore a range of such solutions.

The notion of semantic minimality is related to the notion
of weakest sufficient conditions [9], although this work is re-
stricted to propositional logic. It is also reminiscent of work
on least common subsumers [3], and we plan to investigate
the possibility of applying those ideas to this situation.

6. FUTURE WORK
Algorithm 2 does not implement many of the optimisations
(e.g. back-jumping and caching) commonly used in DL tableau
algorithms. Incorporating these into our algorithm promises
to give a real efficiency advantage over the FOL connection
tableau used in Klarman’s algorithm.

This work also promises to be transferable to other more ex-
pressive DLs. The problems of dealing with role assertions
(both in the observation and in the solutions) will disappear
in languages that allow nominals, since negated role asser-
tions can be expressed and reasoned about with nominals.

Languages that do not have the finite model property will
need some means of dealing with infinite models. (We imag-
ine that the current assertion set at the point of blocking
could simply be added to the set of models collected by ex-
tendedST so that it will be closed by all solutions.)

As stated in Section 5.4, we also intend to investigate the
work on weakest sufficient conditions and least common sub-
sumers for their applicability to ranking solutions.

7. ACKNOWLEDGEMENTS
This work was partially funded by a European Union inter-
national research staff exchange scheme – Project number
247601, Net2: Network for Enabling Networked Knowledge,
from the FP7-PEOPLE-2009-IRSES call. Thanks to Tom-
mie Meyer of the CSIR Meraka Institute (in South Africa)
and Enrico Franconi of the Free University of Bozen/Bolzano
(in Italy) for infrastructure and support.

8. REFERENCES
[1] Baader, F., Calvanese, D., McGuinness, D., Nardi, D.,

Patel-Schneider, P.: The Description Logic Handbook,
Cambridge University Press (2003)

[2] Baader, F., Horrocks, I., Sattler, U.: Chapter 3:
Description Logics. In: van Harmelen, F., Lifschitz,
V., Porter, B., editors: Handbook of Knowledge
Representation, Elsevier (2007)

[3] Baader, F., Sertkaya, B., Turhan, A.: Computing the
Least Common Subsumer w.r.t. a Background
Terminology, Journal of Applied Logic, Springer (2004)

[4] Di Noia, T., Di Sciascio, E., Donini, F.M.: Computing
Information Minimal Match Explanations for
Logic-based Matchmaking, In Proc. of the 2009
IEEE/WIC/ACM International Joint Conference on
Web Intelligence and Intelligent Agent Technology -
Volume 02, IEEE Computer Society (2009)

[5] Du, J. Qi, G., Shen, Y-D., Pan, J.Z.: Towards
Practical ABox Abduction in Large OWL DL
Ontologies. In Proc. of the 25th AAAI Conference
(2011)

[6] Elsenbroich, C., Kutz, O., Sattler, U.: A case for
abductive reasoning over ontologies, Proc. of the
OWLED’06 Workshop, vol 216 (2006)

[7] Horrocks, I., Kutz, O., Sattler, U.: The even more
irresistible SROIQ, Proc. of KR2006, pp 57-67 (2006)

[8] Klarman, S., Endriss, U., Schlobach, S.: ABox
abduction in the Description Logic ALC, Journal of
Automated Reasoning, vol 46:1 (2011)

[9] Lin, F.: On Strongest Necessary and Weakest
Sufficient Conditions, in Proc. of KR2000, pp 167-175
(2000)

[10] Reiter, R.: A Theory of Diagnosis from First
Principles, Artificial Intelligence, vol 32 (1987)

[11] Wotawa, F.: A variant of Reiter’s hitting-set
algorithm, Information Processing Letters, vol 79
(2001)

