Effects of slant angle and illumination angle on MTF estimations

L M Vhengani, D Griffith and M Lysko
Council for Scientific and Industrial Research, Defence Peace Safety and Security, Pretoria, South Africa

E-mail: Lvhengani@csir.co.za

Abstract. Modulation Transfer Function (MTF) is a measure of the spatial resolution of an optical imaging system. For Earth Observation (EO) imaging systems in space, continuous MTF assessment is crucial for data quality. Several techniques of measuring MTF exist and some are still in development. MTF assessment techniques include the use of slanted knife-edge targets, point source techniques that make use of convex mirrors or xenon lamps and pulse methods that use linear features such as bridges. All these techniques have been successfully used to assess the MTF of imaging systems aboard the Ikonos, Landsat and QuickBird satellites. Laboratory experiments were conducted to evaluate the effect of slant angle of the knife-edge target and the effect of light illumination angle on the MTF result. MTF results were computed using a standard method according to ISO 12233. This paper will report the results of these laboratory experiments.

1. Introduction
The image quality of earth observation satellites strongly depends on the MTF of the system. Practically, MTF is a metric quantifying the sharpness of the reconstructed image. By definition, MTF is the normalized magnitude of the Fourier Transform of the imaging system’ Point Spread Function (PSF) [1] as shown in equation (1). PSF is the system’s response to a point source.

\[ MTF = \left| \mathcal{F}\{PSF(x, y)\} \right| \]  

(1)

The development process of a satellite system incorporate testing and calibration before the satellite is launched into space. The Modulation Transfer Function (MTF) of an imaging system of a satellite is one of the characteristics that are assessed before the satellite is launched into orbit. However, the vigorous nature of launch and the effects of space such as high radiation and extreme temperatures may alter the characteristics of the imaging system including MTF. Hence the MTF of an imaging system must be continuously characterized on-orbit [2].

Multiple methods have been used to determine the MTF of earth observation satellite imagers. These include the use of knife-edge (shown in Figure 1 and Figure 2) [3], pulse (lines) and point source (spot lights and convex mirrors) targets [4]. The use of knife-edge targets is one the mostly used methods [5]. When using the knife-edge approach, the first step is to determine the geometry (size and orientation) of the knife-edge target. This is highly dependent on the spatial resolution and orbit of the satellite respectively. The second step is to image the target on a clear day free of clouds. The third step is image processing.
Image processing steps involve detecting the edge in order to compute the Edge Spread Function (ESF). The ESF is the system response to a high contrast edge. The first derivative of the ESF generates the Line Spread Function (LSF), which is the system response to a high contrast line as shown in Figure 3. LSF is a 2-dimensional PSF reduced to one-dimensions [5]. The normalized magnitude of the Fourier Transform of the LSF produces the MTF of the imaging system.

2. Methodology
The objective of this study is to assess the effects of slant angle and illumination angle on the estimated MTF. To achieve the objective, two laboratory experiments were setup and these are explained in detail in the following subsections.

2.1. Effects of slant angle
A knife-edge test target was used to test the effects varying angle on the estimated MTF. The laboratory setting of the knife-edge, camera is shown in Figure 4. The standard (fixed) Fluorescent lamps were used as light sources. Images of the knife-edge target were captured while varying the inclination angle of the knife-edge target. Results of this experiment are shown in Figure 6 and Figure 7.
The challenge of this experiment was that the operator manually changed the inclination angle. This may not introduce an uncertainty, but the change in slant angle \(\Delta \theta\) was not constant. It was also noted that the iris of the imaging system was in most cases adjusted during initial setups of each measurement. After each measurement, the knife-edge target was replaced with the ISO 12233 MTF target (shown in Figure 2) and its image was captured using the same camera and same laboratory settings.

2.2. Effects of illumination angle
In this setting, instead of fixed fluorescent lamps, moveable lamp was used as a light source. Images of the fixed inclined knife-edge target were captured while varying the illumination angle of the light source. Figure 5 below, gives an illustration of the arrangement of the slated knife-edge target, lamp and the camera. The results of this experiment are shown in Figure 8.
lamp is moved. Nonetheless, the distance between the light source and the target was considered small and therefore the effects of pointing were assumed negligible.

3. Results and discussions
This section gives a summary discussion of results. Plots shown in Figure 3 and Figure 4 below illustrate the relationship between the inclination angle the resulting MTF at Nyquist frequency. These plots illustrate that there is relationship between the inclination angle of the knife-edge target and the resulting MTF at Nyquist frequency.

![Figure 6. Regression of positive slant angle and MTF at Nyquist Frequency.](image)

![Figure 7. Regression of negative slant angle and MTF at Nyquist Frequency.](image)

The relationship was assumed linear and the derived regression equations from plots in Figure 6 and Figure 7 are shown in equation(2) and equation(3) respectively. The reason for different regression equations could be attributed to different settings of the imaging system’s iris. These plots show that as the slant angle moves away from a right angle (0°), the estimated MTF at Nyquist frequency is reduced. Table 1 shows the MTF results of the ISO target that were used to validate the regressions equations. The predicted Nyquist MTF values are within 5 % of the Nyquist MTF results yielded using ISO targets as shown in Table 1.

\[
y = -0.0015x + 0.0962 \\
y = 0.0014x + 0.0833
\]

**Table 1. ISO target Nyquist Frequency MTF.**

<table>
<thead>
<tr>
<th>Regression Equation</th>
<th>Regression Coefficient</th>
<th>ISO Image Angle</th>
<th>ISO Image Nyquist Frequency</th>
<th>Predicted Nyquist Frequency</th>
<th>Percentage Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-0.914</td>
<td>-5.6625</td>
<td>0.0885</td>
<td>0.0878</td>
<td>0.7956</td>
</tr>
<tr>
<td>3</td>
<td>0.668</td>
<td>-4.8562</td>
<td>0.0794</td>
<td>0.0763</td>
<td>3.982</td>
</tr>
</tbody>
</table>

The plot shown in Figure 7 below displays the average Nyquist frequency MTF of different illumination angles. As illustrated in Figure 5, ‘C’ is the illumination at nadir (centre), ‘L2’ and ‘R1’ represent the illumination from the extremes (Left and Right) of the target. These results indicate that the MTF at Nyquist frequency is highest when the illumination is at nadir and decreases as the light source is moved away from the nadir.
Results obtained in both experiments are important for the study of system MTF. These results indicate the following:

- The MTF of the same imaging system will be different when measured under different conditions
- The validation of MTF results measured using an independent (and suitable) target is within 4%

4. Conclusions and recommendations

After analyzing the data, the following were observed:

- Lower absolute edge slant angles relative to the satellite cross-track direction tend to increase the estimate of the MTF at Nyquist and higher angles tend to decrease the estimate of the MTF at Nyquist
- The MTF at Nyquist frequency is high (maximum) when the illumination angle is orthogonal (nadir). The MTF at Nyquist frequency decrease as the angle of illumination diverge from a right angle

With reference to these observations it can be concluded that the angle of inclination and the illumination angle add an uncertainty to the estimated MTF. The uncertainty was not quantified. However, the derived regression equations demonstrate this argument.

The recommendations are that:

- The uncertainty due to the light source illumination angle imply that on-orbit MTF estimations must be done at consistent acquisition solar and sensor geometry
- Any estimated MTF must be accompanied with information on the sun illumination angle and the inclination angle of the knife-edge target with respect system’s sample grid

This work can be extended further by comparing results of the knife-edge and the point source technique.
References


