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RECG29 Reverse-emulsion-cationic-gelification

RESCG30 Reverse-emulsion-surfactant-cationic-gelification

RIF31 Rifampicin

R&D32 Research and development

TB33 Tuberculosis

34 17.1 Introduction

35 Nanotechnology is a multidisciplinary field covering the design, manipulation,

36 characterisation, production and application of structures, devices and systems

37 at nanometer scale (1–500-nm-size range) which, at this size range, presents with

38 unique or superior physicochemical properties. This scale represents the size of

39 atoms, molecules and macromolecules [1]. Nanomedicine is the application of

40 nanotechnology in medical sciences for imaging, diagnosis, drug delivery

41 (nanocarriers) and therapeutics used for treating and preventing disease.

42 Nanomedicine has gained ground over the past several years as can be observed

43 from the increase in the number of nanopharmaceutical patents to over 1,000 by the

44 year 2008 [2]. Nanomedicine-based drug delivery systems offer a tool for

45 expanding current drug markets as they can facilitate reformulation of classical

46 drugs and failed leads resulting in improved half-life, controlled release over short

47 or long durations and highly specific site-targeted delivery of therapeutic

48 compounds. Examples of nanocarriers utilised in nanomedicine include nano-

49 capsules, liposomes, dendrimers, gold nanoparticles, polymeric micelles, nanogels

50 and solid lipid nanoparticles, among others. This technology has successfully

51 revolutionised therapies for diseases like cancer with a number of nanomedicine

52 products for cancer, such as Doxil® (liposome) and Abraxane® (albumin-bound

53 nanoparticles), already on the market [3]. The current growth in this field is mainly

54 due to the advances in nanoscience in better approaches of molecular assembly and

55 the design of more controlled and efficient nanomaterial.

56 The field of drug development experiences very low success rates with regard to

57 drugs that enter the market. These shortfalls are due to factors such as toxicity of the

58 therapeutic compounds, poor solubility leading to lowered bioavailability and thus

59 reduced efficacy. These challenges are even more pronounced in poverty-related

60 diseases (PRDs), such as tuberculosis (TB), malaria and human immunodeficiency

61 virus (HIV). The annual global death toll of HIV/AIDS, malaria and TB approaches

62 6 million people. According to the World Health Organisation (WHO) 2010 Global

63 TB report, one third of the world’s population is currently infected with Mycobac-
64 terium tuberculosis (M.tb) and an estimated 1.7 million people died from TB in

65 2009 with the highest number of deaths occurring in Africa [4]. It has been reported

66 that malaria remains one of the world’s most prevalent infectious diseases. Forty

67 percent of the world’s population is at risk of infection, and in 2009, there were an

68 estimated 225 million cases of malaria reported worldwide and an estimated

69 781,000 deaths [5]. Sub-Saharan Africa still bears a large share of the global HIV

70 burden with the highest number of people living with HIV, new HIV infections,
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71AIDS-related deaths and the highest adult HIV prevalence [6]. In addition, due to

72the weakening of the immune system by HIV/AIDS, coinfection with other diseases

73such as TB, malaria and leishmaniasis is beginning to gain attention. Apart from

74HIV, malaria and TB, neglected tropical diseases (NTDs) such as leishmaniasis also

75affect more than one billion people, primarily low-income populations living in

76tropical and subtropical climates. Visceral leishmaniasis is usually fatal in the

77absence of treatment [7], and there are an estimated 500,000 new cases of visceral

78leishmaniasis annually affecting mostly South East Asia and East Africa.

79Although effective therapeutic regimens against these diseases are available,

80treatment failure due to poor adherence (which in turn leads to the emergence of

81drug-resistant strains) remains a challenge. Many of the drugs require high doses

82and high-dose frequency due to poor bioavailability, hence the long treatment

83durations and associated negative side effects. These in turn lead to poorer treat-

84ment outcomes and increased cost of treatment. In addition to these drug-related

85challenges, drug discovery and development research in these PRDs is not at a scale

86that corresponds with the impact of these diseases in the developing world [8].

87The field of drug development for PRDs could benefit greatly from nano-

88medicine in terms of addressing the aforementioned shortfalls such as poor solubil-

89ity and limited bioavailability. However, nanomedicine has not been widely applied

90to transform therapies for PRDs with only a few groups in Africa [9], including

91the authors of this chapter (DST/CSIR Nanomedicine Platform) [10–12], exploring

92the application of the technology for PRDs. The CSIR group as well as a group

93at the University of the Witwatersrand, South Africa, is investigating sustained-

94release nanodrug delivery systems that will enable anti-TB drugs to be administered

95at lower doses [9, 12].

96Although statistics indicate an urgent need for the development of novel or better

97drugs, the investment in the research and development (R&D) of these drugs is not

98significant (Fig. 17.1). Pharmaceutical companies have lagged in the discovery of

99drugs for the diseases of the developing world due to the cost of the R&D, the risk

100involved and the time-consuming nature of this field. This is exemplified by a

101simple comparison of the global TB drug pipeline and the Novartis cancer drug

102pipeline (Fig. 17.2) where there are only 2 compounds in phase III for TB [13] and

Fig. 17.1 Funding for PRD drug development does not span the whole drug development

process in comparison to funding for drug development in the developed world
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Solid tumors
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Deferasirox
Hered. Hematochrom.

Panobinostatc
Hemat. tumors
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SQ-109
PNU-100480
AZD-5847

TMC-207
OPC-67683
PA-824

Fig. 17.2 The global TB drug development (a) pipeline is less promising than the Novartis

oncology pipeline (b)
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10311 for cancer [14]. In the case of NTDs which, unlike HIV, malaria and TB, do not

104spread widely to high-income countries, there is even less incentive to industry to

105invest in developing new or better products for a market with low returns. Thus, for

106drug discovery and development for PRDs, where minimal returns if any can be

107expected, new approaches such as nanotechnology have to be explored.

108To address the challenges in the treatment of PRDs, the investigation into

109nanomedicine by African researchers has revealed promising approaches for

110improving treatment of TB. Basic research in nanomedicine for malaria, leishman-

111iasis, HIV/AIDS and schistosomiasis is also being carried out, but no one is

112seriously developing a product in this regard.

11317.2 Pharmacokinetics in Drug Development and Benefits

114of Nanomedicine

115Pharmacokinetics (PK) is the science that describes the processes of bodily absorp-

116tion, distribution, metabolism and excretion (ADME) of compounds and medicines.

117In drug development, PK parameters are required to determine route of administra-

118tion and dose regimen.

119Absorption describes the movement of molecules from the site of administration

120to the systemic circulation. Distribution is the movement from systemic circulation

121to extravascular sites. Metabolism is the enzymatic biotransformation of the

122molecules, and excretion is the passive or active transport of molecules into, e.g.

123bile and urine [15].

124The oral route of drug administration is preferred due to its convenience and

125cost-effectiveness. However, to be absorbed into the systemic circulation and reach

126its target site, a drug must be able to cross cell membranes. In fact, each of the

127ADME processes involves passage of compounds across cell membranes. Several

128routes may be utilised depending on the physicochemical properties of the com-

129pound. Generally, lipophilic compounds are rapidly absorbed because they distrib-

130ute into the cell membranes of epithelia via the passive transcellular route.

131Hydrophilic compounds are absorbed more slowly due to their poor distribution

132into cell membranes. Such compounds are, therefore, more likely to be transported

133by carrier-mediated pathways.

134The bioavailability is the fraction of an administered dose of drug that reaches

135the systemic circulation. When administered intravenously, the bioavailability is

136100%. When administered by other routes such as orally, the drug must first be

137absorbed in the intestine, which may be limited by efflux transporters such as P-

138glycoprotein in the intestinal epithelium. As the drug passes through the liver and

139intestine, metabolism mainly by the cytochrome P450 (CYP) family of enzymes

140(first-pass metabolism) and further excretion may take place thus reducing

141bioavailability.
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142 Nanomedicine offers an alternative to address PK-related shortfalls in drug

143 development, and the following sections will discuss the properties that make

144 them advantageous as emerging therapies.

145 17.2.1 Factors Affecting Drug Development for PRDs

146 Poor PK is a major cause of PRD treatment failure due to the inability to achieve

147 effective drug levels (poor solubility and intestinal permeability leading to poor

148 bioavailability for orally administered drugs), production of toxic effects (poor

149 elimination or levels above therapeutic levels) and drug interactions. For example,

150 zalcitabine, an antiretroviral (ARV) drug, was discontinued due to adverse side

151 effects and drug interactions [16]. The ultimate result is poor patient compliance

152 which in turn leads to emergence of resistance. The small number of current drugs

153 for PRDs is inadequate to address these treatment challenges, and development of

154 new drugs is high on the agenda.

155 Drug discovery and development are long and complex, more so for PRDs

156 which in addition to being pharmacologically active must meet the following

157 criteria: oral administration with good bioavailability, well tolerated with mini-

158 mal side effects and short treatment course [17]. A look at the PRD drug

159 development pipeline reveals that there are too few compounds in clinical devel-

160 opment with 10 for TB [13] and 17 for malaria [18] and even fewer for NTDs [19].

161 It is well known that the majority of compounds entering clinical testing do not

162 make it to market due to poor PK, poor efficacy, side effects and toxicity [20]. The

163 clinical success rate for infectious diseases has been estimated at 15% with a

164 failure rate of about 60% at phase II [20]. Therefore, the need to strengthen the

165 pipeline for PRDs to ensure that new products emerge requires a range of

166 solutions. Strategies to increase the development of new treatments include re-

167 optimising the use of current drugs, repurposing drugs used to treat other diseases,

168 exploring natural resources and modifying existing drugs [18]. This chapter will

169 endeavour to show the advantage of including nanomedicine in drug development

170 programmes. The modification of existing drugs using nanomedicine has

171 revolutionised treatment of diseases such as cancer but has not been extensively

172 applied to PRDs. Doxil® and Abraxane® are two of several nanomedicine-based

173 cancer therapies already on the market. Doxil® is a liposomal formulation of the

174 anthracycline drug doxorubicin. It is used to treat cancer in AIDS-related Kaposi

175 sarcoma and multiple myeloma. Its advantages over free doxorubicin are greater

176 efficacy and lower cardiotoxicity due to altered PK [3]. Abraxane® consists of the

177 anticancer drug paclitaxel bound to human albumin nanoparticles which confers it

178 with a longer circulation half-life [3].
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17917.2.2 Pharmacokinetics of Nanomedicines AU1

180Nanotechnology-based therapies can lead to improved half-life, controlled release

181over short or long durations and highly specific site-targeted delivery of therapeutic

182compounds. This section will explain how nanomedicine can attain these

183improvements.

184Nanopharmacokinetics [21] is distinct from pharmacokinetics of small molecules.

185The latter depends mainly on diffusion and transport (through blood) or meta-

186bolism as outlined in Sect. 17.2.1. However, nanopharmacokinetics is defined by

187physiological processes undergone by nanomaterials such as cellular recognition,

188opsonisation, adhesion, lymphatic transport and uptake processes such as phagocy-

189tosis [21]. The reduction in blood concentrations of nanomaterials might be related

190to movement into tissue from which further excretion does not occur. Indeed, many

191nanomaterials tend to accumulate in the liver and to be sequestered in the reticulo-

192endothelial system (RES) or bound to tissue proteins. In addition, nanomaterials

193may be transported through lymphatic pathways which must be taken into account

194in pharmacokinetic analysis based on blood sampling. However, this altered phar-

195macokinetics at the nanoscale means that nanomedicines present pharmaceutic

196improvement as drug delivery systems as they can:

197• Improve drug stability ex vivo (long shelf life) and in vivo (protection from first-

198pass metabolism) [22, 23]

199• Have a high carrying capacity (ability to encapsulate large quantities of drug

200molecules) [23]

201• Incorporate hydrophilic and hydrophobic substances [23]

202• Increase drug dissolution rate, leading to enhanced absorption and bioavailabil-

203ity [24]

204• Target to specific tissues due to selective uptake by those tissues [3]

205• Reduce clearance to increase drug half-life for a prolonged pharmacological

206effect [3]

207• Present the capacity to be formulated for the purpose of controlled release [25],

208therefore posing the possibility to reduce dose frequency and subsequent dose-

209related side effects [26]

210• Be actively targeted to a specific site by functionalising the nanoparticle surface

211with specific molecules or ligands such as monoclonal antibodies, RNA/DNA

212aptamers or peptides to enhance binding and interactions with specific receptors

213which are expressed by the cell populations at the diseased site [27] and thus

214reduce toxicity

215The protection from first-pass metabolism is an important factor in enhancing

216systemic bioavailability. However, in terms of intracellular PK, targeting with

217specific ligands further enhances the intracellular bioavailability due to enhanced

218drug delivery directly into target cells [24].
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219 17.2.2.1 Physicochemical Factors Influencing PK of Nanocarriers

220 When material is at a nanometre size range, it acquires unique physical and

221 chemical properties. Specifically, the physicochemical properties attributed to the

222 effectiveness of nanocarriers include the nano-sized range, surface properties and

223 relative hydrophobicity.

224 Size

225 The sub-micron size of nanoparticles offers a number of distinct advantages, e.g.

226 the ability to reach virtually all tissues in the body, particularly for particles less

227 than 100 nm in size [28]. Desai et al. (1997) demonstrated that 100-nm-size

228 nanoparticles showed 2.5-fold greater uptake compared to 1 mm and sixfold higher

229 uptake compared to 10 mm microparticles in Caco-2 cell line [29]. This aspect of

230 intracellular uptake is more so critical for intracellular pathogens such as infectious

231 diseases, where the drug needs to act intracellularly. Thus, by nanoencapsulating

232 the drug, one can attain intracellular delivery of drugs. Furthermore, these particles

233 can cross barriers that in general make it difficult for conventional therapeutic

234 compounds to reach the target. Reports on nanoparticles crossing the blood-brain

235 barrier (BBB), the stomach epithelium and even the skin have been presented [30].

236 In addition, orally administered nanoparticles can enter the lymphatic system

237 through intestinal Peyer’s patches, followed by uptake via M cells.

238 Surface Properties AU2

239 The surface charge in nanoparticles reflects the electrical potential of particles and

240 is influenced by the chemical composition of the particle and the medium in which

241 it is dispersed. A positive surface charge which can be attained by attaching

242 positively charged polymers such as chitosan on the surface of nanoparticles

243 enhances attachment to the negatively charged cellular membrane, thus improving

244 cellular uptake. Chitosan-based or chitosan-coated particles have been reported to

245 efficiently be taken up by cells and also cross cellular barriers such as the BBB. This

246 is as function of chitosan opening the tight junctions between cells and thus

247 facilitates transcellular particle transport [31]. The surface charge in nanoparticles

248 reflects the electrical potential of particles and is influenced by the chemical

249 composition of the particle and the medium in which it is dispersed. In the case

250 of drug delivery, opsonisation, a process that involves the adsorption of proteins

251 particularly of the complement system, to any foreign material, is also influenced

252 by zeta potential. These proteins make the particle more susceptible to phagocytosis

253 and thus leading to their clearance from the body. To circumvent this effect, various

254 groups have coated the particles with hydrophilic polymers, such as polyethylene

255 glycol (PEG), Pluronics etc., thus affecting both the surface charge and

256 hydrophobicity of the particles and therefore increasing the circulation time of
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257the particles in the blood and in turn prolonging the release of the drugs from the

258particles [32, 33]. Thus, minimising opsonisation via changing the surface charge is

259important for controlled-release formulations. In addition, by coating the polymeric

260particles with hydrophilic polymers, the half-life of the drugs can be improved and

261thus their efficacy. This approach can reduce the dose and dose frequency of many

262effective but poorly soluble drugs and thus in turn minimise the adverse side effect

263since less doses will be administered. Furthermore, nano-sized particles have a

264larger surface area due to the fact that a decrease in particle size results in an

265increase in surface-to-volume ratio and that size is inversely proportional to specific

266surface area. This larger surface area allows for a higher loading of the drug, thus

267leading to a reduction in the dose administered [34].

268Hydrophobicity

269Aqueous solubility, gastrointestinal permeability and low first-pass metabolism are

270important for high oral bioavailability. Nano-based drug delivery systems can

271increase drug dissolution rate, leading to enhanced absorption and bioavailability

272[24]. A combination of both particle surface charge and increased hydrophobicity

273of the material has been reported to improve gastrointestinal uptake in case of oral

274delivery. Hydrophobicity also plays a role in the drug release profile by impacting

275the kinetics of the degradation of the polymeric shell. Mittal et al. (2007) reported

276that by changing the hydrophobicity of a nanocarrier, the structure/composition

277of the polymer/copolymer or the molecular weight, the polymer degradation and

278thus the drug release mechanism and/or duration are impacted [35]. Nanoparticles

279have the advantage of improving the solubility of drugs, particularly for the very

280hydrophilic or poorly soluble drugs which in most cases are not easy to formulate

281and have poor bioavailability. By encapsulating these drugs into polymeric

282particles, which are coated with hydrophilic polymers, the solubility of the drugs

283can be greatly enhanced, in turn improving the bioavailability of the drug. Kondo

284et al. (1993) documented an increase in bioavailability as a result of a 10-fold

285reduction in particle size, which is a result of an increase in surface area and

286consequently an increase in dissolution rate [34].

28717.2.3 Functional Nanocarriers Used in Drug Delivery

288A drug delivery system is defined as a formulation or a device that enables the

289introduction of a therapeutic substance in the body and improves its efficacy and

290safety by controlling the rate, time and location of release of drugs in the body.

291Nanotechnology has been increasingly used in drug delivery for nanoencapsulation

292of medicinal drugs (nanomedicine) [36]. Several nanocarrier devices (Table 17.1,

293Fig. 17.3) have been used for nanodrug delivery applications. The nanocarriers may

294be further modified for active disease targeting by functionalizing the surface with
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295 ligands such as antibodies, aptamers, peptides or small molecules that recognise

296 disease-specific antigens (Fig. 17.4). In this way, the nanoparticles become “multi-

297 ple nanocarriers”. For example, a nanoparticle may be functionalised with aptamers

298 to recognise macrophages infected with TB.

299 Some nanomedicine products currently on the market are summarised in

300 Table 17.2 from which it can be noted that very little progress in the area of

301 PRDs has been made. There is currently no nanomedicine-based product on

302 PRDs. However, African research institutes are now initiating research in the

303 application of nanomedicine to improve PRD therapies which shall be discussed

304 in Sect. 17.3.

305 17.3 Nanomedicine Research for PRDs in Africa

306 The field of nanotechnology is relatively new in Africa and is not well exploited in

307 terms of its application to the improvement of PRD therapies. The most significant

308 progress has been made by research groups mainly in South Africa due to the

309 expensive infrastructure the nanotechnology requires. The government of South

310 Africa has taken nanotechnology very seriously providing all the support required

311 as outlined in the following section. In the rest of sub-Saharan Africa, nanotechnol-

312 ogy activities are minimal.

313 17.3.1 Nanomedicine Research for PRDs in South Africa

314 In South Africa, the national Science and Technology Ministry (the Department

315 of Science and Technology, DST) has been the principal agency guiding

AU3t1:1 Table 17.1 Nanotechnology-based drug delivery systems

Nanocarrier Characteristicst1:2

Liposomes Self-assembling spherical, closed colloidal structures composed of

phospholipid bilayers that surround a central aqueous space [3]t1:3

Polymeric

micelles

Supramolecular assembly of amphiphilic block copolymers or polymer-lipid

based conjugates [37–39]t1:4

Dendrimers Globular repeatedly branched macromolecules exhibiting controlled patterns

of branching with multiple arms extending from central core [40]t1:5

Solid lipid

nanoparticles

Particulate systems made from lipids where melted lipids are dispersed in an

aqueous surfactant by high pressure homogenization or emulsification [41]t1:6

Polymeric

nanoparticles

Solid colloidal particles existing as nanospheres (matrix structure) or

nanocapsules (polymeric shell and inner liquid core). Engineered from

synthetic or natural polymers. The former are essentially polyesters and

poly-acids including polylactic acid (PLA), poly(D,L-lactic-co-glycolic

acid) (PLGA), polycaprolactone (PCL) and poly(butyl-2-cyanoacrylate)

(PBCA). The latter include oligomers that are abundant in nature such as

chitosan, alginate and starch [42, 43]t1:7
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316nanotechnology research direction and policy. In 2007, the DST launched a

317national nanotechnology strategy with six focus areas of high priority for the

318country. One of the focus areas is health with the aim of using nanomedicine to

319improve drug delivery systems, including traditional medicine through packaging

320medicine for ailments such as TB, HIV/AIDS and malaria in nanocapsules. In this

321regard, a nanotechnology flagship project (DST/CSIR Nanomedicine Platform) led

322by the authors of this chapter is being used to develop a drug delivery system for the

323existing TB drugs, to enhance their efficacy and to reduce dosage and dose

324frequency. This flagship project has now grown into a nanomedicine centre of

325excellence for poverty-related diseases for Africa. The centre is one of the

326recognised African Network for Drug Diagnostics and Innovation (ANDI) centres

327of excellence.

a b

c d

e f

Fig. 17.3 Schematic illustration of nanotechnology-based drug delivery systems, (a) liposome,

(b) polymeric micelles, (c) dendrimer, (d) solid lipid nanoparticle, (e) nanocapsules, (f)

nanospheres
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328 Other South African institutions carrying out nanomedicine research for PRDs

329 include the University of theWitwatersrand (Wits) and North-West University. The

330 group at Wits has also been recognised as a centre of excellence in drug delivery by

331 ANDI.

332 17.3.1.1 CSIR ANDI Centre of Excellence in Nanomedicine Research

333 The authors of this chapter are applying nanomedicine to enhance efficacy, half-

334 life, safety, structure and function of TB, malaria and HIV drugs. In addition, we

335 have been spearheading several nanomedicine sensitization activities on the conti-

336 nent, e.g. establishing nanomedicine research programmes in Kenya, hosting inter-

337 national nanomedicine workshops, summer schools and lab exchange programmes.

338 Research in Progress for Improving TB Treatment Through Nanomedicine

339 We have encapsulated anti-TB drugs using a novel spray-drying technique as well

340 as a freeze-drying technology. We will illustrate how we have managed to modify

341 physiochemical properties of the particles and attain sustained drug release over a

342 period of days, both in vitro and in vivo. We further indicate that our particles are

343 taken up by cells and also that the activity of the drugs against Mycobacterium
344 tuberculosis is still maintained in the process of encapsulation.

345 Nanoencapsulation of Anti-TB Drugs in PLGA Nanoparticles
346 AU4Poly(D,L-lactic-co-glycolic acid) (PLGA) 50:50 (Mw: 45,000–75,000) nano-

347 particles loaded with anti-tuberculosis drug prepared using a patented multiple

Fig. 17.4 Schematic illustration of a multifunctional nanocarrier
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348 emulsion-solvent-evaporation technique followed by freeze-drying or spray-

349 drying. Polyvinyl alcohol (PVA) was included as a stabiliser, polyethylene glycol

350 (PEG) to increase bloodstream residence time and chitosan as a mucoadhesive,

351 positively charged polymer to enhance gastrointestinal uptake. Using this tech-

352 nique, we have successfully encapsulated all four first-line anti-TB drugs, i.e. RIF,

353 INH, ETB and PZA, in PLGA nanoparticles for oral delivery, with an encapsulation

354 efficiency of 50–65% for INH and RIF, 84% for PZA and 60% for ETH [12], in

355 particles of 250–350 nm [44]. A PCT patent application has been filed (WO 2009/

356 105792) and has already proceeded to the national phase, with the European patent

357 granted recently.

358 All samples made via freeze-drying showed a negative zeta potential. The

359 addition of chitosan to provide positive surface charge resulted in microparticles.

360 This problem was overcome by spray-drying the double emulsion containing

361 chitosan and PEG in the formulation as shown in Table 17.3 for INH and RIF.

362 The particles were relatively uniform with an average polydispersity index of

363 0.2, and analysis of surface morphology revealed a smooth spherical surface

364 achieved by the addition of lactose to the formulation (Fig. 17.5) [44]. Spherical

365 particles offer maximum volume for drug penetration, and it has been reported that

366 spherical particles possess the right curvature allowing its attachment onto the cell

367 [45] giving rise to enhanced efficiency of cell internalisation.

368 In Vitro and In Vivo Characterisation of PLGA Nanoparticles
369 The PLGA nanoparticles used to encapsulate anti-TB drugs were evaluated

370 in vitro and in vivo with respect to cellular uptake and biodistribution. To investi-

371 gate intracellular uptake, Caco-2 cells were exposed to rhodamine-labelled PLGA

372 nanoparticles prepared in the same manner as the anti-TB drug nanoparticles. The

373 labelled particles were taken up by Caco-2 cells and appeared to co-localise with

374 lysosomes (Fig. 17.6) [44]. This indicates the feasibility of intracellular uptake by

375 intestinal enterocytes in patients. In vivo, the PLGA nanoparticles were taken up by

376 macrophages of the peritoneum when administered orally and peritoneally to

377 female Balb/C mice [11].

378 The PLGA nanoparticles displayed no toxicity towards Caco-2 and HeLa cells

379 as determined via the WST assay [10]. Subsequent to oral administration to mice,

380 the particles remained detectable in the brain, heart, kidney, liver, lungs and spleen

381 after 7 days, with the liver being the major organ of accumulation (Fig. 17.7).

382 However, no pathological lesions were detected in any of the organs [10].

t3:1 Table 17.3 Characterisation of nanoparticles (n ¼ 3)

Drug Type of drying Ave size � SD (nm) Zeta potential (mV)t3:2

INH Freeze-dried 210 � 13 �14 � 2t3:3

INH Spray-dried 321 � 33 þ19 � 1t3:4

RIF Freeze-dried 280 � 23 �10 � 4t3:5

RIF Spray-dried 297 � 22 þ16 � 2t3:6

t3:7 Adapted from [44]

SD standard deviation
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383In Vitro and In Vivo Characterisation of Nanoencapsulated Anti-TB Drugs
384The nanoparticles containing anti-TB drugs were evaluated with respect to

385release of the drugs from the nanoparticles as well as efficacy.

386In vitro release assays in phosphate-buffered saline (PBS) showed that the drugs

387were released in a slow manner over a period of several days preceded by an initial

Fig. 17.5 (a) SEM image of spray-dried particles without lactose. (b) Spray-dried particles with

5% w/v lactose

Fig. 17.6 AU5(a) Indicates a Z-stack of 30 min incubation and (b) depicts a 60 min incubation period.

Rhodamine-loaded nanoparticles co-localised with the lysosomes, as indicated by the orange
colour
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388 burst release. Since hydrolytic enzymes were not included in the PBS, the slow rate

389 of nanoparticle degradation could be attributed to this factor. Faster release rates

390 should be observed in the biological milieu with hydrolytic enzymes present.

391 The in vitro potency of encapsulated INH and RIF with free INH and RIF was

392 compared using the Bactec 460 assay. The Bactec 460 assay is generally conducted

393 to analyse the susceptibility of M.tb to test drugs. The efficacy of the encapsulated

394 anti-TB drugs against H37RV was comparable to the free drugs (Fig. 17.8) [44].

395 Therefore, the multiple emulsion spray-drying technique does not have any effect

396 on the potency of the drugs.

397 When orally administered to mice, nanoparticles containing INH and RIF

398 maintained a sustained-release profile (Fig. 17.9) over a period of at least 5 days

399 when compared to free drugs which reached levels below the minimum inhibitory

400 concentration (MIC) within 16 h. With the encapsulated drugs, drug concentration

401 in plasma above the MIC level of RIF and INH was sustained for the 5 days [44].

402 An efficacy study in which equal doses of free anti-TB drugs were administered

403 to TB-challenged mice once every day and encapsulated drug once every 7 days

404 indicated comparable efficacy (unpublished data).

405 These are important results because they confirm the feasibility of slow release

406 and reduced dose frequency.

407 Targeting of Nanoencapsulated Anti-TB Drugs
408 The PLGA nanoparticles containing anti-TB drugs were further functionalised

409 with mycolic acids (MAs) or nucleic acid aptamers for active targeting of Myco-
410 bacterium tuberculosis-infected macrophages. MA (a lipid molecule on the cell

Fig. 17.7 Tissue distribution of nanoparticles after 7 days graphically represented as a measure of

percentage of particles detected of the total particles. The data represent three repeats of n ¼ 6;

error bars indicate SEM. PSB polystyrene beads, R-NP rhodamine nanoparticles, C-NP coumarin

nanoparticles
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411 wall ofM. tuberculosis) was explored due to its cholesteroid properties [46], and the
412 aptamers were prepared against the mannose receptor, which is significantly over-

413 expressed during the activation of the macrophages in the presence of M.tb.
414 Intracellular uptake of the MA PLGA nanoparticles was achieved in U937 cells.

415 However, little co-localization was observed with endocytic markers, indicating

416 that they could be localised in the cytosol. Vesicles bearing these particles were also

417 observed in the cell membrane of the cells [47]. Uptake of the aptamers into THP-1

418 cells was also observed, illustrating the feasibility of using the nucleic acid species

419 for active targeted delivery of the encapsulated anti-TB drugs [47]. A provisional

420 patent application titled “High Affinity Nucleic Acid Ligands to the Mannose

421 Receptor” has already been filed on the method. The success of these two

422 approaches of anti-TB drug targeting will greatly address the challenges of poor

423 bioavailability, reduced efficacy and adverse side effects for diseases such as TB.

424 Research in Progress for Improving HIV and Malaria Treatment Through

425 Nanomedicine

426 Based on the successes and experiences obtained through the research work on

427 nanomedicine for TB, the authors have begun on nanoencapsulation of antire-

428 troviral and antimalarial drugs. To date, efavirenz and lamivudine have been

429 encapsulated in PCL nanoparticles with an average size of 230 nm (unpublished

430 data). For malaria, nanocarriers are being designed to target parasites in the liver

431 (pre-erythrocytic) and the red blood cell (erythrocytic) of the parasites transmission

432 cycle. Prophylactic and curative measures of the chemical agents will be

433 investigated before and after the application of drug delivery systems.

434 Research Strategy for Improving NTDs Using Nanomedicine

435 The parasites causing NTDs such as leishmaniasis and trypanosomiasis often

436 disseminate throughout the RES, e.g. leishmaniasis in the lymph nodes [48] and

437 schistosomiasis in the spleen [49]. Therefore, the strategy for nanomedicine for

438 these diseases is to take advantage of the selective uptake of nanocarriers by the

439 RES which may be further enhanced by actively targeting the nanocarriers to the

440 parasites in the, e.g. lymphatic system.

441 Activities to Build Nanomedicine Research Capacity in Africa

442 Towards advancing nanomedicine and the benefits of the technology in Africa, the

443 authors organised the first international sensitisation workshop on nanomedicine for

444 infectious diseases of poverty, in South Africa on March 2011. Officially opened by

445 the minister of the Department of Science and Technology, this workshop brought

446 together about 90 delegates from over 20 different countries and included

424 R. Hayeshi et al.
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447representatives from academia, the pharmaceutical industry, regulatory authorities,

448donor agencies, international organisations and policymakers, all interested in

449supporting the advancement of nanomedicine in Africa. The workshop comprised

450a panel of highly accomplished experts in various aspects of nanomedicine and drug

451delivery as well as experts in drug development for poverty-related diseases. Oral

452and poster presentations encompassed basic science through to translational efforts

453and addressed topics on various initiatives and funding. The 4-day workshop

454featured plenary lectures, invited talks and round table discussions focusing on

455specific tenets of nanomedicine and drug development. The fourth day was dedi-

456cated to discuss intellectual property rights and technology transfer, an aspect

457which must be kept in mind when developing new technologies.

458Following the workshop, the authors presented a series of nanomedicine

459sensitisation seminars (road shows) to students and young researchers at a total of

46018 institutions in Kenya, Nigeria and Ethiopia with more seminars planned for

461Cameroon and other African countries such as Uganda, Sudan and Tanzania. These

462nanomedicine road shows highlight the urgent need for more in-depth training in

463nanomedicine for PRDs. Accordingly, the authors are planning the first Pan-African

464summer school in nanomedicine for PRDs, in collaboration with leading

465nanomedicine experts that have nanomedicines on the market and also have

466experience in operating such nanomedicine schools and conferences in Europe

467and the USA annually, as well as African PRD experts. The school aims to bridge

468the gap between the sciences, health and development in Africa, by educating

469young African scientists on the potential of applying nanomedicine in PRD drug

470development research. To achieve this, the school will focus on crucial areas to

471build capacity in nanomedicine. Furthermore, the school will assist in establishing

472networks and collaborations among trainees, to ensure that every trainee can

473confidently enhance knowledge dissemination and skills acquisition. The school

474will also encourage the young scientists to bring with them any compound which

475has failed to reach the market due to the above-mentioned shortfalls. In this

476workshop, they will have the opportunity to apply different nanocarriers to address

477the shortfalls.

47817.3.1.2 University of the Witwatersrand (Wits)

479The Wits Advanced Drug Delivery Platform (WAADP) is focused on

480advancements in polymeric science, formulation stability and drug delivery design

481including nanomedicine for infectious diseases such as TB. In a recent publication,

482the group evaluated sustained release of INH and RIF from polymeric nanoparticles

483synthesised via four emulsion-based processing strategies, namely emulsion-sol-

484vent-surfactant-evaporation (ESSE) and emulsion-solvent-evaporation (ESE)

485approaches for PLGA nanoparticles and reverse-emulsion-cationic-gelification

486(RECG) and reverse-emulsion-surfactant-cationic-gelification (RESCG) approaches

487for alginate hydrogel nanoparticles [9]. Encapsulation efficiencies were in the range

488of 73–82%. The ESSE and RESCG approaches which included sorbitan
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489 monooleate as a stabiliser yielded smaller sizes of nanoparticles in the range of

490 200–290 nm for INH and RIF and displayed sustained release over 8 h with zero-

491 order kinetics in vitro.

492 Another group at Wits, the Antiviral Gene Therapy Research Unit (AGTRU), is

493 using nanocarriers [50] to deliver nucleic acids that are capable of silencing gene

494 expression of viruses that are responsible for infections of serious public health

495 importance to South Africa such as HIV infection [51].

496 17.3.1.3 North-West University (NWU)

497 The Unit for Drug Research and Development at the NWU is conducting research

498 aimed at optimising the delivery of anti-TB and antimalarial drugs using Pheroid™
499 technology. Pheroid™ technology is a drug delivery system patented by the NWU

500 which can be described as a colloidal system that contains stable, submicron- and

501 micron-sized active pharmaceutical ingredient dispensing vehicles. Recently,

502 entrapment of the new artemisinin derivative, artemisone, in Pheroid™ vesicles

503 has been shown to significantly enhance the absorption of the drug. The Cmax was

504 improved by 90%, and the T1/2 increased three times after oral administration in a

505 mouse model [52]. In addition, a Pheroid™ formulation for TB drugs is currently

506 undergoing phase I clinical trials. The CSIR and NWU research groups are now

507 collaborating on entrapping PLGA nanoparticles in Pheroids to further improve

508 bioavailability and achieve controlled release for TB drugs.

509 17.3.2 Nanomedicine Research for PRDs in the Rest of Africa

510 In the rest of sub-Saharan Africa where PRDs are endemic, there is little advance-

511 ment in nanomedicine research for the treatment of these diseases. A few groups

512 exist carrying out basic research into nanomedicine-based therapies, with only two

513 identified thus far at the University of Mauritius (UOM) and American University

514 in Cairo, focusing on PRDs.

515 At the 4th ANDI Conference in October 2011, the Centre for Biomedical and

516 Biomolecular Research at the UOM presented its unpublished work focusing on

517 engineering novel block copolymer nanomicelles for the delivery of anti-TB drugs.

518 The group has engineered amphiphilic block copolymers based on poly(ester-ether)s,

519 polyLysine-b-caprolactone and oligoagarose-g-polycaprolactone. They reported

520 loading of rifampicin up to 70% and sustained drug release over 72 h. The group

521 in Cairo is investigating nanomedicine for schistosomiasis and filariasis but has not

522 published any data as yet.

523 In terms of non-PRD nanomedicine-based therapies, Prof. Wole Soboyejo at the

524 African University of Science and Technology (Abuja, Nigeria) is working on

525 nanoparticles for cancer detection and treatment in collaboration with Princeton

526 University, USA (Personal communication). In Ghana, Dr. Ofori-Kwakye and
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527Dr. Stanley Moffat are conducting basic research in pharmaceutical nanotechnol-

528ogy. Dr. Moffat was recently appointed the African coordinator for USEACANI

529(US-Europe-Asia Pacific-Caribbean Nanotechnology Initiative).

53017.4 Conclusions

531The number of discovery programmes for PRDs is too low to ensure a steady stream

532of treatments on to the market [53]. This is mainly due to the lack of activity from

533the pharmaceutical industry because refinancing the high development costs will

534not be profitable. Only 1.3 products are expected to reach the market out of 100

535entering the screening phase of drug discovery [53]. These figures indicate that

536there is an urgent need for new strategies, such as nanomedicine, in drug develop-

537ment programmes for PRDs. Nanomedicine has been successfully applied for

538treatment of cancer with several products already on the market. Critical properties

539of nanomedicine systems include protection of instable drugs, cell-adhesion

540properties, intracellular delivery of drugs and the ability to be surface-modified

541by conjugation of specific ligands, enabling targeted delivery and controlled

542release. Thus, nanodrug delivery systems seem to be a promising and viable

543strategy for improving treatment of PRDs. However, in Africa, there is minimal

544application of this technology for the treatment of PRDs with only a few groups in

545South Africa making significant progress. Therefore, serious efforts need to be

546focused on the exploitation of the potential of applying nanomedicine in drug

547development for PRDs. We believe this is one way of taking failed leads through

548commercialisation and ultimately bridging the 90/10 gap. To this end, the DST/

549CSIR nanomedicine platform is sensitising African researchers and building capac-

550ity to include nanomedicine in drug development programmes in Africa.
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