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ABSTRACT 

With a mean net primary productivity of 7.2 tC/ha/year and a minimum woody coverage ranging 

from 10 to 30%, savannahs account for approximately 40% of the global carbon store.  The savannah 

woody component impacts the fire regime, biomass production, nutrient cycling, soil erosion, the 

water cycle and the anthropogenic services (e.g. fuelwood provision) vital for the rural populace.  

The structural parameters which make up this vital woody component can be directly measured 

using active remote sensing sensors such as LiDAR and SAR due to their responsiveness to vegetative 

structure and high canopy penetration ability.  The aim of this work is to model regional scale woody 

tree structural attributes [specifically woody canopy volume (CVOL), woody volume (TWV) and 

woody cover (TOT COV)] for the management of South African savannas.  This goal was achieved by 

testing multiple dataset scenarios consisting of multi-seasonal and fully polarized RADARSAT-2 C-

band satellite SAR data, airborne LiDAR derived tree structural metrics and Rapid Eye optical 

products in an integrated modelling approach.  According to results, SAR data acquired in the middle 

of the dry season generated the best models in comparison to other seasons but ideally a dataset 

spanning all seasons were preferable to obtain the best modelled results (CVOL ~ R2 = 0.71; RMSE = 

18487.0, SEP = 18947.2; TWV ~ R2 = 0.61, RMSE = 3797.7, SEP = 3936.9; TOT COV ~ R2 = 0.66, RMSE 

= 8.78, SEP = 8.94).  HV and HH Polarized intensities was found to contribute the most to the overall 

success of the models with the woody canopy volume metric being predicted with the highest 

accuracies. 

INTRODUCTION 

Savannah woodlands (i.e. heterogeneous mixture of grass and woody plants) cover half of the 

African continent and occupy one fifth of the global land surface (Scholes and Walker, 1993).  With a 

mean net primary productivity of 7.2 tC/ha/year and a minimum woody coverage ranging from 10 to 

30%, savannahs account for approximately 40% of the global carbon store (House and Hall, 2001, 

cited in Collins et al, 2009).  The savannah woody component impacts the fire regime, biomass 

production, nutrient cycling, soil erosion and the water cycle of these environments (Sankaran et al., 

2008).  From an anthropogenic point of view, the woody component provides numerous useful 

ecosystem resources such as fuelwood, construction timber and edible fruits (Shackleton et al., 

mailto:LNaidoo@csir.co.za


2 
 

2007), which sustain the needs of the large rural populace in developing countries of Africa and 

regions of South Africa.  The structural parameters which make up this vital woody component can 

be directly measured using available remote sensing sensors which can lead to future long term 

regional monitoring efforts.     

 

Due to its responsiveness to vegetative structure, high canopy penetration ability and general 

weather independence, active remote sensing sensors such as LiDAR and SAR have been widely used 

for studying the woody component of trees (Popescu et al. 2011; Le Toan et al. 2011; Collins et al. 

2009; Sun et al. 2011, Santoro et al. 2007).  Studies, however, are under-represented in low woody 

density environments such as African savannahs (Mitchard et al. 2009; Ribeiro et al. 2008).  The aim 

of this work is to model regional scale woody tree structural attributes [specifically woody canopy 

volume (CVOL), total woody volume (TWV) and total woody cover (TOT COV)] for the management 

of South African savannas.  This aim is achieved by experimenting with multiple dataset scenarios 

consisting of multi-seasonal and fully polarized RADARSAT-2 C-band satellite SAR data, Rapid Eye 

optical products and airborne Carnegie Airborne Observatory (CAO) LiDAR data for validation, and 

implemented under an integrated modelling approach.  The multi-seasonal nature of the SAR data 

allows for the sensing of the phenological related changes in canopy elements across three seasons 

– the end of the wet season (May-June 2009), middle of the dry season (August-September 2009) 

and the middle of the wet season (January-February 2010).  The utilisation of fully polarized SAR 

data (HH, HV and VV) allows for the characterisation of the different tree scattering properties which 

is essential for building SAR related tree structure relationships.  The use of Passive optical sensors 

alone has also played a role in accurately estimating tree structural parameters (Nichol and Sarker, 

2011; Castillo-Santiago et al, 2010).  This is made possible as tree structural characteristics (such as 

tree height, crown diameter etc.) can be measured from photo-interpretation and texture 

orientated modelling techniques (Lu et al., 2006).  The red edge region (a dedicated band in the 

Rapid Eye sensor) has also been proven to be related to tree structure, health and leaf and canopy 

biophysical factors (Cho et al., 2012; Cho et al., 2008) and also played a role in estimating fresh and 

dry grass biomass (Cho et al., 2006).  With this in mind, the main research questions to be answered 

in this study are: 

 

1) Which season or combination of seasons are best for modelling savannah tree structural 

attributes using RADARSAT-2 C-band data? Which polarized intensity parameter(s) is/are the 

most influential? 

2) How does the performance of multiple seasonal and polarized C-band SAR data compare 

with the use of optical product data alone in the modelling of tree structural parameters?  

 

METHODOLOGY 

Study Area: 

The study area (figure 1) is the Southern Kruger National Park region which includes areas such as 

the Bushbuckridge communal rangelands (Justicea, Kildare, Argincourt and Xanthia informal 

settlement areas), the Skukuza region and the Sabi Sands Wildtuin. The study area is located in the 

Lowveld of the savannah biome in the north-eastern part of South Africa (31°00’ to 31°50’ Long E, 
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24°33’ to 25°00’ Lat S).  These sites were selected to represent the different tree structural patterns 

associated with the different land management and disturbance regimes (ad hoc communal 

rangeland management versus park management), varying tree species composition (lowveld 

savanna and mixed forest fringe species) and geological substrates (granite and gabbro) present in 

the region.  

 

 

 

 

 

 

 

 

 

 

 

Data Sources and Pre-processing: 

The CAO LiDAR sensor (Asner et al, 2007), was flown in April/May 2008 across eight sites over the 

study area (figure 1).  The wLiDAR subsystem operates with a laser emitting at 1064nm and was used 

in discrete-return mode (four ranges and four intensities per laser shot).  Physical models of ground 

surfaces (Digital Elevation Model, DEM) and top-of-canopy surface models (CSM) were created by 

processing the raw LiDAR point clouds using the REALM (Optech Inc., Vaughn, Canada) and 

Terrascan / Terramatch (Terrasolid Ltd., Jyväskylä, Finland) software packages. Canopy height 

models (CHM, pixel size of 1.12 m) were computed by subtracting the DEM from the CSM.  The raw 

point clouds were then further processed to produce pseudo waveforms, integrating 3D cloud points 

within a pixel of 5 x 5 m (Levick et al., 2009).  These derived models and the pseudo waveforms were 

used to calculate the three LiDAR structural metrics used in this study.  For the SAR data, C-band 

RADARSAT-2 Fine (4.7 x 5.1 m, range and azimuth nominal pixel spacing) Quad-Pol (C-HH, C-HV, C-

VH, C-VV), Single Look Complex (SLC) images were acquired across three seasons (End of Wet, 

Middle of Dry and Middle of Wet) between May 2009 and February 2010.  Amplitude and phase 

information was preserved in SLC products, and the data were calibrated.  These seasons were 

chosen to best capture the typical phenological changes in savannah vegetation and the associated 

impacts on the SAR scattering interactions (e.g. moisture content).  For the optical data, a single 

Rapid Eye image (for list of bands and overall data summary – refer to table 1) was acquired during 

April 2010 and was subjected to the atmospheric calibrations protocols.  Additionally, three 

Normalized Vegetation Indices (NDVI, Green NDVI and mNDVI3) were calculated (table 1).  These 

indices were assumed to provide an additional modelling predictor for estimating tree structural 

attributes.  To avoid reliance on a particular NDVI index, all possible NDVI indices that could be 

calculated from the Rapid Eye band spectral coverage was used in the modelling analyses.  All data 

Figure 1: Map of the Southern Kruger National Park study region.  The dotted grey line indicates the 

coverage of the RADARSAT-2 scenes while the solid red line indicates the coverage of the single Rapid 

Eye scene.  The black shaded areas are the areas covered by the CAO LiDAR sensor. 
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sources were then subset to present a common spatial coverage and were then stacked as a single 

layer in ENVI 4.7. 

 

Table 1: Data sources used including associated description and time of acquisition 

Sensor Data Products 
Spatial 

Resolution Description Date 

  Total Woody Cover Metric (TOT COV) 

1 m 

Computed from Canopy Height Model (CHM) 

April/May 
2008 

Carnegie 
Airborne Total Woody Volume Metric (TWV) Computed from CHM and canopy cover 

Observatory 
LiDAR Total Canopy Volume Metric (CVOL) Computed from the pseudo waveform as 

  
[All metrics used as predicted 
variables / “ground truth”] the sum of the within canopy hits at different 

    heights above 0 m 

  Mean and Standard deviation of: 

5 m 

  
May-June 

2009 (EWET) 

RADARSAT-2 
C-Band HH, HV and VV polarized products 

Single Look Complex imagery 
Aug-Sept 

2009 (MDRY) 

    
  

Jan-Feb 2010 
(MWET) 

  Mean and Standard deviation of:       

  Blue Band (Band 1) 

5 m 

Mean spectral reflectance and variance 

April 2010 

  Green Band (Band 2) 

Rapid Eye Red Band (Band 3) 

  Red Edge Band (Band 4) 

  Near Infrared Band (Band 5) 

  NDVI (Band 5 - Band 3)/(Band 5 + Band 3) 
@

 

  Green NDVI (Band 5 - Band 2)/(Band 5 + Band 2) & 

  mNDVI3 (Band 3 - Band 2)/(Band 3 + Band 2) 
#
 

  References: @ - Tucker (1979); & - Gitelson et al. (1996); # - Gandia et al. (2004) 

Dataset Analysis:  

A 105m grid vector layer was created and draped over the stacked layer products.  The various 

variables (table 1) were integrated within this grid vector layer, from which mean and standard 

deviation were extracted.  The grid size was found to be the best trade-off between the smallest 

mapping unit and relationship strength between the SAR and LiDAR dataset variables. The extracted 

information was used as the dependent (CVOL, TWV, TOT COV) and independent (HH, HV, VV and 

optical products) variables for the modelling analyses.  It was assumed that the standard deviation 

would represent a simple ‘textural’ indicator which could be related to tree structure.  The LiDAR 

dataset provided a very large and representative number of samples for model calibration and 

validation which would have not been possible to achieve at the ground level.  Simple linear 

regression analyses were then performed between the optical products (independent variables) and 

the LiDAR structural metrics (dependent variables) to ascertain which optical products would be 

included into the optical-only model.  This would reduce the chance of potential model over-fitting 

and improve computational performance. 
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For the modelling process, the SAR full polarimetry variables were grouped into six scenarios per 

season and three multi-seasonal scenarios while the important optical products were grouped 

together as a separate optical-only scenario.  These scenarios were chosen to best explore the 

relationships between the SAR and the LiDAR structural metrics on the single and multi-seasonal 

basis and also explore the influence of the optical products alone on model performance.  The 

datasets comprising of each of these scenarios were then fed into a bootstrapping stepwise 

multiple-linear regression algorithm (10% data split for training and 90% for validation).  Model 

summary statistics such as coefficient of determination (R2), root mean square error (RMSE) and 

standard error of prediction (SEP), were produced to ascertain the best model and 

independent/predictor variables to be used.   

RESULTS AND DISCUSSION 

We first investigated the best optical products to use with the optical-only model. Figure 2 

illustrated an overall low correlation between the 16 optical products and the LiDAR structural 

metrics which indicated a very minimally relation to general structural properties of trees.  Mean 

GNDVI, mNDVI3 and NDVI indices and mean blue, green, red and red edge bands yielded 

relationships greater than 0.1 with the mean green band yielding the highest R2 of 0.25 for CVOL 

and total cover metrics.  It was expected that these NDVI indices would be more correlated with the 

total cover metric as a higher NDVI measure with be related to a greater vegetative presence but 

this is not the case.  The Near Infrared and all optical standard deviation counterparts yielded no 

relationships with the LiDAR metrics.  All optical products were the least related to the TWV metric.  

Nevertheless, the seven optical products which displayed some degree of a relationship with the 

LiDAR metrics were included in the modelling process. 

 

Figure 2: Correlation coefficients of 16 optical products correlated against the three LiDAR tree 

metrics (In the variable names, ‘M’ = Mean and ‘Std’ = Standard deviation) 

 

Single and multi-seasonal modelled results for estimating the three LiDAR metrics (CVOL, TWV 

and TOT COV) were summarised in table 2. Considering all the individual and multi-seasonal scenario 

results, the woody Canopy Volume (CVOL) metric was the most accurately predicted with Total 

woody volume yielding the poorest results.  On examination of the individual seasons, the middle of 

the dry season (MDRY) yielded the best modelled performance for the estimation of the LiDAR 
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metrics (CVOL ~ R2 = 0.66; RMSE = 19938.9, SEP = 20109.9; TWV ~ R2 = 0.57, RMSE = 3964.9, SEP = 

3998.3; TOT COV ~ R2 = 0.61, RMSE = 9.36, SEP = 9.47).  Since the majority of savanna trees have 

little or no leaves during the MDRY season more C-band SAR backscatter interactions with the 

branch elements within the canopy and the trunk itself may have occurred, which would have given 

better estimates of tree volumetric metrics.  The end of the wet season (EWET) yielded the poorest 

model results, probably because this is a transition season when moisture conditions are the most 

variable in the landscape.  When examining the historic rainfall data of the area (not shown in this 

paper), it was clear that particular heavy rainfall event may have marred the SAR acquisition in May 

2009 (EWET).  The best performing models (MDRY) comprised of the mean and standard deviation 

of all three SAR polarized intensities (HH, HV and VV) with HV polarized intensity, followed by HH, 

contributing most to the overall accuracies.  This is consistent with results obtain by other studies in 

woodlands and savannahs for C-, L-, and P-band datasets (Collins et al. 2009; Lucas et al. 2006; 

Mitchard et al. 2009).  Results improved even further when all available seasonal data (EWET, MDRY 

and MWET) of these three polarized intensities were utilised to create the best SAR-only model 

(CVOL ~ R2 = 0.71; RMSE = 18487.0, SEP = 18947.2; TWV ~ R2 = 0.61, RMSE = 3797.7, SEP = 3936.9; 

TOT COV ~ R2 = 0.66, RMSE = 8.78, SEP = 8.94). 

 

When considering the influence of the optical data alone in the modelling process, results were 

poor with large RMSE and SEP values.  In contrast to the SAR results, it seems that the optical 

products alone do not possess the information which sufficiently represents the tree structural 

variability evident in savanna environments.  The next important step in this study would be the 

integration of the best performing optical and SAR variables into a single model to ascertain whether 

the fusion of optical and SAR data can improve the modelling of these tree structural metrics.  

Additionally, as a recommendation for further studies, other more structure oriented optical 

products such as image textures would need to be derived.  Optical data acquired during a season 

where the grasses are dry and the trees are still green (e.g. spring) could also be useful as the optical 

indices will display ranges of values which could be more contrasting of the woody component while 

the textures of the grassy component will appear smooth.  The exploration of other more robust 

statistical techniques such as Partial Least Square Regression (PLSR) and non-linear PLSR would be 

recommended as they are more suited to data displaying co-linearity and are more resilient towards 

model over-fitting.   

 

CONCLUSION 

After experimenting with the fusion of multi-seasonal C-band RADARSAT-2 data and Rapid Eye 

optical products for the modelling and prediction of tree structural metrics (CVOL, TTV and TOT COV) 

in South African savannahs, the following conclusions can be made: 1) SAR data acquired in the 

middle of the dry season generates the best models in comparison to other seasons but ideally a 

dataset spanning all seasons are preferable for best results; 2) HV and HH Polarized intensities 

contributed the most to the overall success of the models and 3) the CVOL metrics was predicted 

with the highest accuracies compared to the other metrics. 
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Seasons Variables selected by stepwise multiple linear regression 
CVOL TTV TOT COV 

M_R2 M_RMSE M_SEP M_R2 M_RMSE M_SEP M_R2 M_RMSE M_SEP 

EWET HH MEAN, HH STDEV   0.25 29731.5 29943.1 0.19 5424.5 5430.9 0.24 13.09 13.11 

  HV MEAN, HV STDEV   0.33 27885.7 28164.7 0.29 5090.1 5120.6 0.32 12.35 12.41 

  VV MEAN, VV STDEV   0.22 30314.9 30517.3 0.18 5478.7 5499.8 0.20 13.33 13.47 

  MEAN and STDEV of HH, HV   0.35 27686.7 27847.4 0.32 4987.5 5043.7 0.33 12.27 12.31 

  MEAN and STDEV of HV, VV   0.37 27223.8 27480.3 0.30 5009.2 5064.6 0.35 12.05 12.17 

  MEAN and STDEV of HH, HV, VV   0.39 26646.8 26972.7 0.34 4901.2 4918.8 0.37 11.91 12.07 

MDRY HH MEAN, HH STDEV   0.57 22424.0 22600.4 0.48 4349.8 4371.3 0.51 10.43 10.46 

  HV MEAN, HV STDEV   0.63 20850.2 20950.0 0.54 4050.1 4057.1 0.58 9.69 9.76 

  VV MEAN, VV STDEV   0.22 30286.1 30538.2 0.21 5363.3 5404.0 0.19 13.47 13.53 

  MEAN and STDEV of HH, HV   0.65 20373.2 20627.3 0.56 3978.6 4038.7 0.59 9.58 9.67 

  MEAN and STDEV of HV, VV   0.63 20701.6 20924.7 0.55 4009.5 4055.9 0.57 9.72 9.75 

  MEAN and STDEV of HH, HV, VV   0.66 19938.9 20109.9 0.57 3964.9 3998.3 0.61 9.36 9.47 

MWET HH MEAN, HH STDEV   0.33 28095.4 28272.8 0.23 5291.6 5267.5 0.31 12.44 12.52 

  HV MEAN, HV STDEV   0.36 27381.7 27684.5 0.27 5150.4 5182.2 0.33 12.16 12.28 

  VV MEAN, VV STDEV   0.34 27772.9 27822.4 0.26 5148.3 5197.1 0.32 12.36 12.38 

  MEAN and STDEV of HH, HV   0.37 27256.5 27414.9 0.28 5106.3 5136.1 0.34 12.12 12.18 

  MEAN and STDEV of HV, VV   0.41 26301.4 26492.2 0.30 5054.7 5049.7 0.38 11.75 11.82 

  MEAN and STDEV of HH, HV, VV   0.43 25997.7 26159.1 0.34 4906.7 4965.7 0.40 11.62 11.71 

All MEAN and STDEV of HH, HV and VV     0.71 18487.0 18947.2 0.61 3797.7 3936.9 0.66 8.78 8.94 

Seasons                               

Winter (MDRY) MEAN and STDEV of HH, HV, VV     0.71 18619.0 19015.7 0.59 3871.0 3932.4 0.65 8.85 9.00 

&   
    

    
 

    
 

    
 

  

Summer (MWET)                               

Winter (MDRY) MEAN and STDEV of HH, HV, VV     0.69 19050.6 19383.8 0.59 3860.9 3972.1 0.65 8.95 9.13 

&   
    

    
 

    
 

    
 

  

Autumn (EWET)                               

Single date MEAN of GNDVI, mNDVI3, NDVI, Blue, Green, Red, Red Edge 0.54 26662.2 27177.6 0.47 5070.8 5157.0 0.54 11.2 11.5 

acquisition                               

Table 2: Modelled results for CVOL, TTV and TOT COV across different single season and multi-seasonal data scenarios 
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