

Tshwane University of Technology We empower people

Metal octacarboxyphthalocyanines/ Multiwalled carbon nanotubes hybrid for development of dye solar cells

Kanyane Nonhlanhla Mphahlele

www.tut.ac.za

Live your life. Create your destiny.

OUTLINE

Background and Introduction

Experimental Procedure

Characterization

Electrochemical Evaluation

Conclusions

Acknowledgements

What is dye solar cells (DSCs)

Dye solar cells (DSCs) have become one of the attractive devices as an alternative energy resources for the conversion of solar irradiation into electricity

- Low cost
- Easy to fabricate
- Non toxic
- Light weight and semitransparent

First reported in 1991, by O'Regan and Gratzel with a solar power conversion of 11%.

This device was achieved by using high surface area nanocrystalline TiO_2 coated with an adsorbed dye molecule in order to maximise light harvesting

Three main components in DSCs

Working electrode, Counter electrode and Electrolyte (iodide/triiodide redox couple)

Grätzel, M. 2005, Inorg.Chem,44:6841 - 6851

Major research areas

• Investigate an alternative photosensitiser enhance the performance and efficiency of DSCs.

Requirements for Sensitisers

- •Sensitisers should be panchromatic.
- Contain functional groups such as Carboxylic group.
- It should have suitable ground and excited state for redox properties.
- The energy level of the excited dye molecule should be well matched to the lower bound of the conduction band.
- Stable to sustain about 10⁸ turnover cycles for about 20 years when exposed to light.
- Thermal and photochemical stability.

Grätzel, M. 2000. Research and Applications, 8: 171-185

Alternative Photosensitiser

Background of Phthalocyanines

- Aromatic planar complex
- •Tetraazoporphyrins four isondole unit
- •Braun and Teherniac 1907

Pcs have been used: Pigments and dyestuff

for over 70 years

Two isolated absorption band
Modifying MPc with MWCNT
CNT – efficient catalyst and conductive species

Nyokong, T. 2007. Coord. Chem. Rev, 251: 1707-1722.

Approach:

- Synthesise various metal octacarboxyphthalocyanine
 (M = Ga, Zn, Si);
- Modification with multiwalled carbon nanotubes;
- Investigate the spectroscopic, microscopic; determine the electrochemical behaviour of metal octacarboxyphthalocyanines supported on carbon

nanotubes

Incorporate in DSC

UV/VIS SPECTRA

Electronic spectra of MOCPc and MOCPc-MWCNTs in DMF. Upon integration with MWCNT, Q band red shifted.

XRD & EDX

AFM IMAGE

Clearly showing the attachment of ZnOCPc molecules on the walls and edge-plane sites of the MWCNTs.

CHRONOAMPEROMETRY

Both the MPc and MPc-MWCNT hybrids on the ITO substrate show photocurrent response under visible light illumination, a reversible rise/decay of the photocurrent in response to the on/off illumination. The measurements show an almost rectangular photoresponse when switching on and off the illumination.

CHRONOAMPEROMETRY

NYQUIST PLOTS

Nyquist plots of DSCs fabricated with a) $TiO_2/ZnOCPc$, b) $TiO_2/(OH)_2SiOCPc$ and their corresponding MWCNT-integrated hybrids.

Investigate the electron transport and recombination mechanism of DSCs

NYQUIST PLOT

Nyquist plots of DSCs fabricated with c) TiO₂/OHGaOCPc and their corresponding MWCNT-integrated hybrids.

Vogit circuit comprising three RC elements in series to fit the circuit

CONCLUSIONS

MOCPc (M = Ga, Si, Zn) complexes were successfully synthesised.

As confirmed by FTIR, UV/Vis and electrochemistry characterisation.

Amine functionalised multi-walled carbon nanotubes were successfully incorporated with MOCPc to produce MOCPc - MWCNTs hybrid and satisfactory characterisations were obtained.

The incorporation of MWCNTs improved the photocurrent response of MOCPc.

Therefore, ZnOCPc - MWCNT showed high photocurrent response than (OH)₂SiOCPc - MWCNT and (OH)GaOCPc - MWCNT.

ACKNOWLEDGEMENTS

- Prof. Kenneth Ozoemena: Research group leader
- Dr Lukas Le Roux : Senior researcher at CSIR
- Dr Leskey Cele : Senior Lecture at TUT
- Dr Mkhulu Mathe: Competence area manager
- Tohoku university = Japan

our future through science

We empower people

Tshwane University of Technology We empower people

Thank You

www.tut.ac.za

Live your life. Create your destiny.