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Abstract—When modelling code-switched speech (utterances
that contain a mixture of languages), the embedded language
often contains phones not found in the matrix language. These are
typically dealt with by either extending the phone set or mapping
each phone to a matrix language counterpart. We use acoustic
log likelihoods to assist us in identifying the optimal mapping
strategy at a context-dependent level (that is, at triphone, rather
than monophone level) and obtain new insights in the way
English/Sepedi code-switched vowels are produced.

I. INTRODUCTION AND BACKGROUND

Code switching – using words and phrases from more than
one language within a single utterance – is a common phe-
nomenon among multilingual speakers. There are a number of
reasons why multilingual speakers engage in code switching.
In the case of Sepedi, speakers often use a foreign language
(English) for numbers, dates and time, a phenomenon that has
been observed in other South African languages as well [1].

For automatic speech recognition (ASR) systems, code-
switched (CS) speech provides an interesting challenge. This
can be dealt with by building fully multilingual systems
(combining dictionaries, language and/or acoustic models from
multiple languages) or by running more than one monolingual
system in parallel, switching from the one to the other [2], [3].
We are interested in the first approach, and specifically where
acoustic models are combined at the phone or sub-phone level.

Various techniques have been used when deciding how and
when to combine the acoustic model of a phone from the
embedded language (English in this case) with a phone from
the matrix language (Sepedi in this case). One such technique
consists of mapping the embedded phones to the matrix phones
prior to system training. This can be achieved in different
ways, specifically:

• Using IPA features directly: mapping phones based on ex-
isting linguistic knowledge. (IPA features classify sounds
based on the phonetic characterisation of those speech
sounds [2]).

• Using a confusion matrix from an existing ASR system:
calculating the rate of confusion between two phones
using a phoneme recogniser in the matrix language and
acoustic data from the embedded language [3].

• Using log likelihood differences directly as a distance
measure that tests how well two different models fit the
same data [4], [2].

• Using acoustic distance measures such as Kullback-
Liebler measure, Battacharyya distance metric, Maha-

lanobis measure or a simple Euclidean measure [5].
• Using a probabilistic phone mapping [6], that is, a model

for mapping phones between source sequence X, and
target sequence Y, where the model parameters are given
by

PM(x | y) : x ∈ X, y ∈ Y (1)

and this model is estimated from the results of a phoneme
recogniser and the modelled pronunciations. Note that
this model (like the current work) is context-sensitive.

In an earlier analysis of English/Sepedi CS speech [7], it
was found that applying grapheme-to-phoneme (g2p) rules of
the matrix language (Sepedi) to the code-switched words di-
rectly, outperformed more sophisticated mapping approaches,
and specifically one whereby the g2p rules of the embedded
language (English) is used to predict possible pronunciations
and these then mapped on a per-phone basis to the closest
matching Sepedi phone. This was an unexpected result: it
could either mean that the mapping used (obtained from a
confusion matrix, as described in [7] ) was not optimal, or that
Sepedi speakers do interpret some English words according
to Sepedi pronunciation rules, for example, pronouncing the
word ‘chocolate’ as / S O k O l a t / rather than as / t S Q k
l @ t / (using X-SAMPA notation).

In this work we investigate the process of obtaining a
phone mapping from the embedded language to the matrix
language. The main goal is to determine whether a better
mapping can be obtained, given the specific corpus we are
modelling, and to explore tools to analyse this task. We focus
on English vowels (English consonant mappings are more
predictable), and investigate the use of model likelihoods to
guide the mapping choice at a context-dependent level. When
unlimited training data is available, using all matrix language
and embedded language models combined is expected to
perform best; with constrained corpora, extending the phone
set indiscriminately is expected to hurt performance due to
data scarcity. The optimal mapping is therefore dependent
on the specific speech corpus being modelled: our goal is to
investigate tools that can guide this mapping process.

In the current work we first verify and extend the ear-
lier English/Sepedi code-switched ASR results (as discussed
above) to determine whether these were corpus-specific or
whether trends are retained across corpora; we then use log
likelihood ratios to analyse the possible context-dependent



phone mappings from the embedded language phones to the
matrix language phones.

The paper is organised as follows: In Section II we describe
the approach we use to analyse context-dependent mappings.
In Section III we describe the speech corpora used in a fair
amount of detail, as this provides the context for the various
experiments undertaken. Experiments and results are discussed
in Section IV. Section V summarises the findings from this
analysis and provides some suggestions for future work.

II. APPROACH

The approach we use to determine an optimal phone map-
ping is fairly straightforward: we score the English vowels
against context-dependent acoustic models of vowels from
both the embedded and matrix language and compare the
likelihood ratios. These ratios give us an indication of ‘model
closeness’ and suggest mapping candidate(s) at a triphone
level. We analyse these mapping candidates to determine
whether a triphone should be mapped, and if so, to which
matrix language triphone.

The specific process we use to determine mappings is as
follows:

1) Context-dependent acoustic models are trained with pure
Sepedi data (not containing any code-switched speech).

2) Context-dependent acoustic models are trained from the
available Sepedi code-switched data by extending the
Sepedi phone set with all English phones.

3) For each English phone, possible mapping candidates
are selected using a confusion matrix (as described
in more detail later in Section IV-A). Note that these
mapping candidates are selected at the monophone level.

4) Analysis is performed at triphone level:
a) The English data is force aligned using the English

triphone model.
b) The same data is similarly aligned using each

of the Sepedi candidate triphone models. These
models are constructed from the actual left and
right contexts observed, with only the centre phone
replaced.

c) The likelihood ratio between (a) and (b) is eval-
uated per candidate triphone, per code-switched
sample, in practice by calculating the difference in
log likelihood, for each English triphone e, match-
ing Sepedi candidate se and data sample de, re-
ferred to from here onwards as ll diff(e, se, de).

d) The average of the values in (c) is obtained per
candidate triphone se by averaging over all data
samples de, giving a single value of ll mean(e, se)
per English and Sepedi candidate triphone pair.

5) The relative scores are used to determine mappings:
a) If there is a clear Sepedi triphone winner, only that

candidate triphone is selected for mapping, that is,
if the difference in ll mean(e, se) between two
candidate triphones exceeds a threshold α.

b) If there is not a clear winner, all triphone can-
didates that have a value of ll mean(e, se) less
than a second threshold value β are selected as
possible mappings (introducing variants for that
specific context).

c) For triphones that have no suitable counterpart
(no candidate mappings that obtain a value of
ll mean(e, se) smaller than β), phone set exten-
sion is considered.

III. DATA

In this section we describe the data used during experiments:
the audio corpora, phone sets and dictionaries.

A. Audio corpora

We use two different audio corpora for the experiments: a
general Sepedi corpus (NCHLT [8]) and a custom-designed
code-switched corpus (SPCS [9]).

The NCHLT corpus was collected using a locally developed
smart-phone based speech data collection tool, Woefzela [8].
The corpus consists of prompted speech, mostly in Sepedi but
also including some English speech (generated from English
text) as produced by Sepedi first language speakers. The
corpus consists of 12 560 unique word tokens produced by 113
speakers. We use both the full corpus (referred to as nchlt all
from here onwards) consisting of all Sepedi and English data
and create a subset (nchtl sep) consisting only of pure Sepedi
utterances. This corpus contained no code-switched sentences.
Table I shows the distribution of male and female speakers, and
the duration of the train and test sets in the different corpora.

TABLE I
Distribution of the number of male and female speakers.

Speakers Duration (min)
nchlt sep Train 92 (38 female, 54 male) 1 417.62

Test 20 (10 female, 10 male) 247.28
nchlt all Train 82 (33 female, 49 male) 2 782.48

Test 30 (15 female, 15 male) 1 055.68

The SPCS corpus was collected using prompts that were
derived from code-switched transcriptions generated from ac-
tual radio broadcasts [9]. It was also collected using Woefzela.
Twenty speakers (12 females, 8 males) each read approx-
imately 450 utterances, resulting in 10 hours of prompted
speech.

Table II lists the number of unique English and Sepedi
words found in the corpus. As discussed in [9], we also list
semi-modified words (giving a total of 787 unique words):
English words that are transformed when embedded in Sepedi
speech, for example the word graduate that can be pronounced
as graduata when used within general Sepedi speech.

TABLE II
Number of unique words and total number of utterances in the SPCS corpus.

# Semi-modified # Eng words # Sepedi words # Utterances
58 345 384 12 386



B. Phone sets and dictionaries

The pronunciation rules were obtained from two sources:
1) Standard Sepedi g2p rules (Default&Refine [10] trained

on the 5 000-word Lwazi dictionary [11]). In addition,
affricates were split according to [12] resulting in 32
Sepedi phones being used in practice.

2) English g2p rules (Default&Refine trained on a South
African English (SAE) dictionary created using manu-
ally created British-to-SAE phone-to-phone (p2p) map-
pings [13])

All pronunciations of words occurring in the SPCS corpus
were manually verified and corrected, where necessary. The
final dictionary contained 29 phones that occur in English but
are not found in the Sepedi phone set, as shown in Table III.

TABLE III
Number of phones of different categories found in the various phone sets

used.

Sepedi Sepedi split English English phones not
standard affricates occurring in Sepedi

Affricates 9 - 2 1
Fricatives 11 11 10 5
Stops 8 8 6 6
Nasals 5 5 3 -
Vowels 7 7 12 8
Trill 1 1 - -
Approximants 4 4 4 1
Diphthongs - - 8 8
Total 45 36 45 29

IV. EXPERIMENTS AND RESULTS

First, we repeat the experiments as performed in [7] on the
NCHLT corpus, for two reasons: to determine whether trends
are consistent across corpora, and to obtain a comparable
baseline for the phone mapping analysis. Once the baseline has
been established we analyse the context-dependent likelihood
ratios for the English vowels to obtain a possible mapping.

A. Baseline ASR systems

As a baseline implementation we create four systems on the
same training data (nchlt all) using four standard approaches,
the first three of which were used in [7]:

1) Sepedi-only phone set: all words (English and Sepedi)
are predicted using Sepedi g2p.

2) Extended phone set: English words are predicted using
English g2p, Sepedi words are predicted using Sepedi
g2p and all phones retained.

3) Mapped phone set: All English phones (from (2)) are
mapped to the single best candidate based on a confusion
matrix; no English phones are retained. The confusion
matrix was obtained as follows:

• Freely decoded phone-level labels are obtained from
the Sepedi system (using nchlt all, but only Sepedi
phones).

• The SCPS data is aligned using a dictionary con-
taining the extended phone set (English and Sepedi
phones).

• Iterative dynamic programming (using tools from
[14]) is used to obtain an accurate confusion matrix
at phone-level.

• For every English phone, the Sepedi phone with the
highest confusability is selected.

4) Code switched variants: Sepedi pronunciations from (1)
and English mapped pronunciations from (3) are added
as variants both during training and testing.

All four systems are created in a similar way: a fairly
standard Hidden Markov Model (HMM) based ASR system
is implemented using the HTK toolkit [15]. Acoustic models
consist of cross-word tied-state triphones modelled using a
3-state continuous density HMM. Each HMM state distri-
bution is modelled by an 8-mixture multivariate Gaussian
with a diagonal covariance matrix. The 39-dimensional feature
vector consists of 13 static Mel-Frequency Cepstral Coeffi-
cients (MFCCs) with 13 delta and 13 acceleration coefficients
appended. The Cepstral Mean and Variance Normalisation
(CMVN) preprocessing is used and Semi-tied transforms ap-
plied.

These four systems are then tested on three different test
sets, obtained from the Sepedi-only NCHLT data (nchlt sep),
all NCHLT data (nchlt all) and all SPCS data (spcs), respec-
tively. Note that the SPCS data is always used as a test set:
it is never included in data used either for training or system
tuning.

TABLE IV
Phone error rates of different baseline systems on each of three test sets.

Test set Sepedi-only Extended Mapped CS variants
phone set phone set

nchlt sep 30.72 45.09 33.65 31.92
nchlt all 33.37 42.54 34.32 35.88
spcs 39.63 56.46 44.16 42.27

The phone error rates (PER) of NCHLT and SPCS test data
using different approaches to modelling code switched words
are obtained as shown in Table IV. Utterances that cannot be
decoded by any of of the systems are removed from the corpus
to ensure a fair comparison across systems.

In this careful analysis across different test sets, we see
that the previously observed trends remain consistent: Sepedi-
only g2p provides the most effective approach to dealing with
code-switched speech. Simply extending the phone set results
in a large increase in error rate. When the English phones
are mapped to their Sepedi counterparts, error rate decreases
(compared to the extended phone set); error rate again de-
creases when two variants (the English remapped version and
the Sepedi g2p version) are added per code-switched word.
Even though error rates decrease during this process, the best
results are still obtained when using a straightforward Sepedi
g2p prediction.



Fig. 2. Mean log likelihood differences (ll mean) for one phone /@/ in
different context and mapping candidates /a/, /E/, /i/, /O/ and /u/.

B. Selecting candidate mappings

We obtain mapping candidates from the same confusion
matrix described in section IV-A (previously used to identify
a single best match). This time, we flag all phones that are
confused with the target phone more than 20% of the target
phone occurrences.

Table V lists the frequency of occurrence of the English
vowels in the NCHLT training set, and the SPCS corpus,
respectively. For each vowel, the mapping candidates are iden-
tified and per candidate, the number of times a target phone to
mapping candidate pair was observed in the confusion matrix
is provided in brackets. We also show the number of unique
phone contexts observed in the SPCS corpus.

TABLE V
Phone mapping candidates obtained from confusion matrix. For each
English vowel, the number of times it was observed in each corpus is
provided. For each phone-candidate pair, the number of times that the

confusion was observed in the testing data is provided in brackets.

phone train counts test counts candidates unique phone
(nchlt all) (spcs) contexts

@ 59 652 10 445 a (4448), E (2534)
i (1165), O (1156) 121

u(78)
i: 21 789 711 i (389), E (205) 15
A: 2 731 749 a (635), E (51) 11
{ 2 265 2 479 a (1775), E (536) 39
u: 1 220 1065 u (434), O (216 ) 23
Q 1 214 1811 O (1208), a (429) 32
O: 1 174 1 333 O (1009), a (283) 19
E: 972 991 E (663), a (196) 18

C. Context-dependent analysis

Once the mapping candidates have been identified, the
triphone analysis as described in Section II (4) can be per-
formed. The English models are obtained from the nchlt all
corpus and the Sepedi models from the nchlt sep corpus.

The ll mean(e, se) values are calculated for all the vowels e
and mapping candidates se as listed in Table V. In this work,
we only consider contexts where the left and right contextual
phones occur in both the English and Sepedi phone sets. (This
means, for example, that we do not include a triphone such
as /T-Q+@/ in the current analysis.)

To illustrate the concept, we first plot the results for a single
context /S-@+n/ when found in different words. Results are
averaged over all speakers. As can be seen in Fig. 1, the
best matching context (/S-E+n/) is always the closest match,
irrespective of the word in which it is used. The runner up
is /S-i+n/: this context always provides a poorer match than
/S-E+n/, with results most comparable in the word ‘national’,
which interestingly, does have a different morphological con-
struct than the others. The results displayed in Fig. 1 is
better contextualised by considering the mean log likelihood
difference between standard Sepedi /S-E+n/ contexts and the
Sepedi /S-E+n/ model, which is 0.004 (indicated in Fig. 1) by
a horizontal line.

In Fig. 2 we provide the same results, but now averaged
over all words that contain a specific context. We plot the
results for one phone /@/ when found in different contexts.
Again, results are averaged over all speakers. From Fig. 2
it is clear that /E/ provides the best match in general, but
that there are some contexts where other phones are better
mapping candidates. The phones /a/, /O/ and /i/ also provide
best matches in a limited number of contexts, whereas the
phone /u/ only provides a best match in two instances.

This process was repeated for all the vowels. Two more
examples are shown in Figures 3 and 4, illustrating the mean
log likelihood differences for vowels /Q/ and /{/, respectively.

When this process is repeated for additional contexts, we
are able to identify additional context-dependent Sepedi can-
didates that provide the best match to each of the context-
dependent English vowels.

Fig. 3. Mean log likelihood differences (ll mean) for phone /Q/ in different
context and mapping candidates /a/ and /O/.



Fig. 1. Mean log likelihood differences (ll mean) for one context /S-@+n/. Each mapping candidate is displayed using a different colour. /EE/ is displayed
as calibration: the ll mean of standard Sepedi /E/ data measured against the standard Sepedi /E/ model.

Fig. 4. Mean log likelihood differences (ll mean) for phone /{/ in different
context and mapping candidates /a/ and /E/.

D. Obtaining a mapping from likelihood results
The above likelihood results are used to determine possible

actions to take with regard to the English vowels. As men-
tioned in Section II, the possible options per phone context
are to:

1) Extend the matrix language phone set by adding the
embedded language phone (if no candidate with an

ll mean value of less than β);
2) Map the embedded language phone to the single closest

matrix language phone; or
3) Map the embedded phone to more than one candidate

matrix phone (if candidates closer than α).
Both α and β can be tuned on a development set. The

context-dependent mapping is obtained by finding the most
appropriate candidate triphones using these thresholds. For
every winning candidate triphone (see 2), we determine which
other candidate triphone is within the defined threshold.

In order to illustrate the concept, we use the analysis in
IV-C to select thresholds such that α is 0.02 and β is 0.1
(implying that the phone set is not extended).This results in
the mappings determined for /@/, as shown in Table VI.

V. CONCLUSION

In this investigation, we have shown that acoustic log
likelihoods provide a useful tool when analysing the optimal
mapping of embedded language phones to matrix language
phones, and that context is important when applying such
mappings. We also introduced a new corpus of Sepedi/English
codes-switched speech, and confirmed that (for this corpus,
as found earlier in [7]), Sepedi g2p predictions of the pro-
nunciations of English words provide a viable alternative to
more sophisticated modelling approaches, and that, in fact, it is
difficult to obtain a better alternative with context-insensitive
mappings.



TABLE VI
The context-dependent mapping for phone /@/.

Phone Mapping
n-@+S a
s-@+m a,i,O,u
m-@+f a
S-@+l a
m-@+sil a,O
n-@+l a
d 0Z-@+l a,O,u
d 0Z-@+h b a,O
s-@+d 0Z a
f-@+f E
S-@+n E
s-@+l a,E
n-@+m E,O
s-@+n a,E,O
h b-@+l E
n-@+s E,i
d 0Z-@+n E
m-@+n E
s-@+s E,i
l-@+s O
s-@+w i,O
i-@+w O
l-@+n a,O
i-@+f u
l-@+d 0Z E,u

The next step in our research will be to determine the impact
of the identified mappings on ASR system performance. This
will also require a thorough investigation of the thresholds
α and β, balancing the need for accurate mappings with
the additional confusability introduced by extra pronunciation
variants.

Future work will include extending the phone mapping
analysis to contexts where the left and right phones themselves
are only in one of the two phone sets. This will also allow
us to extend the analysis to the full phone set by iteratively
mapping phones, in the process increasing the matched phone
sets. In addition, we would like to analyse whether some of
the observed mappings are speaker-specific, or robust across
speakers (the current assumption); and whether the graphemic
context of the triphone also plays a role in producing an
optimal mapping.

While the above would provide a practical (and more
nuanced) tool when producing phone mappings for code-
switched speech, the current analysis already provides some
interesting insights with regard to the acoustic properties of
English/Sepedi code-switched speech.
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