Zinc oxide and silver nanoparticles influence the antioxidative status in a higher aquatic plant, *Spirodelapunctata*.

Melusi Thwala1,2, Ndeke Musee3,4, Lucky Sikhwivhilu5, Victor Wepener2

1Water Ecosystems and Human Health Research Group, CSIR, Pretoria.
2Zoology Department, University of Johannesburg, Johannesburg.
3Nanotech Environmental Impacts Research Group, CSIR, Pretoria.
4Department of Chemical Engineering, University of Johannesburg, Johannesburg.
5DST/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Johannesburg.

7th ICEENN 2012, BANFF CENTRE, CANADA, 11 SEPTEMBER 2012
reactivity
solubility
conductivity
strength
SOME FUNDAMENTAL COMPLEXITIES

- Interaction with biological matter?
- Uptake routes: Do NM parameters influence uptake, how?
- Basis for biological response? Molecular definition
- Inducive level of dosage: environmentally relevant?
- Biomarkers of exposure: nano vs bulk

OLD SCIENCE SOLUTIONS FOR NEW TECHNOLOGY PROBLEMS
LOOK AT WHAT HAD BEEN DONE

The distribution of L(C)50 values if nanoparticles to different groups of organisms. Kahru and Dubourgier. 2010. *Toxicology* 269: 105-119.

Production of nanoparticles from different sources and respective applications.

<table>
<thead>
<tr>
<th>Source</th>
<th>Type of nanoparticle</th>
<th>Quantity used in terms of tons</th>
<th>Application/uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals and alkaline earth metals</td>
<td>Ag, Fe</td>
<td>High, High</td>
<td>Antimicrobials, paints, coatings, medical use, food packaging, Water treatment</td>
</tr>
<tr>
<td>Metal oxides</td>
<td>TiO₂</td>
<td>High</td>
<td>Cosmetics, paints, coatings</td>
</tr>
<tr>
<td></td>
<td>ZnO</td>
<td>Low</td>
<td>Cosmetics, paints, coatings</td>
</tr>
</tbody>
</table>

our future through science
OVERALL APPROACH

THE OXIDATIVE STRESS HYPOTHESIS

1.
- \(\text{H}_2\text{O}_2 \)
- \(\text{O}_2^- \)
- \(\text{NO} \)
- \(\text{ONOO}^- \)
- \(\text{ROO}^- \)

2.
- \(2 \text{O}_2^- + 2 \text{H}^+ \xrightarrow{\text{superoxide dismutase}} \text{H}_2\text{O}_2 + \text{O}_2 \)
- \(\text{H}_2\text{O}_2 + 2 \text{GSH} \rightarrow 2 \text{H}_2\text{O} + \text{GSSG} \)
- \(2 \text{OH}^- + 2 \text{GSH} \rightarrow \text{H}_2\text{O} + \text{GSSG} \)

3. Oxidative damage

4. Physiological alteration

What are Free radicals?
- Free radicals are like robbers which are deficient in energy.
- Free radicals attack and snatch energy from the other cells to satisfy themselves.

www.csir.co.za
LABORATORY MAINTANANCE and TESTING

Free floating higher aquatic plant,
• easy laboratory maintenance,
• higher protein content,
• rapid growth.

Holding conditions:
• 22°C±2
• cool-white fluorescent light:dark/8:16hrs
• weekly water renewal.

• Exposure period:
 4 days-static and 14 days- static renewal
• Hoegland’s Medium
• 5 replicates- 30 plants/replicate

Free radical activity
• ROS/RNS
- \(\text{H}_2\text{O}_2 \), \(\text{ROO}^- \), NO, ONOO\(^-\)
- DCFH-DiOxyQ probe

Enzymatic scavengers
• Catalase
• Superoxide dismutase
• Total antioxidant capacity

Size
• TEM
• DLS

Morphology
• TEM
• XRD

Surface area
• BET

www.csir.co.za
Ag nanoparticles

Morphology
- Spherical nanoparticles.

Surface area
- Small relative to size.

XRD pattern
- Few crystal particles also detected.
- Pure phase: no impurities peaks detected.

<table>
<thead>
<tr>
<th>Sample</th>
<th>S_{BET} (m2/g)</th>
<th>Pore Volume (cm3/g)</th>
<th>Particle size (nm)</th>
<th>Z-potential (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>nAg</td>
<td>3.399</td>
<td>0.01509</td>
<td>40-60</td>
<td>-16.3</td>
</tr>
</tbody>
</table>
ZnO nanoparticles

Morphology
- regular (20-50 nm) and irregular spheres (80-120 nm), rods (15-45 nm), cubes (10-130 nm) and hexagonal platelets (60-80 nm).

Surface area
- Higher than nAg although bigger sized.

XRD pattern
- High crystallisation: hexagonal crystal system.
- Pure phase: no impurities peaks detected.

<table>
<thead>
<tr>
<th>Sample</th>
<th>S_{BET} (m2/g)</th>
<th>Pore Volume (cm3/g)</th>
<th>Particle size (nm)</th>
<th>Z-potential (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>nZnO</td>
<td>11.44</td>
<td>0.03020</td>
<td>10-130</td>
<td>22.7</td>
</tr>
<tr>
<td>nAg</td>
<td>3.399</td>
<td>0.01509</td>
<td>40-60</td>
<td>-16.3</td>
</tr>
</tbody>
</table>
H$_2$O$_2$
Total Antioxidant Capacity

(a) TAC - 96 hrs

(b) TAC - 14 days
Superoxide dismutase – 96 hrs
Catalase – 96 hrs

- Silver Nanoparticles (AgNP)
- Zinc Oxide NP (ZnO)
CONCLUSIONS and THE FUTURE

• Significant bottom settling of particles → nano tracking analysis.
 → Generally, what are actual environmental implications?
• Exposure period as significant parameter on toxicity
• Clear evidence of significant oxidative offence due nZnO and nAg exposure.
• Suggestion of toxicity influence by nanoparticle parameters
 → further investigate this phenomena (morphologies and z-potential)
 → how does such influence uptake dynamics

CURRENT WORK
• Investigate protein damage and lipid peroxidation.

FUTURE
• DNA damage → focus on oxidative linked DNA damage.
• Physiological pathways integrity – photosynthetic and energy metabolism parameters.
TABLE MOUNTAIN NATIONAL PARK- CAPE TOWN