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Optimisation of acoustic models for a
target accent using decision-tree state clustering

Herman Kamper and Thomas Niesler
Department of Electrical and Electronic Engineering

Stellenbosch University, South Africa
kamperh@sun.ac.za, trn@sun.ac.za

Abstract—In this paper we extend the decision-tree state
clustering algorithm normally used to construct tied-state hidden
Markov models to allow for the explicit optimisation on a partic-
ular target accent. Although the traditional algorithm guarantees
overall likelihood improvements when clustering states from
multiple accents, per-accent improvements are not guaranteed.
We develop a tractable formulation of the targeted optimisation
strategy by basing the decision-tree cluster splitting criterion on a
likelihood calculated exclusively on the target accent. We find that
this approach leads to deterioration compared to the traditional
modelling approaches. However, when combining targeted and
non-targeted approaches by linear weighting, small but consistent
improvements over the traditional approaches are observed.

I. INTRODUCTION

Accented speech is often prevalent in multilingual societies.
The processing of such speech is therefore a necessary but
challenging task. In previous work [1] we considered dif-
ferent approaches for modelling the five accents of South
African English (SAE). In particular, we considered multi-
accent acoustic modelling which allows selective data sharing
between accents. This is achieved by including accent-based
questions in the decision-tree state clustering process normally
used to construct tied-state hidden Markov models (HMMs).

Although multi-accent acoustic modelling enables selective
sharing, the likelihood criterion used during the decision-tree
state clustering process is calculated on data from all accents.
The process therefore guarantees an overall likelihood im-
provement, but not per-accent improvements. In some practical
scenarios it might, however, be desirable to obtain the best
possible acoustic model set for a particular accent. This leads
to the question of whether the multi-accent decision-tree state
clustering approach can be extended to optimise the likelihood
on a particular target accent. Selective sharing would still be
allowed across accents, but data will only be shared if it is
advantageous for the target accent. In this paper we develop,
evaluate and analyse such techniques.

We base our investigation on databases for the five accents
of SAE identified in the literature [1], [2]. The acoustic mod-
elling approaches developed in [1] will serve as baselines in
the evaluation of the proposed targeted modelling approaches.

II. RELATED RESEARCH

Several studies have considered acoustic modelling of dif-
ferent accents of the same language. One approach is to simply
train separate accent-specific models that allow no sharing

between accents [3]. An alternative is to pool data from all
accents considered, resulting in a single accent-independent
acoustic model set [4]. Adaptation techniques in which models
trained on one accent are adapted using data from another
accent have also been considered [5], [6].

Recently, selective data sharing across accents through the
use of appropriate decision-tree state clustering algorithms
has received some attention [1], [7]. In these studies the
multilingual modelling approach first proposed by Schultz
and Waibel [8] was extended to apply to multiple accents of
the same language. In this paper we extend the multi-accent
acoustic modelling approach to allow targeted optimisation on
an individual accent from the set of accents considered.

III. GENERAL EXPERIMENTAL METHODOLOGY

A. Training and test sets

Our experiments were based on the African Speech Technol-
ogy (AST) databases [9]. These consist of annotated telephone
speech recorded over fixed and mobile telephone networks
and contain a mix of read and spontaneous speech. As part
of the AST Project, five English accented speech databases
were compiled corresponding to the five South African accents
of English identified in the literature [2]: Afrikaans English
(AE), Black South African English (BE), Cape Flats English
(CE), White South African English (EE) and Indian South
African English (IE). These databases were transcribed both
phonetically, using a common IPA-based phone set consisting
of 50 phones, as well as orthographically.

Each of the five databases was divided into training, de-
velopment and evaluation sets. As indicated in Tables I and
II, the training sets each contain between 5.5 and 7 hours of
speech from approximately 250 speakers while the evaluation
sets contain approximately 25 minutes from 20 speakers for
each accent. The development sets were used only for the
optimisation of the recognition parameters before final testing
on the evaluation data. For the development and evaluation sets
the ratio of male to female speakers is approximately equal
and all sets contain utterances from both land-line and mobile
phones. There is no speaker-overlap between any of the sets.
The average length of an utterance is approximately 2 seconds.

B. General acoustic modelling procedure

Speech recognition systems were developed using the HTK
tools [10]. Speech audio data was parametrised as 13 Mel-
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TABLE I
TRAINING SETS FOR EACH ACCENT.

Accent Speech (h) No. of
utterances

No. of
speakers

Phone
tokens

AE 7.02 11 344 276 199 336
BE 5.45 7779 193 140 331
CE 6.15 10 004 231 174 068
EE 5.95 9878 245 178 954
IE 7.21 15 073 295 218 372

Total 31.78 54 078 1240 911 061

TABLE II
EVALUATION SETS FOR EACH ACCENT.

Accent Speech
(min)

No. of
utterances

No. of
speakers

Phone
tokens

AE 24.16 689 21 10 708
BE 25.77 745 20 11 219
CE 23.83 709 20 11 180
EE 23.96 702 18 11 304
IE 25.41 865 20 12 684

Total 123.13 3710 99 57 095

frequency cepstral coefficients (MFCCs) with their first and
second order derivatives to obtain 39 dimensional observation
vectors. Cepstral mean normalisation was applied on a per-
utterance basis. The parametrised training sets were used
to obtain three-state left-to-right single-mixture monophone
HMMs with diagonal covariance matrices using embedded
Baum-Welch re-estimation. These monophone models were
then cloned and re-estimated to obtain initial cross-word tri-
phone models which were subsequently subjected to decision-
tree state clustering. This was followed by five iterations of re-
estimation. Finally, the number of Gaussian mixtures per state
was gradually increased, each increase being followed by a
further five iterations of re-estimation. This yielded diagonal-
covariance cross-word tied-state triphone HMMs with three
states per model and eight Gaussian mixtures per state.

As part of the research presented here, several different
acoustic model sets were developed following this general
training procedure. For each modelling approach a different
variant of the decision-tree state clustering algorithm was
applied. Since decision-tree state clustering is central to this
study, the standard algorithm is described briefly in Section IV.
Variants of the algorithm are subsequently described in Sec-
tions V and VI.

C. Language models

Comparison of recognition performance was based on
phone recognition experiments. Using the SRILM toolkit [11],
backoff bigram phone language models were trained for each
accent individually from the corresponding training set phone
transcriptions. Absolute discounting was used for the estima-
tion of language model probabilities [12]. The development
sets were used to optimise the word insertion penalty (WIP)
and language model scaling factor (LMS) used during recog-
nition. Because optimal WIP and LMS values showed almost

no variation between accents, the same WIP and LMS settings
were used for all experiments.

Since the presented work considers only the effect of the
acoustic models, it was assumed that during testing the accent
of each utterance was known. In order to isolate acoustic
modelling effects, evaluation therefore involved presenting
each test utterance only to a system employing an acoustic
and language model matching the accent of that utterance.

IV. DECISION-TREE STATE CLUSTERING

The standard decision-tree state clustering algorithm that is
used to construct tied-state triphone HMMs (Section III-B) is
reviewed in this section. The content is based on [13] and [14].

A. Overview

The clustering process begins by pooling into a single
cluster the data of corresponding states from all triphones with
the same basephone. This is done for all triphones observed
in the training set. A set of linguistically-motivated questions
is then used to split these clusters. Such questions may, for
example, ask whether the left context of a particular triphone
is a vowel or whether the right context is a silence. There are,
in general, many such questions and each potential question
results in a split which subsequently results in an increase in
training set likelihood. For each cluster the optimal question
(leading to the largest likelihood increase) is determined. In
this way clusters are subdivided repeatedly until either the
increase in likelihood or the number of observation vectors
associated with a resulting cluster (the cluster occupancy
count) falls below a certain predefined threshold.

The result is a phonetically-motivated binary decision-tree
where the leaf nodes represent clusters of triphone HMM states
which are to be tied by pooling data. This ensures that model
parameters are estimated on a sufficient amount of training
data. Furthermore, each state of a triphone not seen in the
training set can be associated with a leaf node in the decision-
trees. This allows the synthesis of triphones that are required
during recognition but are not present in the training set.

B. Details of decision-tree construction

Suppose question q splits the cluster with states S into two
clusters with states S1(q) and S2(q), respectively. The increase
in log likelihood resulting from the split can be calculated as

∆Lq = L(S1(q)) + L(S2(q))− L(S) (1)

where L(S) denotes the log likelihood of the training observa-
tion vectors assigned to the states in S. The question q∗ which
maximises (1) is selected as the optimal question to split the
cluster. In order to compute (1), however, the calculation of the
likelihood of an arbitrary cluster of states must be tractable.

Let S denote an arbitrary set of HMM states and let L(S) be
the log likelihood of the training observation vectors assigned
to the states in S under the assumption that all states in S share
a common mean µ(S) and covariance matrix Σ(S). We also
assume that the transition probabilities have a negligible effect
on the log likelihood and can therefore be ignored [14]. The
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log likelihood that the observation vectors were generated by
the states in S can then be calculated as

L(S) = log
∏

f∈F
p(of |S)

=
∑

f∈F
log [N (of |µ(S),Σ(S))] (2)

where of is the observation vector associated with frame f
and F is the set of training frames for which the observation
vectors are associated with the states in S, i.e. F = {f :
of is generated by states in S}. The observation probability
density functions (PDFs) are single-mixture Gaussian PDFs.

The direct calculation of L(S) using (2) requires direct
recourse to the observation vectors of . This is computationally
intractable since datasets are large and the likelihood calcula-
tion will have to be repeated several times. Fortunately it can
be shown (Appendix A) that [13]:

L(S) = −1

2
{log[(2π)n|Σ(S)|] + n}

∑

s∈S

∑

f∈F
γs(of ) (3)

where n is the dimensionality of the observation vectors and
γs(of ) is the posterior probability that the observation vector
of is generated by HMM state s. The log likelihood of a
cluster of states is therefore only dependent on the shared
covariance matrix Σ(S) and the total state occupancy of the
cluster

∑
s∈S
∑

f∈F γs(of ). It can be shown that the former
can be calculated from the means and covariance matrices of
the states in the cluster [13]. The state occupancy counts are
determined during the Baum-Welch re-estimation procedure
which precedes clustering. Thus, L(S) can be calculated
without recourse to the observation vectors and the decision-
tree construction process becomes computationally tractable.

V. TRADITIONAL MODELLING APPROACHES

The following gives an overview of acoustic modelling
approaches considered in previous work [1] and summarises
relevant results. These results are the baselines for Section VI.

A. Accent-specific and accent-independent acoustic modelling

As described in Section II, accent-specific acoustic models
are obtained by not allowing any sharing of data between
accents. By growing separate decision-trees for the different
accents, triphone HMM states are clustered separately. Only
questions relating to phonetic context are employed, resulting
in completely distinct sets of acoustic models for each accent.

In contrast, accent-independent models are obtained by
blindly pooling accent-specific data across accents for phones
with the same IPA symbol, resulting in a single accent-
independent model set. A single set of decision-trees is con-
structed across all accents and the clustering process employs
only questions relating to phonetic context, resulting in a single
accent-independent set of triphone HMMs for all accents.

These two approaches were applied to the training sets of
the five accents of SAE described in Section III-A. For each
accent, the decision-tree likelihood improvement threshold was
optimised separately on its corresponding development set.

This approach was followed for all experiments presented in
this paper since the purpose here is to achieve best perfor-
mance on a particular target accent and not to optimise average
performance over all accents, as was the case in [1].

The first two entries in Table III show the phone recog-
nition performance measured on the evaluation sets for the
accent-specific and accent-independent modelling approaches.
Accent-independent models perform better than the accent-
specific models for all accents except BE. The average ac-
curacy of the accent-independent models is also better by
approximately 0.76% absolute. This improvement has been
calculated to be statistically significant at the 99.9% level using
bootstrap confidence interval estimation at the utterance level
with 104 bootstrap replications over all five accents [15].

B. Multi-accent acoustic modelling

The third and final acoustic modelling approach considered
in [1] is similar to accent-independent modelling. Again, the
state clustering process begins by pooling corresponding states
from all triphones with the same basephone. However, in this
case the set of decision-tree questions take into account not
only the phonetic character of the left and right contexts but
also the accent of the basephone. The HMM states of two
triphones with the same IPA symbol but from different accents
can therefore be kept separate if there is a significant acoustic
difference or can be tied if there is not. We refer to such
models as multi-accent acoustic models. Figure 1 shows an
example in which the centre state of the triphone [t]-[iy]+[ng]
is tied across the AE and EE accents while the first and last
states are modelled separately.

The third entry in Table III indicates the performance when
using multi-accent acoustic models. For AE and IE, improved
performance over the first two acoustic model sets is observed.
For CE and EE, deterioration is seen relative to the accent-
independent models. For BE, deterioration is seen relative
to the accent-specific models. Nevertheless, the multi-accent
models show a very small improvement in average accuracy
over the accent-independent models. This improvement is
statistically significant only at the 60% level.

To obtain some indication of what happens in the decision-
tree clustering process, the type of questions most frequently
asked during clustering can be considered. Figure 2 analyses
the decision-trees of the multi-accent acoustic models giving
optimal performance on the AE development set. The figure

TABLE III
PER-ACCENT AND AVERAGE (AVG.) PHONE RECOGNITION

ACCURACIES (%) MEASURED ON THE EVALUATION SET. THE DIFFERENT
ACOUSTIC MODEL SETS ARE DESCRIBED THROUGHOUT THE PAPER.

Acoustic model set AE BE CE EE IE Avg.

Accent-specific 64.80 56.77 64.59 72.97 64.27 64.68
Accent-independent 65.97 55.98 66.51 74.45 64.40 65.44
Multi-accent 66.20 56.56 66.31 73.94 64.60 65.50
Targeted multi-accent 64.60 55.17 64.11 72.65 64.44 64.21
Weighted targeted 66.74 56.56 66.13 73.94 64.96 65.65
Weight wt used above 0.51 0.5 0.53 0.5 0.54
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AE HMM for triphone [t]−[iy]+[ng]

a12 a23

a11 a22 a33

a12 a23

a11 a22 a33

s3

s3s2s1

s2s1

EE HMM for triphone [t]−[iy]+[ng]

Fig. 1. Multi-accent HMMs for corresponding AE and EE triphones.

shows that about 50% of all questions at the root nodes are
accent-based and that this proportion drops to 34% and 30%
for the roots’ children and grandchildren respectively. Of the
12 970 resulting clusters (the leaf nodes) in the decision-trees,
13.2% are AE-only, 22.2% share AE with some other accent(s)
and 64.7% are non-AE. These statistics and the analysis in
Figure 2 are used for comparison in the next sections.

VI. TARGETED MODELLING APPROACHES

This section describes new extensions which we have made
to the multi-accent acoustic modelling approach (Section V-B).
We treat the results presented in Section V as baselines.

A. Motivation and overview

When clustering triphone states from several accents, the
log likelihood L(S) used as splitting criterion in the decision-
tree clustering process is calculated over all accents. Although
a particular cluster split guarantees an overall improvement
in likelihood, improvements on a per-accent basis are not
guaranteed. This raises the question whether the algorithm
can be altered to optimise the likelihood on a particular target
accent. In such an approach, a specific phonetic or accent-
based question would be applied only when it is advantageous
for the models of the selected target accent to do so.

B. Targeted multi-accent acoustic modelling

Suppose we have a cluster of states S = Sx ∪ St with the
states Sx generating observation vectors for frames Fx and St
generating observation vectors for frames Ft. Our aim is to
optimise performance on the target states St. In the traditional
decision-tree state clustering procedure, the log likelihood of
this cluster S generating the observation vectors for frames
F = Fx ∪ Ft would be calculated according to (3) and the
optimisation criterion would be based upon this figure. We
propose to determine instead the log likelihood of the target
states St generating the observation vectors for frames Ft.
While all states in S still share a common mean µ(S) and
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Fig. 2. The percentage of questions that relate to specific accents at various
depths within the decision-trees for the multi-accent acoustic model set with
optimal recognition performance on the AE development set.

covariance matrix Σ(S), we base the cluster splitting criterion
on this alternative log likelihood. By doing so, parameter
estimation is still based on data from all frames F = Fx ∪ Ft

but the likelihood optimised is restricted to a set of target states
St and no longer based on all the states S.

The log likelihood of states St generating the associated
observation vectors for frames Ft can be calculated as

Lt(S) = log
∏

f∈Ft

p(of |S)

=
∑

f∈Ft

log [N (of |µ(S),Σ(S))] (4)

This log likelihood is still dependent on all the states S since
µ(S) and Σ(S) are based on data from all the states.

As was the case in (2), the direct calculation of (4) is
computationally intractable since it requires recourse to the ob-
servation vectors. However, we can again show (Appendix B)
that this amended log likelihood can be calculated from the
means, covariance matrices and state occupancy counts of the
states in S:

Lt(S) = −1

2
Nt {log[(2π)n|Σ(S)|]} − 1

2
n(Nx +Nt)

+
1

2
tr{Σ−1(S)Nx[Σ(Sx)

+ (µ(Sx)− µ(S))(µ(Sx)− µ(S))T]} (5)

with

Nt =
∑

s∈St

∑

f∈F
γs(of ) and Nx =

∑

s∈Sx

∑

f∈F
γs(of ) (6)

Since µ(Sx), µ(S), Σ(Sx) and Σ(S) are only the means and
covariance matrices of the states in the corresponding clusters,
the calculation of Lt(S) as in (5) is computationally tractable.

C. Evaluation and analysis: targeted modelling

By considering each of the SAE accents in turn as the target
accent, the targeted multi-accent acoustic modelling approach
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was applied to the five training sets described in Section III-A.
Phone recognition performance is shown in the fourth entry of
Table III. The targeted multi-accent models are outperformed
by all other models, yielding the lowest average accuracy
of 64.21%. Worse performance is also achieved on a per-
accent basis for all accents except for IE, for which a slight
improvement over the accent-specific models is observed.

Figure 3 analyses the decision-trees of the targeted multi-
accent acoustic models giving optimal performance on the AE
development set. A striking feature is that the only accent-
based question ever employed by the trees relate to the target
accent AE. In fact, it is possible to show (Appendix C) that
the target-accent-question will always be asked rather than a
non-target-accent-question. Figure 3 shows that 53% of all
questions at the root nodes relate to AE and that this proportion
drops to 27% and 18% for the roots’ children and grand-
children, respectively. Of the 5718 resulting clusters in the
decision-trees, 84.7% are AE-only, 5.3% combine data from
all five accents, and 10% combine data from all the accents
apart from AE. This last group of clusters was consequently
not used during recognition.

In comparison with the analysis of the multi-accent
decision-trees in Figure 2, slightly more accent-based ques-
tions are asked at the root nodes and the proportion of
accent-based questions tapers off much more quickly in the
targeted case. This indicates that earlier separation of the AE
accent occurs in the AE-targeted multi-accent decision-trees.
Increased separation of AE is also observed when comparing
the resulting cluster statistics in the targeted case to those of
the non-targeted case (final paragraph, Section V-B); for the
former, only 301 clusters (5.3% of 5718 clusters) share data
from AE with data from any of the other accents while, for the
latter, this figure is 2876 clusters (22.2% of 12 970 clusters).

Even though most clusters model AE separately, some shar-
ing does occur in the targeted case. However, by comparing the
results of the accent-specific and targeted multi-accent acoustic
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Fig. 3. The percentage of questions that relate to specific accents at various
depths within the decision-trees for the targeted multi-accent acoustic model
set with optimal recognition performance on the AE development set.

model sets in Table III, this small degree of sharing seems to
lead to a deterioration compared to the case where accents are
clustered separately from the outset.

Although the comparative analysis presented in this section
was described for the AE accent, the same trends were ob-
served for the other four accents. Empirically we have there-
fore shown that the decision-trees constructed during targeted
multi-accent acoustic modelling tend to model the target
accent separately. However, this leads to deteriorated perfor-
mance compared to simple accent-specific acoustic modelling.

D. Weighted targeted multi-accent acoustic modelling

The preceding section showed that targeted multi-accent
decision-trees tend strongly towards the separation of the target
accent. In this section we propose a further variant of the
standard decision-tree state clustering algorithm (as applied in
multi-accent modelling) in order to counteract this tendency.

Suppose again that we have a cluster of states S = Sx ∪ St
with the states Sx generating observation vectors for frames
Fx and St generating observation vectors for frames Ft. We
propose that, instead of basing our cluster splitting criterion
solely on the log likelihood Lt(S) on the target states St, we
also assign some weight to the log likelihood Lx(S) of the
non-target states Sx generating the observation vectors Fx. We
calculate this alternative log likelihood as

Lw(S) = wtLt(S) + wxLx(S) (7)

with wt > 0, wx > 0 and wx = 1 − wt. The likelihood
Lt(S) is calculated according to (5) and, analogously, Lx(S)
is calculated as

Lx(S) = −1

2
Nx {log[(2π)n|Σ(S)|]} − 1

2
n(Nt +Nx)

+
1

2
tr{Σ−1(S)Nt[Σ(St)

+ (µ(St)− µ(S))(µ(St)− µ(S))T]} (8)

In this last equation the roles of the target and non-target states
are simply reversed from the case presented in (5).

In Appendix D we show that when wt = wx = 1/2, this
weighted targeted log likelihood reduces to Lw(S) = 1/2L(S)
with L(S) the overall log likelihood as in (2) and (3). Thus,
when using equal weights, this new cluster splitting criterion
is equivalent to that used for multi-accent acoustic modelling
as described in Section V-B. When wt = 1 and wx = 0,
we have Lw(S) = Lt(S), which is the unweighted targeted
case presented in Section VI-B. Both multi-accent acoustic
modelling and targeted multi-accent acoustic modelling are
therefore special cases of this weighted targeted multi-accent
acoustic modelling approach.

E. Evaluation and analysis: weighted targeted modelling

We again considered each of the SAE accents in turn as the
target accent and applied the weighted targeted approach to the
five training sets. Phone recognition performance is shown as
the fifth entry in Table III. For each accent the target weight
wt was optimised on its development set. These weights are
indicated in the final line of Table III.
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The weighted targeted multi-accent model set achieves
improved performance for AE and IE. Although multi-accent
modelling is a special case of the weighted targeted approach,
poorer performance might still occur since the weights are
optimised on a development set. This is illustrated by the
performance on CE, for instance, where accuracy deteriorates
from 66.31% to 66.13%. For BE and EE, the target weight was
determined to be 0.5 and the performance of the multi-accent
models is therefore achieved: 56.56% and 73.94% respectively.
The average performance of the weighted targeted approach is
better than that achieved by any of the other approaches. The
improvements in average accuracy of the weighted targeted
multi-accent models (65.65%, Table III) over the accent-
independent (65.44%) and multi-accent models (64.50%) are
both statistically significant at the 80% level.

Figure 4 analyses the decision-trees of the weighted targeted
multi-accent acoustic models giving optimal performance on
the AE development set. Since the weight assigned to the
target is small (0.51), the decision-trees are very similar to the
non-targeted case shown in Figure 2. Of the 12 823 resulting
clusters in the weighted targeted decision-trees, 13.6% are AE-
only, 22.2% share AE with some other accent(s) and 64.2%
are non-AE. The AE-only clusters are therefore slightly more
here than in the trees analysed in Figure 2 where 13.2% of the
12 970 clusters were AE-only (final paragraph, Section V-B).

Although the improvements of the weighted targeted multi-
accent acoustic modelling approach over the other approaches
are relatively small, they do indicate that some gain can be
obtained by targeting the decision-tree likelihood optimisation
on a specific accent in this manner.

VII. SUMMARY AND CONCLUSIONS

We have described new techniques that extend the standard
decision-tree state clustering algorithm used to construct tied-
state hidden Markov models to allow explicit optimisation on
a target accent. Using databases for the five accents of South
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Fig. 4. The percentage of questions that relate to specific accents at
various depths within the decision-trees for the weighted targeted multi-
accent acoustic model set with optimal recognition performance on the AE
development set (wt = 0.51).

African English, we compared these new techniques to the
accent-specific, accent-independent and multi-accent acoustic
modelling approaches developed in previous work.

We showed that it is possible to derive expressions that
allow the tractable implementation of the new clustering
methods. In a first approach, the decision-tree state clustering
process was altered so that the likelihood criterion used during
decision-tree construction is calculated only on a target accent.
Phonetic or accent-based questions are then asked only when
it is advantageous for the target accent. However, both per-
accent and overall average phone recognition performance
indicated that this approach leads to poorer models compared
to those obtained previously. Further analysis indicated that
this is mostly due to the tendency of the targeted decision-
trees to separate out the target accent into isolated clusters.

In order to alleviate this tendency towards separate mod-
elling, we implemented a further extension to the algorithm in
which the likelihood criterion also assigns some weight to the
likelihood on non-target accents. By weighting the likelihoods
on the target and non-target accents, the amount of separation
could be controlled. Using this weighted targeted multi-
accent modelling approach, very small average improvements
(∼0.2% absolute) were obtained over all other approaches.

In future work the proposed techniques should be compared
to classical adaptation approaches. Clustering is also per-
formed fairly early on in the complete acoustic model training
process and is performed on the training set; changes in state-
tying do not guarantee improvements for the final higher-
mixture acoustic models. This warrants further investigation.

APPENDIX A
LOG LIKELIHOOD OF A CLUSTER OF STATES

The log likelihood that the observation vectors were gener-
ated by the states in S can be calculated as

L(S) = log
∏

f∈F
p(of |S)

=
∑

f∈F
log [N (of |µ(S),Σ(S))] (A.9)

where the observation PDFs are assumed to be single-mixture
Gaussian PDFs:

N (of |µ(S),Σ(S)) =

1√
(2π)n|Σ(S)|

e{− 1
2 (of−µ(S))TΣ−1(S)(of−µ(S))} (A.10)

From (A.10), equation (A.9) can then be written as

L(S) = −1

2

∑

f∈F
log[(2π)n|Σ(S)|]

− 1

2

∑

f∈F
(of − µ(S))TΣ−1(S)(of − µ(S)) (A.11)

The covariance matrix of the cluster of states S can be
calculated as

Σ(S) =
1

N

∑

f∈F
(of − µ(S))(of − µ(S))T (A.12)
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where N is the number of frames in F and given by

N =
∑

s∈S

∑

f∈F
γs(of ) (A.13)

with γs(of ) the posterior probability that the observation vec-
tor of is generated by HMM state s. By cross-multiplication,
equation (A.12) becomes

N I =
∑

f∈F
Σ−1(S)(of − µ(S))(of − µ(S))T (A.14)

In [16, p. 62] the matrix identity

xTAx = tr(AxxT) (A.15)

is given, where x is an n×1 vector, A is an n×n matrix and
tr denotes the trace of a matrix. By taking the trace of both
sides of (A.14) and then applying (A.15) we obtain

nN = tr


∑

f∈F
Σ−1(S)(of − µ(S))(of − µ(S))T




=
∑

f∈F
tr
[
Σ−1(S)(of − µ(S))(of − µ(S))T]

=
∑

f∈F
(of − µ(S))TΣ−1(S)(of − µ(S)) (A.16)

where n is the dimensionality of the observation vectors.
By substituting (A.16) into (A.11) we obtain the result:

L(S) = −1

2

∑

f∈F
log[(2π)n|Σ(S)|]− 1

2
nN

= −1

2
{log[(2π)n|Σ(S)|] + n}N

= −1

2
{log[(2π)n|Σ(S)|] + n}

∑

s∈S

∑

f∈F
γs(of ) (A.17)

APPENDIX B
LOG LIKELIHOOD OF A TARGETED SUBSET OF STATES

The log likelihood of states St generating the associated
observation vectors for frames Ft can be calculated as

Lt(S) =
∑

f∈Ft

log [N (of |µ(S),Σ(S))]

= −1

2

∑

f∈Ft

log[(2π)n|Σ(S)|]

− 1

2

∑

f∈Ft

(of − µ(S))TΣ−1(S)(of − µ(S))

= −1

2
Nt {log[(2π)n|Σ(S)|]}

− 1

2

∑

f∈Ft

(of − µ(S))TΣ−1(S)(of − µ(S)) (B.18)

where

Nt =
∑

s∈St

∑

f∈F
γs(of ) and Nx =

∑

s∈Sx

∑

f∈F
γs(of ) (B.19)

Calculation of the second term in (B.18) is slightly involved
and we derive an expression for this term as follows.

The covariance matrix of the PDF of the cluster S is

Σ(S) =
1

Nx +Nt

∑

f∈F
(of − µ(S))(of − µ(S))T

=
1

Nx +Nt


∑

f∈Fx

(of − µ(S))(of − µ(S))T

+
∑

f∈Ft

(of − µ(S))(of − µ(S))T


 (B.20)

which leads to

Σ(S) (Nx +Nt) =
∑

f∈Fx

(of − µ(S))(of − µ(S))T

+
∑

f∈Ft

(of − µ(S))(of − µ(S))T (B.21)

An expression for the first term on the right hand side of (B.21)
can be obtained as follows:
∑

f∈Fx

(of − µ(S))(of − µ(S))T

=
∑

f∈Fx

((of − µ(Sx)) + (µ(Sx)− µ(S)))×

((of − µ(Sx)) + (µ(Sx)− µ(S)))T

=
∑

f∈Fx

[
(of − µ(Sx))(of − µ(Sx))T

+ (of − µ(Sx))(µ(Sx)− µ(S))T

+ (µ(Sx)− µ(S))(of − µ(Sx))T

+ (µ(Sx)− µ(S))(µ(Sx)− µ(S))T]

= Nx Σ(Sx) +
∑

f∈Fx

(µ(Sx)− µ(S))(µ(Sx)− µ(S))T

= Nx

[
Σ(Sx) + (µ(Sx)− µ(S))(µ(Sx)− µ(S))T] (B.22)

where, in the third step, we used the definitions:

µ(Sx) =
1

Nx

∑

f∈Fx

of (B.23)

and

Σ(Sx) =
1

Nx

∑

f∈Fx

(of − µ(Sx))(of − µ(Sx))T (B.24)

By substituting (B.22) into (B.21), it follows that

Σ(S) (Nx +Nt) =

Nx

[
Σ(Sx) + (µ(Sx)− µ(S))(µ(Sx)− µ(S))T]

+
∑

f∈Ft

(of − µ(S))(of − µ(S))T (B.25)

Multiply (B.25) with Σ−1(S) and take the trace:

n(Nx +Nt) =

tr
{
Σ−1(S)Nx

[
Σ(Sx) + (µ(Sx)− µ(S))(µ(Sx)− µ(S))T]}

+
∑

f∈Ft

tr
{
Σ−1(S)(of − µ(S))(of − µ(S))T} (B.26)
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and use the identity in (A.15):

n(Nx +Nt) =

tr
{
Σ−1(S)Nx

[
Σ(Sx) + (µ(Sx)− µ(S))(µ(Sx)− µ(S))T]}

+
∑

f∈Ft

(of − µ(S))TΣ−1(S)(of − µ(S)) (B.27)

The last term on the right hand side of (B.27) is the required
second term in (B.18). We thus obtain the result:

Lt(S) = −1

2
Nt {log[(2π)n|Σ(S)|]} − 1

2
n(Nx +Nt)

+
1

2
tr{Σ−1(S)Nx[Σ(Sx)

+ (µ(Sx)− µ(S))(µ(Sx)− µ(S))T]} (B.28)

APPENDIX C
ACCENT-BASED QUESTIONS IN TARGETED

MULTI-ACCENT DECISION-TREES

Consider the two possible cluster splits illustrated in Fig-
ure 5. Assume we are using Lt(S) as splitting criterion. In
(a) the question relates to the target accent, e.g. “is the accent
AE?” (assuming we optimise AE). In (b) the question relates
to some non-target accent, e.g. “is the accent EE?”. We show
that case (a) will always occur rather than case (b).

yes no

Target accent?

S1 S2

S

(a) Question relates to the tar-
get accent.

yes no

Other accent?

S3 S4

S

(b) Question relates to some
non-target accent.

Fig. 5. Two potential questions split the cluster S. Mathematically it can be
shown that (a) will always occur rather than (b).

S2 will contain no states from the target accent and
Lt(S2) = 0; this cluster would therefore be a leaf node.
Similarly, S3 will contain no states from the target accent and
Lt(S3) = 0; again resulting in a leaf node. What distinguishes
the likelihood improvement in the two cases is therefore
Lt(S1) and Lt(S4). The former is given by

Lt(S1) = Lt(St) =
∑

f∈Ft

log [N (of |µ(St),Σ(St))] (C.29)

in accordance with (4). This log likelihood is the one max-
imised when performing maximum likelihood estimation of
µ(St) and Σ(St) on frames Ft. For case (b) we have

Lt(S4) =
∑

f∈Ft

log [N (of |µ(S4),Σ(S4))] (C.30)

with St ⊂ S4. In this case µ(S4) and Σ(S4) are obtained by
maximising the log likelihood on all the frames F4 associated
with S4, which is different to the calculation in (C.30) since
Ft ⊂ F4. It thus follows that Lt(S4) < Lt(S1). The target-
accent-question (a) will therefore always be asked in favour
of a non-target-accent-question (b).

APPENDIX D
EQUAL WEIGHT TARGETED MODELLING

Using the form of (B.18) for both Lt(S) and Lx(S), we
obtain the following result when wt = wx = 1/2:

Lw(S) =
1

2
Lt(S) +

1

2
Lx(S)

= −1

4
(Nx +Nt) {log[(2π)n|Σ(S)|]}

− 1

4

∑

f∈F
(of − µ(S))TΣ−1(S)(of − µ(S))

= −1

4
(Nx +Nt) {log[(2π)n|Σ(S)|]} − 1

4
n(Nx +Nt)

= −1

4
{log[(2π)n|Σ(S)|] + n}N =

1

2
L(S) (D.31)

where N = Nx +Nt and we used (A.16) in the third line.
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Abstract—Single molecule fluorescence in situ hybridization 
followed by microscopic image analysis is one of the prominent 
methods used to study gene expression on a single cell level. 
There are various microscopic image analysis methods, leading to 
differing mRNA spots being detected in images for the same 
experiment. We present a technique to evaluate different mRNA 
spots detection algorithms. It is based on image annotation by 
expert biologists and the receiver operating characteristics. The 
detection methods can be compared using parameters that 
withstand imprecise and imbalanced environments. The 
proposed evaluation procedure highlighted the difference 
between two microscopic image analysis methods that are 
frequently used. It can be applied to any image analysis method 
that seeks to find mRNA spots on a single cell level. 

Keywords—sm-FISH; spot detection; receiver operating 
characteristics; F-measure 

I.  BACKGROUND 
Gene expression is studied more and more on the single cell 

level [1]. One of the methods used to provide mRNA counts in 
individual cells is single molecule fluorescence in situ 
hybridization (sm-FSIH) followed by microscopic image 
analysis [2]. 

Single molecule FISH is a microscopy-based assay that 
allows for the visualization, detection and localization of 
specific nucleic acid sequences in their native environment. 
Since its origins, over 20 years ago [3], it has become a 
powerful molecular tool for the detection of cytogenetic and 
molecular genetic alterations.  Applications of FISH have even 
extended to clinical diagnosis – chromosome analysis [4].  In a 
molecular setting, FISH has revealed insights in transcriptional 
dynamics [5, 6], mechanisms of RNA synthesis [2] and 
transport [7] and intracellular distribution [8,9]. 

The first application of fluorescent in situ detection 
involved the use of RNA probes directly labelled on the 3’end 
with a fluorophore to bind specific DNA sequences [10]. The 
labelling of probe sequences developed to use fluorophore-
coupled amino-allyl modified bases [11] and the use of 
enzymatic incorporation of fluorophore-modified bases [12]. 
These advances in the technology allowed for the simple 
chemical production of an array of low-noise probes. Attempts 
to improve signal output of this assay came in the form of nick-

translated, biotinylated probes, which were indirectly detected 
using fluorescently labelled streptavidin conjugates [13]. 
Currently, the standard FISH probe is produced by simple 
esterification chemistry to couple fluorophore to a 3’amine-
modified base [14].  This method of probe preparation allows 
for precise and direct detection with high signal-to-noise ratios, 
improving the sensitivity of the assay. 

Initially, RNA detection using FISH was constrained to use 
of large oligonucleotide probes. This was problematic as large 
probes could adhere to samples non-specifically resulting in 
false positives as well as lead to high levels in background 
noise. The use of reduced probe sizes lead to improved signal-
to-noise-ratio and sensitivity, allowing for the single-copy 
detection of RNA entities and even parts of RNA [15, 16]. In 
this variation of the assay, 5 oligonucleotides, each about 50 
oligonucleotides long, were labelled with fluorophore moieties. 
The hybridization of these probes to their mRNA targets 
yielded each target to be visualized as a diffraction-limited 
fluorescent “spot” [16]. However, the synthesis and 
purification of a small number of heavily labelled probes came 
with high difficulty and these probes tended to interact with 
each other altering hybridization characteristics which lead to 
severe quenching [17].  An improvement of the assay was 
made by using a tandem array (12-48) of reliably and singly 
labelled probes to accurately detect individual mRNA 
molecules at high spatial-temporal resolution. This 
advancement in the assay has lead to the simultaneous and 
accurate detection of multiple targets using spectrally distinct 
fluorophores within the same sample [18,19]. 

Post image acquisition, Femino et al. [16] used a 
constrained deconvolution algorithm to quantitatively restore 
out-of-focus light to its original points of origin. They could 
then calibrate for the fluorescent output per molecule of probe.  
In [19], calibration of fluorescent output per molecule of probe 
was not performed, however for 48 probes per mRNA they 
detected the same number of mRNA spots per image over a 
broad range of thresholds, validating the choice of a threshold 
parameter. Additionally, they avoided the difficulty in 
synthesizing and purifying heavily labelled probes. 

Raj et al. [19] used the Laplacian of Gaussian filter to 
remove the non-uniform background and enhance particles. 
The resulting image conserves spatial resolution of spots, so 
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does the wavelet transform based filtering as used in [20]. The 
procedures are computationally less expensive than constrained 
deconvolution algorithms; so is the procedure proposed by 
Trcek et al. [21] – spatial band-pass filtering and local 
background subtraction to remove residual unevenness in the 
image.  

There are different thresholding techniques that are applied 
to a filtered image to eventually find spots [16,19,20,21].  Raj 
et al. [19] chose a threshold from a range of thresholds for 
which the number of mRNAs detected varied the least. Trcek et 
al. [21] used Gaussian mask fitting to find the centre and 
intensity of each spot. In any case, the detected spots can be 
analysed on a per cell basis if the cell marker is used in an 
experiment. 

We present an evaluation of individual mRNA molecules 
detection techniques in microscope images. The evaluation 
procedure is applied to two detection techniques. It is based on 
the use of expert biologists as the gold standard in marking 
spots in a microscope image. The evaluation procedure uses the 
receiver operating characteristics analysis (ROC) and 
performance evaluation metrics used in machine vision and 
learning. 

The organisation of this paper is as follows.  The next 
section outlines the method of evaluating detection techniques 
(methods used to prepare mRNAs are in supplementary data). 
Then detection techniques evaluation results are presented.  

II. METHODS  

A. Spots validation 
Spots found in a z-stack image by an expert biologist 

constituted the gold standard used in evaluating the 
performance of a detection algorithm on that stack. Biologists 
circled all mRNA spots they could find using a custom made 
GUI. Hausdorff distance [22] was used to study intra- and 
inter-observer variability in marking spots and compare that to 
detection algorithms’ found spots; the modified Williams index 
(MWI) [23] was obtained from the Hausdorff distances to 
further compare algorithms’ spots boundaries to hand drawn 
ones. The index is the ratio between the average computer-
observer agreement and the average observer-observer 
agreement. For N observations, MWI is calculated leaving one 
observation out at a time, for N-1 observations, resulting in N 
estimates. 

B. Detection techniques evaluation 
The posterior probability of a detected spot was calculated 

by finding the ratio of pixels found by both an algorithm and an 
expert to pixels found by an expert; minus fraction of pixels 
missed or over-segmented by an algorithm. Background pixels 
were regarded as non-target objects. The ROC curves were 
plotted using spots as the target class. The area under the ROC 
curve (AUC) is used as an evaluation value integrating the 
entire ROC. Sensitivity and specificity, typical two-class 
detection performance evaluation measures, could be 
established from the ROC curve at a chosen operation point. 

Since the non-target class far exceeds the target class, the 
posfrac-recall ROC [24,25] was used to evaluate detection 
algorithms, as this is the imbalanced problem. The prior 
probability of the positive class is significantly less than that of 
the negative class, their ratio – skew, was used to study what 
fraction of non-target objects to include in the analysis. Typical 
imprecise environment detection evaluation measures can then 
be used to compare detection algorithms at one operating point: 
posfrac – fraction of positive detections (1), 

                  

€ 

posfrac =
TP + FP

N
                                (1) 

precision (2) – the fraction of positive detections that are 
actually correct and it is usually a meaningful parameter when 
detecting rare events because it effectively estimates an overall 
posterior probability [25],  

               

€ 

precision =
TP

TP + FP
                           (2) 

recall and F-measure (3) – the geometric mean of precision and 
recall [25]. 

€ 

TP  denotes the test objects labeled as target and 
are truly targets, while 

€ 

FPdenotes false targets. 

€ 

TPr  - recall, 
and 

€ 

FPr are calculated by normalizing 

€ 

TP  and 

€ 

FP  by the 
total number of positive and negative objects respectively, 

€ 

N  
is the sum of positive and negative objects. 

€ 

TPr  indicates 
sensitivity while 1 – 

€ 

FPr  denotes specificity. 

       

€ 

F −measure = 2TPr
2TPr

TPr + FPr +1
                   (3)           

III. RESULTS  

A. Spot validation 
Spot validation was studied using a set of 10 z-stack 

images. In each stack, the plane that showed spots the most 
clearly was chosen. The similarity of spots marked by the two 
expert biologists was studied on spots contours extracted using 
the custom made GUI. The comparisons in Table I were made 
using the Hausdorff distance. T11 and T12 represent the first 
expert marking spots the first and second times, more than a 
week apart, T2 represents the second expert. AL1 represents 
spots detected using the image analysis procedure outlined in 
[19], while AL2 represents spots found using wavelets-based 
detector [20]. 

The first expert had the highest intra-observer variability, 
4.5518. There was the highest dissimilarity in the ellipses 
drawn around spots. The variability is further confirmed by the 
standard deviation of the Hausdorff distances between the first 
and second times the first expert marked the spots, it is the 
highest. The second expert still had high intra-observer 
variability, although it was not higher than inter-observer 
variability. The standard deviation of inter-observer variability 
is the second highest, elucidating the difference in marking 
spots between the two experts. 

The mean Hausdorff distances between first round of spot 
marking by experts and automated detection procedures were 
lower than those between and among experts; prompting a  
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TABLE I.  COMPARISON OF SPOTS MARKED BY TWO EXPERTS AND 
THOSE FOUND BY LOG PLUS THRESHOLDING AND WAVELETS BASED- 

METHODS 

 T11& 
T12 

T21& 
T22 

T11& 
T21 

T11& 
AL1 

T21& 
AL1 

T11& 
AL2 

T21& 
AL2 

Mean 
Std 

4.5518 
1.5064 

4.4353 
1.1813 

4.5190 
1.4060 

4.2816 
1.3628 

4.1721 
1.0184 

4.2768 
1.3247 

4.1102 
1.1138 

 

 

TABLE II.  COMPARISON OF SPOTS MARKED BY THE TWO EXPECTS THE 
SECOND TIME AND THOSE FOUND BY LOG PLUS THRESHOLDING AND 

WAVELETS BASED- METHODS 

 T12&AL1 T22&AL1 T12&AL2 T22&AL2 
Mean 
Std 

4.5932 
1.0878 

4.1684 
1.1322 

4.5353 
1.1336 

4.1472 
1.1209 

 

 

suspicion than maybe experts marked spots differently the 
second time, a week later. The Hausdorff distances between 
both LoG-based and wavelets-based detections and experts the 
second time they marked spots were calculated, Table II. 

Instead of experts marking spots differently the second 
time, Table II suggests that the first expert has higher 
variability in marking spots than the second expert. This is 
because variability between the second expert marking spots 
the second time and automated detections is stable when 
compared to that expert the first time and automated detections. 
This observation suggests that the first expert is the source of 
variability. The low Hausdorff distances between the first 
expert the first time and automated detections imply that 
though the first expect had the highest overall variability, the 
first expert had high variability the second time they marked 
spots.    

Table II further shows that spot contours found by the 
wavelets-based method agree better with experts than those 
found using LoG-based method, as this was established in 
Table I. Fig. 1 shows typical spots marked by the first expert 
side by side with those detected by the two methods. If the first 
expert had the highest variability in marking the spots, yet 
visually that expert’s spots marking look consistent then it can 
be concluded that the two experts marked spots similarly. Spots 
detected by automated detections visually have contours that 
differ from those of experts, however are acceptable as 
Hausdorff distances for 10 stacks are comparable to those of 
inter-expert. 

The set of expert markings comprised four observations per 
object; two experts marked spots twice. The value of the MWI 
for the LoG based method was 1.0094; its 95% confidence 
interval, assuming the standard normal distribution, was 
(1.0070, 1.0118). The value of the MWI for the wavelets based 
method was 1.0172; its 95% confidence interval was (1.0148, 
1.0196). The upper limit of the confidence interval for both 
methods is greater than one, indicating that the methods agree 
with the experts at least as well as the experts agree with each 
other.      

 

Figure 1.  A shows original image, B is spots marked by the first expert the 
first time, C highlights those detected by the LoG-based method, D shows 

spots marked by the expert the second time and lastly E is spots found using 
wavelets-based method. 

 

B. Detection techniques evaluation 
Fig. 2 shows ROC plot for both methods using objects on a 

z-stack level deemed the most in focus visually. Spots marked 
by an expert constituted the gold standard. The AUC for the 
LoG-based method was 0.7751, while that of the wavelets-
based method was 0.6070. The LoG-based method had a higher 
AUC value; over a range of posterior probabilities cut-offs it 
had better performance than the wavelets-based method. 

For each method, at the operating point corresponding to 
posterior probability threshold set at 0.5, Table III shows the 
performance evaluated using parameters deemed suitable for 
imprecise environment. Sensitivity versus specificity was 
considered not informative enough, as the two classes were 
imbalanced. 

Even though the LoG-based method had the highest AUC 
value, it is less precise than the wavelets-based method at the 
operating point chosen. Precision, what fraction of detected 
spots are actually spots should be an important measure in 
evaluating detection algorithms as noise frequently increases 
the false positive detections.  The gain in precision came at the 
loss in sensitivity – recall. Sensitivity fell by 10% for an 
increase in precision of 20.50%. The wavelets-based method 
picks up a lot less non-spots, a quarter of those by LoG-based 
method, objects at the expense of missing a few true positive 
spots. This leads to the implication that maybe the normal ROC 
is not suitable for this problem; the posfrac-recall ROC could 
offer better performance evaluation. 

TABLE III.  PERFORMANCE EVALUATION OF THE LOG-BASED AND 
WAVELETS-BASED METHODS THE IN THE IMPRECISE ENVIRONMENT 

 Precision Recall F-measure Posfrac 
LoG-based 0.6906 0.9600 0.6575 0.9720 
Wavelets-

based 
0.8958 0.8600 0.6324 0.8727 

 

E

A B C

D
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Figure 2.  Example The ROC curves for the LoG-based and wavelets-based 
methods. 

Figures 3 and 4 show posfrac-recall ROC curves for the 
LoG-based and wavelets-based methods respectively, for the 
target prior probabilities = 0.5, 0.1 and 0.01. The prior 
probability of the non-target class was varied by varying the 
fraction of background pixels from the gold standard image 
considered as the non-target objects. 

The posfrac-recall curves indicate that the two methods 
have similar performance with varying skew values. The 
choice of skew, fraction of non-target objects to include in 
evaluating a method, depends on the percentage of posfrac 
deemed acceptable in detecting spots in an application. The 
posfrac of both methods lowers with increasing skew for a set 
sensitivity. However, precision is fixed as skew varies. 

 

Figure 3.  The posfrac-recall ROC curves for the LoG-based method. 

TABLE IV.  POSFRAC OF THE LOG- AND WAVELETS-BASED METHODS FOR 
VARYING VALUES AT 80% SENSITIVITY AND THEIR AUC VALUES 

LoG Wavelets  
 AUC Posfrac AUC Posfrac 

0.5 0.6844 0.4800 0.6524 0.4350 
0.1 0.9129 0.0960 0.8425 0.0870 

0.01 0.9643 0.0096 0.8852 0.0087 
 

 

Figure 4.  The posfrac-recall ROC curves for the wavelets-based method. 

According to posfrac-recall curves, the LoG-based method 
has better overall sensitivity; but since it is less precise than the 
wavelets-based method its posfrac is high due to high false 
positives. Table 4 shows the posfrac of the two methods at 80% 
sensitivity with varying skew; it also shows their AUC.  At 
80% sensitivity, the wavelets-based method has lower posfrac 
for all skew values. 

However, above maximum sensitivity of the wavelets-
based method, its posfrac significantly surpasses that of the 
LoG-based method. That is confirmed by the AUC values – 
LoG-based method values are consistently higher than those of 
the wavelets-based method. The choice of the skew value and 
sensitivity at which to operate depends on the problem being 
investigated. If a method that finds all the spots, even at an 
expense of including background noise is desired, the high 
posfrac value can be ignored.  

When the spot detection algorithms performance evaluation 
is treated as an imbalanced case problem, the posfrac-recall 
curves can be used to help decide at what skew and sensitivity 
different methods can be compared. This is appropriate because 
the distribution of spots to be detected is not known a priori. 
The methods are evaluated on a per stack basis, but the 
evaluations can be conducted on a batch of stacks of images. 
Spots can be detected in 3D or maximum projections of stacks, 
the evaluation metrics proposed would still hold. The 
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evaluation metrics can be applied to other spot detection 
algorithms, not just the two tested here. 

IV. CONCLUSIONS   
We have proposed a procedure to evaluate performance of 

spot detection algorithms in microscope images. The procedure 
depends on the marking of spots in images by an expert 
biologist. The marked spots form a gold standard in 
determining accuracy of an algorithm in imprecise and 
imbalanced environment.  This methodology was demonstrated 
on two spot detection algorithms, the LoG-based and wavelets-
based methods. It was able to highlight the differences in 
performance between the two methods. It can be applied on 
other spot detection algorithms, provided that they seek to find 
the entire diffraction-limited spot. 
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V. SUPPLIMENTARY DATA 
Methods and Materials 
The eGFP gene sequence was found on PubMed and inserted 

in 5’-3’ direction into the probe designer algorithm on 

www.singlemoleculefish.com. The parameters set on the 

algorithm were as follows:  

Number of probes  48  

Probe length   20 nucleotides 

GC content  45% 

No of GFP probes  

Lyophilized probes (Biosearch Technologies) were 

resuspended in 100 µl of TE (10mM Tris, 1 mM EDTA, 

Sigma) buffer (pH 8) to a final concentration of 100 mM each 

and stored at -20°C. Equal volumes of thawed probes were 

aliquoted (10 mM each) and pooled together for each gene to a 

final concentration of 480 mM for genes with 48 probes. 

Initially, precipitation was carried out with 10% volume of 3M 

Sodium Acetate (pH 5.2, Sigma) and 2.5X volume 100% cold 

Ethanol (Minema) according to smFISH protocol by Batish et 
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al. (2011) Probes were precipitated overnight by incubation at 

-20°C. Probes were then spun at 14 500 Xg, 4°C for 20 min. 

The pellet was then resuspended in 200 µl 0.1 M Sodium 

Bicarbonate (Sigma) or Sodium Tetraborate (Sigma).  

Approximately 0.3 mg of ATTO-565 NHS-ester dye (ATTO-

TEC, Germany) was dissolved in 10 µl dimethyl sulphoxide 

(DMSO, Sigma). Dissolved dye solution was added to 190 µl 

of 0.1 M Sodium Bicarbonate (Sigma). The dye solution was 

added to the probe solution and incubated overnight in the 

dark at 37°C. Following conjugation reaction, the probes were 

reprecipitated at -20°C overnight as previously described. 

Probes were then spun at 14 500 Xg, 4°C for 20 min. 

Supernatant which consisted of unconjugated dye was 

discarded and conjugated probe pellet was rinsed twice with  

70% Ethanol at 14 500 Xg, 4°C for 5 min. Supernatant was 

discarded and pellet was allowed to air dry. Pellet was 

resuspended in 200 µl of Buffer A (0.1 M Triethyl ammonium 

(TEA, Sigma)). Conjugated probes were separated and 

purified to enrich for dye-conjugated probes by reverse phase 

HPLC on a C18 column. Buffer A is the aqueous phase 

column which allows sample molecules to adhere to column 

and Buffer B (Triethyl ammonium and 70% (v/v) acetonitrile 

(Labscan) contains organic solvents in which oligonucleotides 

are preferentially soluble. An optimized programme of 2 to 

98% Buffer B over 20 min was used to purify probes. 

Conjugated probes were detected at two wavelengths, 260 nm 

for nucleic acid and corresponding wavelength for dye used 

either 565 nm for ATTO-565. The appropriate fractions, 

containing conjugated were collected and dried in a Centri-

Vac.  Dried probes will were then re-precipitated overnight as 

previously described. Probes were then spun down with the 

same parameters as previously described. Probes were allowed 

to air dry and were re-suspended in a small volume of TE 

buffer (pH 8, Sigma). DNA concentrations were then 

determined using a Nanodrop. Probes were then diluted to a 

final concentration of 50ng and stored at -20°C until 

hybridization steps. 

Cell Culture 

Transfections 

HeLa cells were grown in DMEM (Dulbecco’s Modified 

Eagles’s Medium, Gibco) with 10% FBS (Fetal Bovine 

Serum, Gibco), 2 mM L-glutamine (Sigma Aldrich) and G418. 

Cells were transfected with 1 µg JOMU WT and 

LIpofectamine 2000 (Invitrogen) complexes and 1ml Opti-

MEM I Reduced Serum Medium (Gibco). Media was changed 

to DMEM after 4 hours and cells were incubated at 37°C and 

5% CO2 for 24 hr. Cells were passaged at 1:10 into fresh 

growth medium containing kanamycin sulphate (Roche). After 

cells had reached 90% confluency, cells were seeded in 12 

well plates, each well containing an ethanol cleaned 15mm 

coverslip. Approximately 1 X 105 cells were seeded in each 

well in 1 ml of media. Cells were grown in a 37°C incubator 

with 5% CO2 overnight. Cells were stimulated with 20ng/ml 

TNF-α (Tumor Necrosis Factor Alpha, Sigma Aldrich) and 

fixed after the following time points: 2hr, 2hr 30min and 3hr.  

Cell Fixation 

For fixation, culture medium was aspirated off wells and cells 

were gently washed 2X with phosphate buffered saline (PBS, 

Lonza). 1ml of paraformaldehyde (PFA, Sigma Adrich) was 

added to cells and incubated in PFA for at least 10min. PFA 

was aspirated off and cells were gently washed 2X with PBS. 

Cells were then stored in 70% Ethanol (Minema) at 4°C in 

parafilm sealed plates until hybridization experiments.  

Probe hydrization and Imaging 

Prior to hybridization, cells are gently washed 2X with PBS. A 

volume of 50ng of a specific conjugated probe is then added to 

hybridization buffer (50% (v/v) deionised formamide 

(CalBiochem), 10% (w/v) dextran sulphate (Sigma), 300 mM 

NaCl (Sigma), 20 mM NaH2PO4 (Sigma), 2 mM EDTA 

(Sigma), 10 µl vanadyl ribonucleoside complex (Sigma), 250 

ug/ml E. coli tRNA (Sigma). For each coverslip, 7 µl of 

hybridization buffer containing 50ng of probe is used. 

Coverslips are then inverted, cell side down, onto 7 µl of 

hybridization buffer on parafilm coated glass. Hybridization 

was then carried out in 37°C water bath in the dark overnight. 

Coverslips were transferred into a 12 and 2X SSC (300 mM 
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NaCl, 0.3 M tri-sodium citrate, Ambion) at 37°C for 30min. 

Wash step was repeated three times in fresh wash buffer. Then 

0.125 µg DAPI (Invitrogen) was added 20 min into the final 

wash step and incubated under the same conditions for 10 min. 

Coverslips were then gently washed 2X in PBS and incubated 

with equilibration buffer for 2-5min. Coverslips were then 

mounted onto ethanol cleaned coverslips, using glox buffer 

containing 3.7 X 10-3 mg/µl glucose oxidase (Sigma) and 

164.38U/µl catalase (Sigma) as a mounting buffer. Cells were 

imaged on a Nikon widefield TIRF microscope using a 100X 

oil immersion objective under lamp illumination. Imaging was 

done using mercury lamp illumination through the appropriate 

filter sets at low camera gain in each of the fluorescent 

channels using an Andor iXion897 camera. The DAPI nuclear 

stain was visualized in the 405 channel at 10ms exposure time. 

GFP was imaged in the 488 channel with 100ms exposure 

time. eGFP mRNA (“spots”) were imaged in the 561nm 

channel after 200ms exposure (imaging software, µManager).  

JOMU WT Plasmid Map 
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Abstract—Dr. Math is a service, which connects high school
students with math problems to volunteer human tutors. Some
of the tutors on the Dr. Math service have difficulty in servicing
queries received in Mxit lingo. Identifying which of these queries
contain valid mathematical questions steals time which could
be better spent on the actual tutoring process. This paper
develops and tests filtering algorithms based on numbers, symbols
and tag words, in order to identify queries containing suitable
mathematical translation candidates. A combination of numeric
and symbolic filtering yields the most accurate results, whereas
filtering using numbers, symbols and tag words returns the
highest number of results. On average, the algorithms return
their filtered results in under a millisecond.

Index Terms—Text analysis

I. INTRODUCTION

i wnt u 2 hlp me wth maths abt mxid frections

Does the statement above have you scratching your head?
It’s an example of how student queries generally start in Dr.
Math. If the initial question is so ill-phrased, imagine having
to translate statements written in this shorthand to usable
mathematical equations.

simp : sq rt 27 . sq rt 18 . sq rt 32 ova sq rt 12 . sq rt 8

With enough time and experience, a tutor should be able to
decipher statements such as the one above. But what if they
didn’t have to?

A. Mxit and Dr. Math

Mxit is an on-line chat service, mainly used on mobile
telephones. It provides similar functionality to other services
such as Google Talk, but with added features, such as chat
rooms, games and apps. Mxit has been broadly adopted by
South African school learners, because of it’s relatively low
usage cost and it’s availability on handsets from most mobile
telephone manufacturers.

Mxit lingo is a general term for the non-standardized,
shorthand language used by teenagers when communicating
on the social platform Mxit. One of the services available on
Mxit is a a math tutoring service, called Dr. Math, which has
been created to take advantage of the large user base that Mxit
has under South African school learners. Dr. Math currently
allows over 30 000 learners to query volunteer human tutors
with mathematical queries [1].

B. Problem statement and paper objective

Some tutors on the Dr. Math service have difficulty in
reading the Mxit lingo statements received during tutoring ses-
sions. Attempting to decipher the messages wastes time which
could be more productively spent in tutoring other school
learners. Implementing a system to automatically render qual-
ifying queries as well-formatted mathematical equations may
support the tutors, by allowing them to focus on relevant
queries without first attempting to perform a translation.

This paper addresses the problem of identifying queries
which are candidates for translation to mathematical equations.
Thus, the objective of this paper is to devise a method
with which to sift through Mxit lingo queries to determine
which statements may be valid candidates for translation to a
mathematical equation.

II. METHODOLOGY

To meet the paper’s objective, the design science research
methodology [2] has been followed. The activities of the
methodology are shown in Figure 1.

Figure 1. The design science research methodology activities [2].

In design science an artifact may be a construct, model,
method or instantiation that clarifies or solves problems in
implementing successful information systems [3]. This study
will deliver algorithms to filter out suitable mathematical
translation candidates, from the logs of Dr. Math, as its artifact.
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The first two activities identify problem and motivate and
define objectives of a solution, have been completed by defin-
ing the initial problem statement and research objective.

The design and development activity will involve the de-
velopment of the algorithms (the artifact) necessary for pro-
viding the final solution to the problem. The fourth activity,
demonstration, requires that the artifact be used to solve an
instance of the problem. This will be done by means of using
the artifact on a test data set, to gather experimental results.
The artifact will be evaluated by comparing the results of
testing the artifact with the initial objective of the solution

This paper forms part of the Communication activity, which
states that the problem, its importance and its artifact must be
shared with with a relevant and applicable audience. The de-
sign science research methodology requires iteration through
previous activities to ensure that the artifact sufficiently solves
the research problem. Previous activities will be revisited after
performing initial tests using training data. The results from
these tests will be used to modify the artifact to more ac-
curately function within the problem domain, before retesting
the artifact on the training set. The artifact will then be further
tested on a test data set.

The Council for Scientific and Industrial Research (CSIR)
Meraka Institute are responsible for the development of Dr.
Math. All the processing and testing of the developed artifact
will be done on the historic system logs of the Dr. Math
service. The Dr. Math logs were obtained, with permission,
from the CSIR.

The following sections will detail the steps followed in
the development and testing of the artifact, by discussing the
various filtering algorithms in turn. An overview of the steps
involved in this process is shown in Figure 2.

III. LOG FILTERING

In order for a log filtering process to be feasible, the
process needs to be completely automated. Tutors deal with
multiple students concurrently during tutoring sessions and
may receive multiple queries from each of these learners.

Figure 2. Steps followed in the development and testing of the artifact

Table I
TAG DESCRIPTORS

Tag Description

N The entry’s topic is not mathematical in nature.
Y The entry’s topic is mathematical in nature, but not

a suitable translation candidate.
X The entry’s topic is mathematical in nature and is a

suitable translation candidate.

One of the problems with the tutoring process is finding
willing, suitable tutors. Therefore, appointing extra personnel
to perform filtering on logs, before passing them along to the
tutors, is not feasible.

Since the automated process has to emulate the judgement
of a human tutor in order select suitable translation candidates,
it was necessary to create tagged versions of the logs. The
Dr. Math logs represent the anonymous conversations between
tutors and learners. For the purposes of this paper, the flow of a
conversation is not tracked, instead the contents of individual
messages, forming part of a conversation, are analyzed. To
facilitate the tagging process, the logs were split into groupings
of 500 entries (messages) each. Five of these groupings were
randomly selected to act as a training data set and a further
five were selected to act as the final testing set.

The tagging process was simplified by developing an ap-
plication, which displays all 500 entries for a given group,
in sequence. Each entry was then individually scrutinized
(without regard for preceding or following entries) and tagged
as shown in Table I.

Scrutiny of the Dr. Math logs reveal that learners phrase
their mathematical queries using either numbers, symbols
(non-alphanumeric characters), words or a combination of all
three concepts. Therefore, the decision was made to attempt
to create filters to detect suitable translation candidates, based
on these three concepts. The following sections describe the
processes and motivations involved in performing log filtering
by numbers, symbols or tag words. The rules created and
discussed in the following sections were informed by studying
a sampling of South African high school mathematics text
books [4], [5], [6], [7], [8].

IV. NUMERIC FILTERING

In order to filter on numbers, every log entry was checked
to see whether it contained the numeric characters 0 to 9.
This was thought to be an easy indicator as to whether or not
a log entry pertained to a mathematical topic and whether it
would be possible to translate the query to a mathematical
equation. However, upon scrutiny, the contents of the log
entries prohibited this from being a viable solution for three
reasons:

1) A log entry may contain the on-line pseudonym of
a learner. These names sometimes contain a number,
which may or may not be separated form the alphabetic
portion of the name by means of a space or non-
alphanumeric character.
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2) Some learners discuss events in their personal lives
with the tutors. These topic include their placement in
an athletic event or competitions. This results in entries
such as 1st or 4th, which could be identified as being
an indicator of a mathematical topic when filtering on
numbers.

3) Learners use numbers to provide typing shortcuts for
certain words, e.g. 2 instead of to and l8r instead of
later.

To decrease the number of false positives, the following set
of rules was identified for the selection of translatable content
by means of number filtering:

1) An entry must contain at least two instances of numeric
character strings. This decision was made to ensure that
there are at least 2 separate number sequences being
applied to one another by means of an operator. This,
however, has the detrimental effect of eliminating en-
tries such as 5z or 50 + a from being viable translation
candidates.

2) A numeric string may not be preceded or followed by
more than 3 non-alphanumeric characters. Our study of
equations in South African high school mathematics
textbooks show very few entries for equations with
more than 3 concurrent non-alphanumeric symbols.

3) A numeric string may not be directly preceded by an
alphabetic character. Most equations in South African
high school textbooks are written in the format of a
constant followed by a variable, i.e. 3a and rarely a3.

4) A numeric string may not be directly followed by more
than 3 alphabetic characters. Our study of equations
in South African high school mathematics textbooks
indicate that formulas rarely contain more than three
variables per grouping, i.e. 3abc and very rarely 3abcd.

Table II displays the results of applying the rules to the
training data set. The addition of preprocessing and the intro-
duction of other rule sets yielded no improvement on results.
As such, the initial rule set was kept unchanged.

The Manual column indicates how many entries were identi-
fied as being suitable for translation under human scrutiny. The
Filtered column indicates how many translation candidates
the filtering process discovered, without regard for whether
they are actual candidates or not. The % Found indicates how
large a percentage of the manually identified candidates were
identified by the filtering process. The last column Accuracy
% specifies the percentage of how many of the candidates
identified by the filter are valid candidates.

V. FILTERING ON SYMBOLS

For the purpose of filtering on symbols, a set of non-
alphanumeric characters were identified. In order to qualify for
selection, these characters had to fulfill certain prerequisites:

1) They had to represent a specific mathematical operator
or construct as found in South African high school
mathematics textbooks.

2) A school learner must be able to type the character using
a mobile phone keypad.

Table II
TRAINING RESULTS FOR NUMERIC FILTERING

Set Manual Filtered % Found Accuracy %

Training set 1 81 3 2.47 66.67
Training set 2 53 3 5.66 100.00
Training set 3 33 0 0.00 100.00
Training set 4 45 3 2.22 33.34
Training set 5 21 2 0.00 0.00

Averages: 47 2 2.07 60.00

Table III
TRAINING RESULTS FOR SYMBOL-BASED FILTERING

Set Manual Filtered % Found Accuracy %

Training set 1 81 57 61.73 87.72
Training set 2 53 26 35.85 73.08
Training set 3 33 14 21.21 50.00
Training set 4 45 42 57.78 61.90
Training set 5 21 53 57.14 22.64

Averages: 47 38 46.74 59.07

A set of rules was then created in order to identify entries
which may be candidates for translation, based on the symbols
they contain. The rules are as follows:

1) An entry has to contain at least one instance of one of
the identified characters.

2) An entry is disqualified if it contains more than 3 con-
secutive instances of these identified characters. Some
of these symbolic characters may be used by students
in their on-line pseudonyms. Mathematical equations in
South African high school textbooks rarely contain more
than three consecutive symbols.

3) An entry is disqualified if it contains more than 3 con-
secutive alphabetic preceding or following characters. A
study of equations in a sampling of South African high
school mathematics textbooks indicate that formulas
rarely contain more than three variables per grouping,
i.e. +abc or abc+ might occur, but not +abcd or abcd+.

After scrutinizing the results of performing symbol-based
filtering on the training set (Table III), it became clear that the
following factors were influencing the accuracy of the results:

1) There are multiple instances in the logs where learners
attempt to gather automatic responses. Auto-responses
provide functionality such as an encyclopedia look-up.
The auto-response commands are always in the form
of a period followed by an alphabetic character or
two. In some cases a period may be used to indicate
multiplication and the alphabetic characters following
may be interpreted as variables. The decision was made
to remove all these automatic response commands, by
means of preprocessing.

2) Emoticons are collections of symbols, such as :), used to
convey emotions. These emoticons may consist of valid
symbolic characters such as ”)” or ”(”. Even though
we were aware of their existence beforehand, we did
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Table IV
REPROCESSED TRAINING RESULTS FOR SYMBOL-BASED FILTERING

Set Manual Filtered % Found Accuracy %

Test set 1 81 75 81.48 88.0
Test set 2 53 46 66.04 76.09
Test set 3 33 30 66.67 73.33
Test set 4 45 47 82.22 78.72
Test set 5 21 64 80.95 26.56

Averages: 47 38 75.47 68.54

not simply want to filter all of them out, because they
may not have an effect on the identification process. The
decision was made to remove any emoticons, containing
symbols used in mathematical equations and identified
in the training set, by means of preprocessing.

3) Most of the equations identified in the training set
contained the operators plus, minus, divide, multiply and
the equal sign. A rule was added to give extra weighting
to any entry which contained these specific symbols.

Table IV demonstrates that the % Found shows an increase
of 28.73% and the Accuracy % an increase of 9.47% after the
introduction of preprocessing and the additional rule.

VI. SELECTING TAG WORDS

Filtering the queries for tag words depend on two basic
principles:

1) Some learners type out equations using words, instead
of symbols. This may be because of preference or
lack of knowledge as to which symbol, on a mobile
telephone keypad, to use for concepts such as exponents
or fractions. In cases such as these there may be certain
words, such as plus or minus, which could be directly
construed as indicators for the presence of mathematical
equations.

2) In other cases however, there may be words which are
not used by learners to type a mathematical equation, but
they may form part of a question or word sum which
may still be translated to a mathematical equation.

In order to satisfy the needs of both these principles, a study
was done to identify which English words are prevalent in the
South African high school mathematics curriculum.

The first phase of the study involved manually scrutinizing
South African high school mathematics textbooks [4], [5],
[6], [7], [8] and typing any statements which form part of
either a question or an explanation of an answer into a
custom application. This application enabled the identification
of distinct words from these textbooks as well as a counter
for how often they occur.

The second phase of the study was performed by the
creation of software to identify and count instances of individ-
ual words from an input file. The South African curriculum
statements for mathematics [9] and mathematics literacy [10]
were used as input to this software. The curriculum statements
do not contain only text, but examples of equations as well.

The software captured these equations as individual words,
which skewed the results.

The results from the first and second phase were combined
to form a single list of words and their associated rates of
occurrence.

Because this list still contained some equations, identified in
phase two, a free on-line English dictionary [11] was sourced
and converted to a compatible format. The words in the
combined list were compared to the entries in the dictionary
and any illegal entries, such as equations and incorrectly
spelled words were filtered out. After the filtering process,
244 words remained of which some were plural forms. After
removing these plural forms a final tally of 233 individual
words remained.

If this paper focused on the selection of translation can-
didates from well-formed English statements to mathematical
equations, these identified words may have been sufficient,
but because Mxit lingo contains a non-standardized form
of English, a last phase was necessary in order to identify
possible synonyms for these words from the historic logs
of Dr. Math. Performing this process manually would be
prohibitively time-consuming, so a decision was made to
automate the initial selection of synonyms and then perform
a final manual selection from the results of the automated
selection.

For the purpose of automatically selecting synonyms for
the 233 words, custom software was written to analyze an
input set of Dr. Math logs. Several techniques were then used
to process these logs to attempt to identify synonyms. The
following sections discuss the various techniques used.

A. Containment

The simplest method of detecting word similarity is to test
wether one word contains the other. If the one word is already
in its root form, then the comparison yields a low-cost and
efficient means of detecting word similarity.

B. Weighting

By supplementing the containment process discussed in the
previous section, with weighting, the process becomes a bit
more accurate. The weighting process works on the principle
that whenever one word contains another, there might be some
letters left over. The less letters left, the greater the chance that
the words are related. If there are no letters left over, the match
would be 100%. If one word is contained by another, the initial
weighting is 40%. The value of 40 % was chosen by means
of trial and error. Table V shows which percentage is added
to the match for certain length differences between words.

C. Stemming

There are a variety of stemming algorithms (stemmers),
which are used to group words based on semantic similarity
[12]. Stemmers change words by either removing pre- and
suffixes or by substituting them, e.g. engineering is changed to
engineer. A stemming algorithm is a computational procedure
which reduces all words with the same root (or, if prefixes are
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Table V
WEIGHTING AS APPLIED TO WORD LENGTH DIFFERENCE

Difference (in letters) Added % Total Match %
1 50 90
2 30 70
3 20 60
4 10 50
5 5 45
6 1 41

left untouched, the same stem) to a common form, usually by
stripping each word of its derivational and inflectional suffixes
[13].

The premise behind stemming is to get a word as close to
its root English form as possible. This lessens the amount of
words necessary in the normalized text base, which in turn
lessens the amount of comparisons necessary to facilitate an
accurate translation.

Stemming algorithms generally try to match the longest
possible affix to one stored in a list. Once this is complete
the algorithm will try to handle any spelling differences
between root forms. One of the earliest stemming algorithms
was proposed by Lovins [13]. This stemmer contains 294
endings, 29 conditions and 35 transformation rules. Various
implementations of the stemmer modify these settings or add
their own depending on the target language.

The stemmer chosen for this study was developed by Porter
[14]. The original Porter stemmer consisted of 5 steps, each
consisting of various rules, which are tested in turn. These
rules may be adjusted to fit certain applications or languages,
but their intention remains to determine whether two words,W1
and W2, may be reduced to a common stem S, while retaining
the meaning of their parent sentences. Many applications
have taken to using the default set of rules provided by the
stemming algorithm, without optimization. To this end, Porter
has provided a free software implementation of his algorithm.
This study makes use of a Visual C# variant of the algorithm.

The approach followed by Porter does however share some
common ground with Lovins, in that they both describe
a general algorithm for stemming and that they provide a
specific collection of rules under which the algorithm may
be applied [15].

D. Partial stemming

Partial stemming is the process of removing known prefixes
or suffixes, but not in conjunction. In order for this process
to work, a list of predefined prefixes and suffixes was created.
A list of 38 prefixes and 37 widely used English suffixes,
ranging in length from 1 to 5 letters, were compiled. Word
comparisons were then done by attempting to remove these
affixes from a target word, in turn, and then attempting to
match the modified word to the input word.

E. Adjacency

Using adjacency to determine word similarity works on the
premise that words serving a similar purpose should routinely
be surrounded by the same words. An adjacency lists is

generated for a word by determining how many times a word
appears in conjunction with a given word in relation to all
of the other words in the corpus of a given text-base or
language. If an adjacency list is generated for the word plus, it
may reflect adjacencies to words such as five, ten and twenty.
If an adjacency list is generated for the word add, it is to
be expected that it may occur adjacent to these same words
at some stage. By comparing how many words out of the
total corpus of words in the language both plus and add are
adjacent to, we arrive at a matchable percentage. The higher
this percentage, the greater the chance that a word may be
considered a synonym for another.

F. Word dilution

Word dilution refers to the process of replacing all double
occurrences of a letter in a word with a single occurrence
of the letter, i.e. address gets converted to adres. This is a
lightweight means of identifying words which might have been
misspelled in a given sentence. In this study, when a word has
been converted in this way, it is said to be in its base form.
This should not be confused with the root form of a word,
which is the result of applying a stemming algorithm to a
word.

The author has not been able to find any precedence for
this procedure, by means of literature study, but has been
using these rules for synonym / substitute matching for a few
years. This process is incorporated into a proprietary piece
of software, called EasyMark [16], which is used for the
automatic marking of student scripts.

Depending on how misspelled the word is, the dilution may
need to be taken a step further, by removing the vowels from
the interior of the word, as well. In such an example address
would get converted to adrs. Vowels at the start or end of
the word are usually not removed, as they tend to be placed
correctly. This results from people typing words as they say
and hear them. The beginnings and endings of words generally
tend to be pronounced very distinctively, so most spelling
errors are usually made in the middle of words. Medial letters
of a word have more neighbours than letters at the periphery
of a word, so they are more prone to being misspelled [17].

G. N-grams

Any word can be divided into smaller chunks. The smallest
possible chunks being single letters. Inherently humans divide
words into syllables, but a computing algorithm would not
need to divide a word using these same principles. N-grams are
a means of dividing a word into smaller overlapping chunks.
These individual chunks could then be compared to the chunks
of another word to determine similarity.

The letter n in the word n-gram refers to the variability in the
length of the individual word chunks. Different applications
may use different lengths of n-grams to different effects. Some
approaches even combine several different lengths simultane-
ously or append blanks to the beginning and ending of a word.
This helps with matching beginning-of-word and ending-of-
word situations [18].
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Table VI
TRAINING RESULTS FOR TAG WORD-BASED FILTERING

Set Manual Filtered % Found Accuracy %

Training set 1 81 9 7.41 66.67
Training set 2 53 4 5.66 75.00
Training set 3 33 19 27.27 47.37
Training set 4 45 18 11.11 27.78
Training set 5 21 6 14.29 50.00

Averages: 47 2 13.15 53.36

According to [19], character n-gram tokenization is an at-
tractive alternative to stemming. Some of the n-grams derived
from a word will span only portions of the word which do
not show any differentiation from the word’s root form. This
means that many of the benefits of stemming can be achieved
without any knowledge of the target language. This study
employs uni-, bi- and trigrams.

VII. FILTERING ON TAG WORDS

The techniques discussed in the previous section were all
employed on every one of the 233 identified tag words. An
average percentage match was generated for each word with
regards to each of the words contained in the input logs. The
top 50 automated synonym matches for each word was then
stored in a separate file. These 233 files (each containing 50
entries) were then manually scrutinized to determine which of
the identified words may be seen as synonyms if encountered
by a human.

These synonyms included plurals, words sharing a common
root, misspelled words and completely different words. Finally,
these words were compiled into a single list and filtered for
duplicates, resulting in a final total of 1775 tag words.

The following set of rules were compiled in order to
facilitate the process of selecting translation candidates by
filtering on tag words.

1) A query must contain at least two of the tag words in
order to be considered a candidate for translation. Some
of the tag words may appear in normal conversation,
but in a different context. Thus the decision was made
to have at least two of these words in a query, to attempt
to rule out general conversational usage.

2) Extra weight is added to a query if it contains predefined
word pairs, which may be indicators of alternate means
of specifying mathematical operations. A list of these
words were sourced from [20].

Table VI show the results of performing filtering on the
training set using tag word filtering. The addition of prepro-
cessing and testing various other rule sets did not yield any
improvements to the technique. As such, the initial rule set
was kept unchanged.

VIII. COMPARING AND COMBINING

Having selected and implemented the three different filter-
ing techniques, we decided to compare which of the techniques

Figure 3. Comparison of the three filtering techniques

Figure 4. Results obtained from combining the filtering techniques

yielded the best results. This comparison is shown in Figure
3.

The results show a clear difference in both the number of
results found and accuracy of the three filtering techniques.
Filtering on symbols yield the most results, as well as the
most accurate results. A problem with comparing the three
techniques directly are that they should find completely differ-
ent candidates, except if by chance a query contains elements
to trigger for more than one of the techniques.

Most queries from learners contain some combination of
numbers, symbols and words. In order to test whether com-
bining the filters yielded different results, the training set was
reprocessed using various combinations of the three filters. The
combination tests also measured the average length of time
processing takes for each query, to ensure that the processes
are feasible in real-time. Even combining all three filters
only yielded an average processing time of 0.84 milliseconds.
This processing time will vary, depending on which hardware
platform the processing is performed on, but serves to indicate
that the filtering algorithms provide results in real-time.

As Figure 4 illustrates, a combination of filtering on num-
bers, symbols and tag words, returns the highest number of
translation candidates, but does not return the least false pos-
itives. The most accurate of the processes are a combination
of filtering on numbers and symbols.

Figure 5 demonstrates that the filters are not only applicable
to the training set, by applying the three combined filters on the
test set. The results prove to be similar, with a slight variation
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Figure 5. Comparing the results of all filters between the training and test
sets

in both the number of results found and the accuracy of the
results.

IX. CONCLUSION AND FUTURE WORK

This paper set out to create a method for the selection
of suitable mathematical translation candidates from queries
received in Mxit lingo. Three techniques have been identified
for this purpose and have been tested in combination to
ensure the selection of the best method. It was determined
that combining all three of the developed filters yields the
most translatable results, it is however not the most accurate.
If accuracy is a higher priority, then combining the number
and symbol filters would be a better solution.

All of these techniques are light-weight, even using the
combination of all three filters yield results in real-time. Future
development could cross-reference the multi-filter processes
to find a middle-ground between the number of results found
and accuracy. However, this step might not be necessary as the
speed at which the process takes place makes the time lost in
processing false positives negligible.

As this study follows the design science research methodol-
ogy [2], we have decided to use the design science guidelines
[3] to evaluate whether the study’s goals have been met. To
address the first guideline, design as an artifact, the study has
been structured to provide an implemented solution to detect
translation candidates as it’s final artifact.

The second guideline, problem relevance, is met by the fact
that the study focuses on a real-world problem as demonstrated
in the logs of Dr. Math. As it stands, the filters have been
evaluated by comparing the results generated by the system
itself. This does not take into account that the developed algo-
rithms and testing procedures may be prejudiced or inaccurate.
The third guideline, design evaluation, may be made more
rigourous by using multiple coders and testing correspondence
between coding through Krippendorff’s alpha [21].

The study meets the fourth guideline, research contribu-
tions, by providing a means by which to enhance a real-world
tutoring system applicable to over 30 000 school learners [1].
Research rigour, the fifth guideline, has been applied to the
research by employing various methods on a training data
set, learning from the first round of results and then applying
changes before testing the methods on the training set again.

Further rigour has been applied by testing the consistency of
the methods and results on an alternate test data set.

The sixth guideline specifies that the design should be
a search process. This search process was facilitated by
employing three different filter types, a variety of natural
language text processing techniques and finally modifying the
techniques upon the receipt of initial data.

This paper serves to satisfy the last guideline, communica-
tion of research, which specifies that our research should be
presented to an appropriate audience for verification.

The focus of this paper was on identifying techniques for
the selection of suitable translation candidates. A future study
may involve the development of rules for the translation of
the selected candidates to mathematical equations.
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Corné E. van Daalen
Electronic Systems Lab

Electrical and Electronic Engineering
Stellenbosch University

Email: cvdaalen@sun.ac.za

Willie Brink
Applied Mathematics

Department of Mathematical Sciences
Stellenbosch University

Email: wbrink@sun.ac.za

Abstract—We consider the problem of performing simultane-
ous localization and mapping (SLAM) with a stereo vision sensor,
where image features are matched and triangulated for use as
landmarks. We explain how we obtain landmark measurements
from image features, and describe them with a Gaussian noise
model for use with a Rao-Blackwellized particle filter-based
SLAM algorithm called FastSLAM. This algorithm uses particles
to describe uncertainty in robot pose, and Gaussian distributions
to describe landmark position estimates. Simulation and experi-
mental results indicate that FastSLAM is well suited for vision-
based SLAM, because of an inherent robustness to landmark
mismatches, and we achieve accuracies that are comparable to
other state-of-the-art systems.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a rapidly
growing part of the autonomous navigation field. SLAM
attempts to solve the problem of estimating a mobile robot’s
position in an unknown environment while building a map
of the environment at the same time. This is a challenging
problem since an accurate map is necessary for localization
and accurate localization is necessary for mapping.

Most SLAM algorithms use a probabilistic landmark-based
map rather than a dense map. If landmarks in the map can
be measured, relative to the robot, and tracked over time the
pose of the robot and the locations of the landmarks can be
estimated in an optimal manner.

Initial implementations made use of the extended Kalman
filter (EKF), but displayed several shortcomings such as
quadratic complexity and sensitivity to incorrect feature track-
ing [1] [2]. The particle filter can be used to overcome these
limitations. However, because of the high dimensionality of
the problem the particle filter cannot be used directly. Instead,
the Rao-Blackwellized particle filter [3] is used. This filter
estimates some states with particles and others with EKFs.
In the case of SLAM particles are used for the pose of the
robot and an EKF for each landmark. This method is called
FastSLAM and has shown promising results in the literature
[4] [5].

Stereo vision is an attractive sensor to use with SLAM as
it can provide a large amount of 3D information at every
time step. Extracting that information reliably can, however,
be challenging. Powerful algorithms such as SIFT [6] or SURF
[7] have been used to solve this problem by extracting salient
features from images. These algorithms can be employed to

track features over multiple images so that landmarks for
SLAM can be identified.

In this paper we attempt to solve the 2D SLAM problem by
using FastSLAM and image features (the 3D extension is con-
ceptually the same). We begin with a brief description of how
we obtain measurements of landmarks with a Gaussian noise
model. A detailed description of the FastSLAM algorithm
is given, followed by some simulations where we compare
FastSLAM with the popular EKF SLAM algorithm [2]. We
provide experimental results from our system on an outdoor
dataset and measure accuracy against differential GPS ground
truth.

II. IMAGE FEATURES AND STEREO GEOMETRY

In this section we discuss a method of finding features in
images, triangulating these features for use as landmarks and
approximating the noise associated with each measurement of
a landmark. This characterization of the stereo vision sensor
is important for accurate optimal estimation. Since this section
is similar to previous work, the explanation will be brief. For
a more in depth discussion refer to [8] and [9].

A. Feature detection and matching

In order to identify landmarks we opt for one of two popular
feature detection algorithms: the scale-invariant feature trans-
form (SIFT) [6] or speeded-up robust features (SURF) [7].
Note that since we perform SLAM in 2D we discard the
vertical coordinates of image features.

At every time step we search for feature matches in a
synchronized pair of rectified stereo images. We model each
match as a measurement with Gaussian noise:

zim =

[
xL
xR

]
+N (0,Nt), (1)

where xL and xR are the image coordinates of the feature in
the left and right images. By N (0,Nt) we mean a sample
drawn from the normal distribution with zero mean and
covariance matrix Nt (the same notation is used throughout
the rest of this paper). We describe the noise covariance in
Equation 1 by

Nt =

[
σ2
xL

0
0 σ2

xR

]
, (2)

with σxL
and σxR

the standard deviations in pixels of the
match measurement, which we obtain through testing.
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Fig. 1. The geometry of our system.

We can then match the descriptors of a new measurement
with the descriptors of features already found at previous time
steps, to arrive at putative landmark correspondences.

B. Stereo geometry of calibrated images

Now that we have stereo image features that can be tracked
over time, we convert them into 2D landmarks.

Figure 1(a) depicts the geometry of a pair of stereo cameras
with camera centres at cL and cR, where the image planes
have been rectified, and a landmark

[
xr yr zr

]T
observed

at image coordinates (xL, yL) in the left image and (xR, yR)
in the right image. As mentioned we are working in 2D, so
the features are effectively projected onto the Xr − Yr plane.

With the geometry of the stereo camera pair, the landmark
location in metres can be calculated in robot coordinates as

[
xr
yr

]
=

[
fb

xL−xR

(xL−px)b
xL−xR

− b
2

]
+N (0,Qt), (3)

where b is the baseline (distance between cL and cR), f the
focal length and px and py the x- and y-offset of the principal
point, all obtained from an offline calibration process. Qt is
the noise covariance matrix of the measurement.

Note that we differentiate between robot coordinates (sub-
script r) and world coordinates (subscript w) as indicated in
Figure 1(b), where xt, yt and ψt are the robot’s position and
orientation in world coordinates at time t.

We know that a transformation from Nt to Qt is possible
if we have a linear system and, since Equation 3 is not
linear, we use a first order Taylor approximation to find the
transformation matrix

Wt =

[
∂xr

∂xL

∂xr

∂xR

∂yr

∂xL

∂yr

∂xR

]
. (4)

It then follows that Qt can be approximated as

Qt = WtNtW
T
t . (5)

This approximation is performed to maintain a Gaussian noise
model, which is necessary for FastSLAM. We use this noise
model and the triangulated locations of landmarks to find out-
liers in putative correspondences between new measurements
and those already in the map, according to the RANSAC-based
probabilistic method discussed in [9].

From Figure 1(b) we see that the robot pose can be
described with the state vector

xt =



xt
yt
ψt


 , (6)

with xt and yt the location of the robot and ψt its orientation.
We define the rotation matrix

Rt =

[
cos(ψt) − sin(ψt)
sin(ψt) cos(ψt)

]
. (7)

In order to perform SLAM we need to establish a relationship
between robot and world coordinates. We denote the location
of a landmark i in the map corresponding with measurement
j at time t as

mi,t =

[
xw
yw

]
and zj,t =

[
xr
yr

]
. (8)

The measurement zj,t will always be as the robot observes
the landmark in robot coordinates, and the landmark’s location
mi,t will always be given in world coordinates. The transfor-
mation between robot and world coordinates is given by the
measurement equation

zj,t = h(xt,mi,t) = RT
t

[
xw − xt
yw − yt

]
, (9)

or inversely,

mi,t = h−1(xt, zj,t) = Rt

[
xr
yr

]
+

[
xt
yt

]
. (10)

Exactly which measurement corresponds to which landmark
in the map, as matched with the feature descriptors and
confirmed with the outlier detection scheme, is stored in a
correspondence vector ct.

III. MOTION MODEL

Now that we have established a measurement equation, we
need to derive a motion model for our robot so that we can
perform SLAM. We use the velocity motion model. At every
time step the controller of the robot will give it a forward and
angular velocity,

ut =

[
v

ψ̇

]
+N (0,Mt), (11)

with v the forward translational speed and ψ̇ the angular
velocity. To characterize the uncertainty we add zero mean
Gaussian noise with covariance matrix

Mt =

[
α1v

2 + α2ψ̇
2 0

0 α3v
2 + α4ψ̇

2

]
, (12)

as is common practice [1]. The α parameters are robot and
environment specific, and have to be estimated with practical
testing and some degree of guesswork.
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To update the robot states with the control input we define
the motion equation as

xt = g(xt−1,ut) =



xt−1
yt−1
ψt−1


+


Rt−1

[
vT cos(ψ̇T )

vT sin(ψ̇T )

]

ψ̇T


 ,

(13)
with T the sample period of the system. Although this is an
approximation, the accuracy lost due to the approximation is
far smaller than the effect of expected noise in the control
input ut.

IV. SLAM WITH THE RAO-BLACKWELLIZED PARTICLE
FILTER

The particle filter can be used to approximate any distri-
bution, and it is often utilized to accurately estimate non-
Gaussian systems. A major drawback of the particle filter,
however, is that with high dimensional problems a large
number of particles is needed to describe the distribution
sufficiently. The Rao-Blackwellized particle filter has been
developed to overcome this problem [3]. This filter uses
particles to describe some states and Gaussian distributions
to represent all other states. In order to utilize it we need to
factorize the SLAM problem as

p(xt,m | z1:t,u1:t) = p(xt | z1:t,u1:t)
n∏

i=1

p(mi | z1:t,u1:t).

(14)
With this factorization we describe the required posterior as
a product of n+ 1 probabilities. If we suppose that the exact
location of the robot is known, it is reasonable to assume that
the landmark positions are independent from one another and
can therefore be estimated independently. Naturally, we do
not know the robot’s location, but this independence can be
utilized when we use particles to estimate the robot position.
It can even be shown that the above factorization is exact and
not an approximation [4].

FastSLAM uses a particle filter to compute the posterior
over robot states, p(xt | z1:t,u1:t), and a separate EKF for
every landmark in the map to obtain p(mi | z1:t,u1:t). What
this means is that, instead of only one filter, we factor the
problem into 1 + nm filters, where m is the number of
particles. The large number of filters may seem excessive, but
because of the low dimensionality of each individual filter the
algorithm is remarkably efficient.

We define every particle to have a state vector for the robot
states, and a mean vector and covariance matrix for every
landmark, as

Y
[k]
t =

〈
x
[k]
t ,
〈
m

[k]
1,t,Σ

[k]
1,t

〉
, . . . ,

〈
m

[k]
n,t,Σ

[k]
n,t

〉〉
, (15)

with x
[k]
t the robot location and orientation for particle k,

and
〈
m

[k]
i,t ,Σ

[k]
i,t

〉
the i-th landmark’s Gaussian mean and

covariance. The FastSLAM algorithm, as it is executed at
every time step, is given below in Algorithm 1. We proceed
with a step by step explanation.

Algorithm 1 FastSLAM(Yt−1,ut, zt, ct)
1: for all particles k ∈ {1, 2, . . . ,m} do

2: x
[k]
t ∼ p(xt |x[k]

t−1,ut)

3: for all observed landmarks zi,t do

4: j = ci,t

5: if landmark j has never been seen then

6: m
[k]
j,t = h−1(x[k]

t , zi,t)

7: Hj = Jh(m
[k]
j,t)

8: Σ
[k]
j,t = (H−1j )Qi(H

−1
j )T

9: else

10: ẑ = h(x
[k]
t ,m

[k]
j,t)

11: Hj = Jh(m
[k]
j,t)

12: Q = HΣ
[k]
j,t−1H

T + Qi

13: K = Σ
[k]
j,t−1H

T
j Q−1

14: m
[k]
j,t = m

[k]
j,t−1 + K(zi,t − ẑ)

15: Σ
[k]
j,t = (I−KHj)Σ

[k]
j,t−1

16: w[k] = w[k]f(Q, zi,t, ẑ)

17: end if

18: end for

19: for all other landmarks j′ 6∈ ct do

20: m
[k]
j′,t = m

[k]
j′,t−1

21: Σ
[k]
j′,t = Σ

[k]
j′,t−1

22: end for

23: end for

24: for all k ∈ {1, 2, . . . ,m} do

25: draw random particle k with probability ∝ w[k]

26: include
〈
x
[k]
t ,
〈
m

[k]
1,t,Σ

[k]
1,t

〉
, . . . ,

〈
m

[k]
n,t,Σ

[k]
n,t

〉〉
in Yt

27: end for

28: return Yt

• Lines 1 and 2: As with a normal particle filter, the
FastSLAM algorithm begins by entering a loop over all
the particles. The control input is used to sample a new
robot pose for every particle according to the uncertainty
in the motion model. We add random noise drawn from
a zero mean Gaussian distribution with a covariance of
Mt, given in Equation 12, to the control input and use
the motion equation g, given in Equation 13, to find the
new location and orientation of each particle.

• Lines 3 and 4: For every particle we enter a loop over all
the measured landmarks. For every iteration the algorithm
can do one of two things: add a new landmark, or update
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an old landmark. The index of an old landmark in the
map is given by the correspondence vector.

• Lines 5 to 8: A new landmark is added to the map
using the measurement equation h, given in Equation 9,
to calculate its location in world coordinates. Since we
want to use an EKF to estimate each landmark we have
to linearize the measurement model by using a first order
Taylor approximation with the Jacobian

Jh(xt,mj,t) =




∂xr

∂xw

∂xr

∂yw

∂xr

∂zw
∂yr

∂xw

∂yr

∂yw

∂yr

∂zw
∂zr
∂xw

∂zr
∂yw

∂zr
∂zw


 . (16)

With this Jacobian we transform the uncertainty in mea-
surement to an uncertainty in world coordinates.

• Lines 9 to 15: If a landmark has been observed before,
we use the normal EKF equations to update its state
vector and covariance. The state estimate is calculated by
using the measurement model. The measurement model
is then linearized with a Jacobian similar to the one used
for new landmarks.

• Line 16: Once the landmark has been updated by using
the measurement we have to calculate its effect on the
weighting of the particle in question. As with a normal
particle filter the importance weight is given by

w[k] =
target distribution

proposal distribution
. (17)

The weighting function used in the algorithm can be
shown [4] to be

f(Q, zi,t, ẑ) = |Q|−
1
2 e−

1
2 (zi,t−ẑ)TQ−1(zi,t−ẑ). (18)

It is not necessary to update the weight for new landmarks
as they will be the same for all particles, and therefore
have no overall effect.

• Lines 19 to 22: If a previously observed feature has not
been observed at the current time step its state vector
and uncertainty will remain unchanged. All unobserved
landmarks are therefore essentially ignored. This property
of the algorithm is especially useful when a large map
is maintained, as the number of unseen landmarks in the
map does not impact the execution time.

• Lines 24 to 27: Resampling is done by drawing parti-
cles with a probability proportional to their normalized
weights. Particles with low weights will be more likely
to perish while particles with high weights will be copied
and used at the next time step.

• Line 28: Finally the updated and resampled particles are
returned to be used at the next time step.

A powerful possibility emerging from the use of particles
is that of multiple hypothesis tracking. What it entails is that,
since particles represent possible paths that the robot could
have taken, we can calculate landmark correspondences for
each particle separately. Because of the expensive nature of
calculating feature matches we decide against this procedure
and, instead, calculate one correspondence vector for all the

particles. It is, however, important to note that the algorithm
creates this possibility and future extensions can explore this
feature.

V. SIMULATION

In order to test our SLAM systems we created a simulation
environment that provides a realistic representation of the
real world while facilitating a quantitative evaluation of the
performance of the system.

A. Simulation environment

We created the environment with the aim of simulating the
real world without it being unnecessarily complicated. We
opted for a route through a corridor-like environment with
landmarks on the walls. Although these landmarks are more
structured than they typically would be in a real world situa-
tion, the structure should not influence the result significantly
and should have the benefit of being easy to evaluate visually.

In order to create a control input we supply waypoints for
the simulated robot to follow. At each time step a simple
gain controller generates an input command that steers it
towards the next waypoint. This control input is stored for
use in the SLAM simulations but, before the robot executes
the command, we add some Gaussian noise to simulate the
uncertainty that we know exists in this process (in other
words, we add process noise to the control input). The robot’s
actual motion from the noisy control is used as a ground truth
trajectory and to generate the measurements.

As the robot moves through the environment, landmarks in
the robot’s field of view are included in the measurement at
every time step. Because feature detectors will sometimes see
a landmark at one time step and not at the next, even if it is
in the field of view, we add a probability that a landmark will
be seen. We project the landmarks onto the image planes of
two cameras fixed on the robot and then add Gaussian noise
to the pixel coordinates. Each landmark is assigned a unique
scalar to be used as a descriptor. By changing or mixing
these descriptors in a measurement we can simulate feature
mismatches and investigate their effect on the accuracy of the
SLAM system.

B. Simulation results

The simulation environment and the route and map as
estimated by FastSLAM, using 250 particles, is depicted in
Figure 2. At every time step each landmark has a 40%
chance of being observed, but if it is observed, matching is
done without error. When we display the route estimated by
FastSLAM, we use a weighted average of the particles at every
time step. In order to evaluate the accuracy we compare it
to results obtained from another popular SLAM algorithm,
namely EKF SLAM [8]. Results of the two algorithms are
consistently similar in this simulation, even with varied noise
parameters.

The experiment described above shows that it is possible to
achieve accurate results using 250 particles with FastSLAM.
To further investigate the relationship between the number

27



−60 −40 −20 0 20 40 60
−20

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40 45 50
60

70

80

90

100

110

Yr (m)

X
r

(m
)

Yr (m)

X
r

(m
)

(a) simulation without landmark mismatches

(b) simulation with landmark mismatches

Fig. 2. The route and map from a simulation of FastSLAM, compared
to EKF SLAM and ground truth (top). The bottom panel depicts an enlarged
section of a simulation with landmark mismatches. The routes calculated with
EKF SLAM are shown in magenta, the ground truth route in red and the
environment walls in green. The estimated routes from FastSLAM are depicted
in blue and the estimated landmark positions as black dots with corresponding
confidence ellipses in cyan. Trajectories are shown with markers on every tenth
time step.

of particles and accuracy we ran several simulations, each
with a different number of particles. For every such number
we ran the test 20 times in an attempt to remove the effect
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Fig. 3. The effect of different numbers of particles on the Euclidean error
of the route estimated by FastSLAM.

of randomness introduced by the pose sampling step of the
algorithm. Results of these experiments are shown in Figure 3.

We see that with FastSLAM in 2D, 250 particles is a good
number to use as we do not lose much accuracy in comparison
to using a larger number of particles.

In order to test the effect of landmark mismatches on
the accuracy of FastSLAM we performed a simulation with
such mismatches. The EKF SLAM algorithm is notorious
for its inability to handle this kind of error [1] [8] and our
simulation confirms this. With only six landmark mismatches
over three time steps the EKF becomes unstable. With the
same mismatches FastSLAM remains stable and introduces
only a small degree of drift. This is a major practical advantage
of the algorithm. These results are also depicted in Figure 2.

With these simulations we can establish, in a controlled
environment, that FastSLAM achieves accuracy similar to EKF
SLAM and is robust to landmarks mismatches. The following
section describes our practical tests and results.

VI. EXPERIMENTAL RESULTS

The final step in our investigation and development of a
FastSLAM system that uses stereo vision as a sensor is to test

Laptop

DGPS antenna

Pioneer

Fireflies

Sync unit

Fig. 4. Test platform.
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Fig. 5. Sample frames (captured by the left camera) of the datasets used in
our experiments.

the complete system with real world datasets.

A. Experimental setup and datasets

A real world dataset should ideally consist of a set of im-
ages captured by two synchronized and calibrated cameras, a
control input and independently obtained ground truth location
information that can be used to evaluate the performance of
algorithms.

In order to capture such datasets we mounted a stereo
camera set on a Pioneer 3-AT from Mobile Robots. We
programmed the robot to execute a command given to it by a
human using a joystick controller. At every time step we store
the forward and rotational velocities so that they can be used
as control input by the SLAM algorithms.

Our stereo camera rig consists of two Point Grey Firefly
MV cameras with a synchronization unit we developed.

Ground truth data is recorded with a DGPS (accurate to
about 5 cm) mounted on the robot. Note that this ground truth
data is not used in our SLAM system, and is employed merely
for evaluating results.

Figure 4 shows a picture of our test platform, indicating the
various components.

When we work in a real world scenario we should expect
problems such as bad lighting, uncluttered scenes (that give
very few features), and a fair amount of shaking. We tried
to capture realistic datasets that included these problems to a
degree.

Two datasets were captured on the roof of the Electrical and
Electronic Engineering building in Stellenbosch. The roof is a
suitable environment to test 2D SLAM algorithms, since it is
more or less flat. Apart from background trees moving in the
wind it is also completely static.

The first of the two roof datasets includes a fair amount of
maneuvering around two obstacles over a distance of about
45 metres. The second dataset comprises of a slow turn,
a fairly long straight section, a three point turn with some
reversing, and another straight section. The robot covered
about 70 metres. Note that turning increases the process noise
substantially because of wheel slippage.

A few frames of the datasets captured by one of the cameras
are shown in Figure 5.

B. Experimental results

We show the results obtained from two experiments. The
first was done using SURF features on the first dataset, and
the second using SIFT features on the second dataset. These
results are depicted in Figure 7 with corresponding location
errors in Figure 6. We see that the Euclidean error from the
first experiment grows over time. Drift is something that will
be present with any localization system that does not employ
absolute measurements (like GPS). In our work we attempt to
limit this drift as much as possible.

We see that both SIFT and SURF can be used to obtain
accurate results. Although we have no way of measuring
the accuracies of the estimated maps, we can observe some
structure and large quantities of landmarks located on the
obstacles around which the robot moved.

VII. CONCLUSIONS

In this paper we investigated the use of the FastSLAM algo-
rithm with landmarks originating from stereo image features.
We explained how image features can be used as landmarks,
with associated uncertainties in the form of Gaussian distribu-
tions. A measurement function converts features relative to the
robot to landmarks in world coordinates and these landmarks
are then matched over time, and outliers are identified and
rejected. The FastSLAM algorithm then uses a particle filter
to maintain the robot states, and for each particle a set of
separate EKFs to estimate landmark locations.

We tested the system in a controlled simulation environ-
ment, and found that FastSLAM can be as accurate as EKF
SLAM (when landmark matches are uncontaminated) but
has the advantage of being largely unaffected by landmark
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Fig. 6. The Euclidean error over time, as measured against DGPS, of the
FastSLAM system using SURF features on the first dataset (top) and SIFT
features on the second dataset (bottom).
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Fig. 7. Estimated routes (in blue starting at the origin) and maps from the FastSLAM algorithm using SURF features on the first outdoor roof datasets (top)
and SIFT features on the second (bottom) with the DGPS ground truth in red. Markers are placed at every tenth time step of the routes. The landmarks that
we show, as black dots with cyan confidence ellipses, are those that were observed on multiple time steps, i.e. those that contributed to the accuracy of the
route estimation.

mismatches. This advantage of FastSLAM is significant, par-
ticularly when stereo features are used as landmarks, due to the
unavoidable possibility of mismatches occurring. The problem
of mismatches is inherent to image features, that often exhibit
ambiguous characteristics, and we must therefore be able to
rely on the SLAM system to remain stable in spite of such
errors.

We also tested our complete FastSLAM system on data
captured by a real robot. The accuracies achieved with either
SIFT or SURF features are comparable to other state-of-the-art
systems [10] [11].

We conclude that, because of its accuracy and robustness,
FastSLAM can be a very effective algorithm to use with
measurements from a stereo vision sensor.
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Abstract— X-rays have played a vital role in both the medical 

and security sectors. However, there is a limit to the amount of 

radiation a body can receive before it becomes a health risk. 

Modern  low  dose  x-ray  devices  operate  using  a  c-arm  which 

moves  across  the  entire  human  body.  This  paper  shows  how 

radiation  can  be  reduced  on  a  human  body  by  isolating  the 

region that  requires exposure. This work is based on a medical 

scanner that is still under development and therefore a prototype 

of the scanner is developed for running simulations. A camera is 

attached onto the prototype and used to point out the regions that 

are required to be scanned. This is both faster and more accurate 

than the traditional method of manually specifying the areas, as 

it also accommodates minor movements from the patient.  An 

analysis is performed on the automation process as there are 

many variables such as speed, accuracy and searching thresholds 

that need to be catered for in the experiment. It is found that the 

correct region of interest can be located with the use of reliable 

feature points and that certain regions of the body are easier to 

locate than  others. Currently, partial scans are done manually 

and this is a step forward towards automating the process 
completely. 

I.  INTRODUCTION 

 Digital image processing has become a field of growing 

interest, especially in industries such as the medical sector. 

Digital image processing is achieved by a set of computer 

algorithms to perform image processing on digital images [1] 

to aid in the analysis of the human body. Image processing can 

be in the form of analysis or manipulation on digital images.   

 
 Lodox Systems designed and developed its medical x-ray 

scanners which originated from the Scannex [2], an x-ray 

security scanner developed by De Beers, to prevent diamond 

theft within the mining industry [3]. The Lodox scanners are 

unique in that they can produce a full body x-ray image within 

minutes after a single 13 second scan. Lodox Systems 

currently has a medical scanner in the market, called the 

Statscan, and is in the process of developing their latest 

medical device, the Versascan. The Versascan is designed to 

be a multi-purpose, self-contained and transportable digital 
radiography system for general and orthopedic radiography. It 

is a vertically-orientated scanner, so the patient is also 

vertically positioned. The apparatus used to capture data needs 

to mimic that of the Versascan as closely as possible, for 

experimental purposes. A simple garage motor track, 

vertically-orientated, is used to capture video data of subjects, 

with the aid of an attached camera. For the remainder of the 
paper, the garage motor track is referred to as the c-arm unless 

otherwise specified.   

 

The Versascan can perform partial scans of the human body, 

but these have to be done manually. Performing partial scans 

manually leads to human errors when having to specify the 

starting and stopping points, using the laser, which is built in 

the c-arm, as a guide and requires that the patient stand very 

still during the scan. This paper aims to provide the 

information needed in order to perform a partial scan of the 

human body. This proposed setup uses the camera to capture a 

full body image of the patient during a pre-scan where x-rays 
are disabled. The operator uses the full body image to mark 

the region that requires scanning. Using a camera to locate the 

region of interest, in real-time, provides an allowance for the 

patient to move slightly. Therefore the main aim of this paper 

is to find whether it is possible to perform a partial scan, on 

the Versascan, with the aid of a camera. It is proposed that the 

camera be attached to the c-arm, above the x-ray source. 

 
There are two important practical aspects, namely the 

workflow for the radiographer and the processes that occur to 

locate the marked region. Figure 1 is a flowchart containing 

both aspects for performing a partial scan automatically. The 

elliptical elements show the steps taken by the radiographer 

and the rectangular elements indicate what processes are 

performed, at each step, in order to locate the region of interest 

automatically. The workflow for the radiographer is important 

if the proposed modification is to be accepted for the 

Versascan design. The reason is because the radiographer 
needs to know what the procedures are in order to perform a 

partial scan and locate the region of interest automatically. 

 

Figure 1: Flowchart of performing a partial scan automatically. 

31



This approach requires that there are pairs of video data in 

order to perform the relevant tests, one for the reference image 

and one for the scanned image to search for the region of 

interest. The pairs of video data are of patients in standard 

poses with slight adjustments to their stances so as to mimic 

minor movements in a realistic situation. 
 

Section II looks at relevant academic research from various 

papers, articles, websites and books in the image processing 

field. A discussion of the entire proposed workflow for the 

radiographer and the processes to perform a partial scan 

automatically is given in section III. All assumptions and 

experiments performed are evaluated in section IV. Section V 

presents a summary of the entire paper with its findings, 

followed by a discussion of ways in which this work could be 

taken further. 

II. RELATED WORK 

A. Template Matching 

Template matching is commonly used for object 

recognition and stereo-matching. Template matching 

techniques compare portions of images against one another. 

Correlation values are calculated in the various positions that 

indicate how well the template matches the image. Correlation 

is a measure of the degree to which two variables agree, not 

necessarily in actual value but in general behaviour.   

 

A common way to calculate the position       of the object in 
the search window is to evaluate the cross correlation 

coefficient value, c, at each point       for function f and the 

template t. The positions       represent the shift of u in the 

x-direction and by v in the y-direction. Cross correlation is 

motivated by the Euclidean distance which is a measure of 

similarity and is shown as 

 

        √∑                       
 
. (1) 

 

Euclidean distance is only appropriate for data measured on 

the same scale as no adjustments are made for differences in 

scale. Equation 2 is made by expanding d and is shown as, 

 

         ∑                               

               (2) 
 

In equation 2, if        and                are 

standardized, the sums are both equal to a constant value n. 

Therefore, ∑                 is the only non-constant 

term just as it is in the reduced formula for the correlation 
coefficient: 

 

       
 ∑                   ∑         ∑                     

√  ∑                     ∑                                 

. (3) 

 

Lewis states that there are a few disadvantages to using the 

cross correlation coefficient for a measure of similarity [4]. 

Some of the disadvantages mentioned are that the range of the 

correlation coefficient value is dependent on the size of the 

feature and that it is not invariant to changes in scale and 

lighting conditions. Lewis states that the difficulties with the 

cross correlation can be overcome by normalizing the image to 

unit length [4]. The normalized cross correlation is shown as 
 

        
∑           ̅                ̅    

√ ∑           ̅         ∑             ̅      

 (4) 

 

where  ̅ is the mean of the feature and   ̅   is the mean of 

       . Normalized cross correlation is a popular measure of 

similarity as its easy hardware implementation makes it useful 
for real-time applications. Work has been done on increasing 

the performance of normalized cross correlation with the use 

of basis functions. Briechle and Hanebeck proposed using 

rectangular basis functions where the number of calculations 

depend linearly on the number of basis functions used [5]. The 

specific example used in [5] has an outcome that results in a 

computational reduction of 47 times using basis functions.  

 

There have been some image matching methods performed 

based on normalized cross correlation [6, 7, 8]. However, 

these methods do not perform well as normalized cross 
correlation is not invariant to rotation. Zhao, et al. propose a 

hybrid method, consisting of both feature points and 

templates, to improve the results of normalized cross 

correlation [9]. The hybrid method consists of using feature 

points on the two images to determine the rotation and scale 

changes according to the characteristic scale and dominant 

direction of the points. The invariant normalized cross 

correlation is then applied at the corresponding feature points. 

 

The main difference between the works of [9] and [5] is that 

the one potentially eliminates the measure’s variance and the 

other increases its performance by reducing its computation 
time. 

 

Another application for template matching is not only to 

classify an object but also to track it. Object tracking is usually 

categorized into two classes. One is where tracking takes place 

while the camera is stationary and the other is when the 

camera is moving. The most important characteristic is that to 

make a real-time system, the image captured by the camera 

must be processed before the next frame is digitized. 

 

Pal and Biswas propose an automated correlation based 
tracking approach using edge strength and Hausdroff Distance 

Transform (HDT) technique for tracking moving targets [10]. 

The approach produces a complete real-time video tracking 

system for both detecting and tracking moving targets from 

optical image sequences. 

 

Other methods used for detecting objects can be seen in [11] 

and [12] with differences being that the object’s shape is 

known. Cole et al. describe how a 2D model can be used [11] 
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and Gupta et al. show how detecting objects can be done with 

a 3D model [12]. 

B. Feature Matching 

The feature-based matching approach is the easiest method 

for finding image displacements. The method finds features in 

an image, such as edges and corners, and calculates the change 

in distances of the position of the feature points from the 
original image to another.  

 

When video data is considered, the displacement is calculated 

from frame to frame. This is basically a two-step approach. 

Firstly, feature extraction is performed on two or more 

consecutive frames, to both reduce the amount of information 

to be processed and to obtain a higher level of understanding 

of the image scene. Secondly, these feature points are matched 

between frames to find any change in the positions of the 

points. Generally, changes in feature point positions between 

frames usually mean a movement of some object or 

background.  
 

Feature-based matching is usually preferable when an image 

has strong features, such as sharp corners, in it. A feature-

based approach is generally faster than a template-based 

approach because it does not consider the entire image but 

rather only the feature points found.  

 

Edges indicate boundaries in an image, which makes them 

important for image processing. Edges in an image usually 

appear as intensity changes in pixels situated next to each 

other. There are many different methods of edge detection but 
they can be grouped into two categories, gradient-based and 

Laplacian-based. Mlsna and Rodriguez show that the 

difference between the two categories is that the gradient 

methods consider maximum values in the first derivative of an 

image and Laplacian methods look for zero crossings in the 

second derivative of an image [13]. 

 

It is shown in [14] that, in practice, a zero crossing filter is 

created by performing Gaussian smoothing followed by 

Laplacian filtering. The Laplacian-of-Gaussian (LoG), which 

is the convolution mask of the zero crossing operator, can be 
obtained from using various orders of linear filters and the 

rotational symmetry of Gaussian filter. 

 

Few examples of other edge detectors are Sobel, the Canny, 

the Local Threshold and Boolean Function Based edge 

detectors [15] and color edge detection using euclidean 

distance and vector angle [16]. Nadernejad et al. have 

performed a greater analysis of various edge detectors, 

including the ones previously mentioned [17]. 

 

Corners are the intersections of two edges of sufficiently 

different orientations. Therefore corners contain two 
dimensional features and can potentially represent object 

shapes. The ability to represent object shapes play important 

roles in matching and pattern recognition. 

 

There are many different corner detectors that exist such as the 

Principal Curvature-Based Region (PCBR) detector [18] and 

the Harris operator [19]. Corner detectors have many 

applications in motion tracking, stereo matching and image 

database retrieval. Mokhtarian and Suomela modify the corner 
detector to make it more robust, based on the curvature scale-

space (CSS) representation [20]. The quality of a corner 

detector is determined by its ability to detect the same corner 

in multiple images of the same scene but under different 

conditions, like lighting, translation, rotation and other 

transformations. 

 

The Harris corner detector is a good method to use to detect 

corners as it provides good quality corners under varying 

rotation and illumination and may detect interest points other 

than corners. For the purpose of this paper the Harris corner 

detector is considered due to its strong invariance to rotation, 
scale, illumination variation and image noise [21]. 

 

Harris and Stephens propose combining the corner and edge 

detector based on the local auto-correlation function to obtain 

feature points for tracking algorithms [22]. Weijer, et al. 

propose combining the two detectors by photometric quasi-

invariants [23] and Ando by gradient covariance [24]. Parks 

and Gravel provide a detailed comparison of over 10 various 

corner detectors including ones mentioned previously [25]. 

 

Lowe developed and published the algorithm called Scale 
Invariant Feature Transform (SIFT) to detect and describe 

local features in images [26]. The University of British 

Columbia has patented this algorithm but it is available to the 

public for research purposes only and there are papers 

available by Lowe that give a better understanding of the SIFT 

keypoint detector method [27, 28, 26]. The SIFT algorithm is 

robust because, as the name suggests, it is able to handle 

image transformations like scale, rotation and deformation. 

There are four steps that SIFT goes through to transform 

image data into scale invariant coordinates relative to local 

features [26]. Aly has shown that SIFT can be used to find 

feature points in a face to identify a person for surveillance 
and access control [29]. There are various other applications 

that use SIFT such as image stitching [30], video tracking [31] 

and 3D modeling [32, 33]. 

 

The advantages and disadvantages of the two matching 

methods are mentioned in this section in order to get a better 

understanding of them. A good understanding of the matching 

methods is necessary in order to create an accurate and 

reliable online search to locate a region of the body. 

III. WORKFLOW PROCESSES 

To achieve a better understanding of the entire proposed 
system, the methods used are broken up into separate 
processes. Figure 1 shows the radiographer’s workflow where 
the respective processes are performed at each stage. 
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A. Reference Image 

The reference image is the first image displayed on the 

workstation and this is where the radiographer marks the 

region of interest. The reference image is obtained during the 

c-arm’s first pass by stitching the initial video captured from 

the camera at 60 fps. Figure 2 shows examples of stitched 

reference images. Routine views are generally in the 

anteroposterior and lateral positions. Figures 2a and 2b show 

examples of the anteroposterior position and figures 2c and 2d 

show the lateral position. 

 (a)  (b) (c)  (d) 
 

Figure 2: Examples of reference images. (a) and (b) Anteroposterior position. 

(c) and (d) Lateral position. 

 

The video captured during the first pass consists of 780 

frames. The reference images shown in this paper are 

constructed from video data consisting of 1080 frames. The 

reason for the additional 300 frames, or 5s, is due to the delay 

between operating the camera and the garage opener. It was 

found that the time taken for the workstation to configure the 

camera and begin capturing was inconsistent. To overcome 

this, a delay was implemented, such that after 3s of capturing a 

signal was sent to start the garage opener. The remaining 2s is 
used to cater for the approximate time taken for the slide to 

reach the other end. 

 

Image stitching is the process in which multiple images are 

aligned by various registration algorithms and blended 

together in a seamless manner [34]. The video datasets were 

captured by a camera mounted on a vertically-orientated 

garage motor track. The reference image was created by 

taking a number of rows, r, at each frame captured. The rows 

that are used for stitching the reference image are at the centre 

of every frame. The method of stitching performed uses a 

number of rows at each frame and stacks them underneath or 
above each other, depending on the scan direction, i.e. pass 1 

or pass 2. The result of taking into account the centre rows of 

the video data produces the reference image. 

 

By using the centre rows of every frame, it is effectively 

providing the information that is directly in front of the 

camera. However, for the second pass, the camera would have 

to ’look-ahead’ to identify the area before the c-arm reaches it. 

Using the proposed camera configuration, a maximum look-

ahead distance of 179.13mm and 435.13mm is achieved if the 

c-arm travels downwards and upwards respectively for its 
second pass. Therefore, a recommendation is made that the c-

arm’s first pass start from the top moving downwards and 

from the bottom moving upwards for its second pass.  

 
The method of image stitching mentioned causes some concern 
for data loss as it simply takes a number of rows at the centre in 
each frame and constructs the reference image from that. It is 
seen that by considering two rows at a time, a loss of only 
0.16% is obtained which is seen to be minimal. 

B. Finding Feature Points 

Feature points are important as they are used to locate the 

region of interest on the scanned image. However, one 

problem was found with this approach: when there is 
ambiguity or patterns present around the region of interest, 

corners are sometimes found at other locations that are 

visually similar. To remove corners that are either ambiguous 

or found in patterns, a need for more reliable feature points is 

necessary.  

C. Determining Reliable Points 

The process of determining reliable feature points occurs 

after the radiographer has marked the region of interest, as 

only the feature points which fall within the marked region are 

considered and the rest are ignored. Only feature points within 

the marked region are considered as these are the ones used to 

locate the region of interest on the scanned image.  

 

The approach for determining whether a feature point is 

reliable or ambiguous consists of looking at the 

neighbourhood of each point. A small window of size 15 × 15, 

centred at the detected corner, is considered. Template 
matching is then performed over the surrounding area of size 

75 × 75 to see whether there are other locations which have 

similar appearances. Normalized cross correlation is selected 

to measure how similar the feature point is to the background. 

Various thresholds have an impact on the resulting correlation 

value which determines how reliable each corner is and this is 

discussed in more detail in the next section. 

D. Locating the Region of Interest 

After the region of interest has been marked, the 

radiographer controls the c-arm to perform the second pass. 

The second set of video data is not only being stitched 

together, but also being used to locate the region of interest.  

 

In order to find the region of interest and provide the location 

to the x-ray source before it passes it, a search is required to 

take place ahead of the c-arm. Searching ahead of the c-arm is 

done by adjusting the stitching method during the second pass. 

Instead of using two rows at the centre of every frame, higher 
rows are considered. The look-ahead distance is not set to a 

constant value but is varied depending on the height of the 

marked region. In the case where the height of the marked 

region is greater than the maximum look-ahead distance, the 

maximum look-ahead distance is then considered. 

 

An online searching method is necessary in order to locate the 

region of interest in the scanned image efficiently and 
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accurately. The time taken to locate the region of interest is 

important as it is necessary to identify the marked area before 

the c-arm reaches it. 
 

The time available for the online search is catered for with the 

varying look-ahead distance. In order to achieve accuracy 

within 2% source to image detector distance (SID), the actual 

region scanned as a result of the search needs to fall within a 

distance of 20mm from the region marked by the 

radiographer.  

 

The approach is to use reliable points found within the region 

of interest, on the reference image, in order to identify the 
respective area in the scanned image. A template of size 15 × 

15 pixels centred on each reliable point is used for the search 

in the scanned image. To cater for minor movements, a search 

window of size 51 × 51 pixels is used to provide an allowance 

of minor movements of 25 pixels in any direction. One factor 

that determines the size of the search window is the accuracy 

as a distance error of more than 20 pixels is greater than 5%, 

which is regarded as a failed test. 

 

The search for the matches for the reliable points on the 

scanned image yields normalized correlation coefficient 
values at each point within the search window. The point with 

the highest match value is regarded as the best match. If the 

highest match value is greater than some search threshold, 

then that point is considered a reliable match. If it is below the 

threshold then the corresponding match is determined to have 

not been found and the match pair is thus ignored. Once a 

specified number of corresponding reliable points are found, 

an estimate of the marked region on the scanned image can be 

calculated.  

 

The estimated location of the marked region on the scanned 

image is calculated with the use of the pixel coordinates of 
both the original and the corresponding match points found. 

First, the pixel distances are measured, both horizontally and 

vertically, between each reliable point and the marked region 

on the reference image. These distances are then transferred to 

the corresponding match points and are used to calculate the 

location of the marked region on the scanned image. In 

principle the marked region can be found by using the pixel 

distances measured on any single reliable match as they all 

indicate the location of the marked area. 

 

Figure 3 shows the reference image, on the left, and the 
scanned image, on the right, as the c-arm moves downwards 

and performs an online search. In this case, the number of 

corresponding reliable points is 2. The yellow line indicates 

the position of the c-arm and the green line indicates the 

camera’s viewpoint, which is also the last row that has been 

stitched. A closer look at the scanned image is needed to see 

where the estimated location of the marked region is. Figure 4 

shows the same scanned image from figure 3 with the addition 

of the red box which indicates the estimated location of the 

marked region. 
 

 
 

Figure 3: Result of online search after finding two corresponding reliable 

points. The yellow and green lines indicate the position of the c-arm and the 

camera’s viewpoint respectively. 
 

 
 

Figure 4: Result of online search indicating the location of the marked region 

on scanned image. The yellow and green lines indicate the position of the c-

arm and the camera’s viewpoint respectively. The red box is the estimated 

location of the marked region. 

IV. EXPERIMENTS AND RESULTS 

This section provides a detailed analysis of the experiments 

performed on the datasets acquired for this paper.  

A. Ground Truth 

A measure of accuracy needs to be defined for the 

estimated location of the region of interest on the scanned 

image. A maximum error of 2% of the SID is allowed in order 

for the proposed modification of attaching a camera onto the 

c-arm to be accepted for the Versascan. The ground truth is 

only used as a measure of accuracy to see how well the search 

method performs.  

 

Visual inspection can be used to see whether the estimated 
marked area has captured the required body region, but this 

doesn’t provide a quantified accuracy measure. Therefore, 

once the second video has been captured, another search is 

performed. However, in this case instead of doing a 

progressive search, all of the reliable points on the reference 

image are used. The region found using all the reliable points, 

referred to as the ground truth, is then compared against the 

estimated marked area for an accuracy measure. The ground 

truth is assumed to be the closest location to the original 

marked region. In addition to the ground truth, a visual test is 
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also made to determine whether the correct marked region is 

found on the scanned image. The distance between the ground 

truth and the estimated region is the distance error used to 

determine accuracy in pixels. 
 

Using the previous example where figure 4 shows the 

estimated location of the marked region on the scanned image, 

the ground truth is determined and shown in figure 5. Figure 5 

shows the entire scanned image where the red and green boxes 

represent the estimated locations of the marked region and the 

ground truth respectively.  

 

Using figure 5 as an example, the error is found to be 7 pixels 
horizontally and 4 pixels vertically which is equivalent to 

17.92mm and 10.24mm. Therefore, the example illustrates a 

successful test as it resulted in locating the region of interest 

correctly within 2% accuracy. The results of each test in the 

experiment are analyzed using the ground truth to determine 

whether the correct region has been found and to what 

accuracy it is. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5: Entire scanned image with an estimated location of the region of 

interest and ground truth indicated by red and green respectively. 

B. Thresholds 

Various thresholds were mentioned in the workflow processes, 

all of which influence the results in some way. An evaluation 

is made on the different thresholds and a range of optimum 

values is identified that give a suitable result. The three 

thresholds evaluated are the number of reliable points found 

on the scanned image, the correlation coefficient value when 

searching for the reliable points, and the reliability measure of 

the feature points used.  

 

The experiment consists of two hundred and sixty tests where 

different regions of the body were marked and searched for. 
The results in this section have been captured by repeating the 

experiment and changing the various thresholds accordingly. 

For experimental purposes, tests which have achieved an error 

within 2%, 3% and 5% are recorded as passed tests as the 

marked area identified on the scanned image contains the body 

region. 

Each threshold is varied and a recommendation is made based 

on two results, the percentage of tests passed and the 

percentage of those passed tests that are within 2% and 3% 

error. The outcome of combining the two results is a 

percentage of tests passed within a certain accuracy. 

Therefore, a recommendation is made for each threshold based 
on the combination of the two results. For all the accuracy 

illustrations, the red and blue points show passed tests within 

2% and 3% accuracy respectively. 

 

The number of matches required is an important parameter in 

the matching process. If this parameter is set to be one, the 

estimated location of the region of interest would be obtained 

from the relative position of a match of one point. This makes 

the process of finding the estimated region fast but potentially 

inaccurate. On the other hand, if the parameter is set too high 

then the estimated region might not be found because the 

number of matches required within the marked region might 
never be obtained  

 

Therefore, the varying number of matches required used for 

the experiment are 2, 5, 10, 20 and 50. This particular 

experiment used the search and point reliability threshold of 

0.9 and 10 respectively. It is found that the greater the number 

of matches required, the more tests that fail. Figure 6a shows 

the results of the range of the number of required matches 

considered. The results suggest that one should use a low 

number of matches for the search. However, figure 6d shows 

an increase in obtaining more accurate results as the number 
of required matches increases to approximately 20. The 

product of combining the two results are, in order: 0.225, 

0.273, 0.168, 0.092 and 0.004. Therefore a recommendation is 

made to set the number of matches required to 5 to cater for 

both correct and accurate results.  

 

The correlation coefficient values from the search must be 

greater than the search threshold for a match to be declared. 

The highest correlation coefficient value around the search 

window is then used as the best match location to where the 

matching point is. The search threshold is therefore an 

indication of how good a match has to be for it to be 
considered reliable. The thresholds used for this experiment 

are 0.8, 0.85, 0.9, 0.95 and 0.98. This experiment used a 

required number of matches and a point reliability threshold of 

5 and 10 respectively.  

 

Figure 6b shows the results of the experiment where an 

increase in the search threshold results in a decrease in the 

percentage of tests passed. The accuracy of the tests passed is 

not drastically affected by the varying search threshold, as 

shown in figure 6e. The product of combining both results are, 

in order: 0.257, 0.271, 0.273, 0.210 and 0.136. Therefore, a 
recommendation is made to use a search threshold of 0.9 to 

cater for both correct and accurate results.  

 

A test is performed on each feature point individually to 

specify whether it is reliable or ambiguous. This test uses 
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template matching of size 15 × 15 and a search window of 

size 75 × 75 with each feature point as its centre, to determine 

whether there is a similar point nearby. Normalized cross 

correlation is used as the template matches around the search 

window. 
 

All the correlation coefficient values are evaluated and 

accumulated as a weighting to how reliable the point is. If the 

correlation coefficient is 1, this is generally the case where the 

template is in its original position and therefore ignored. If the 

correlation coefficient is greater than 0.95, it is assumed that 

there is a similar template in the search window and 5 is added 

to the accumulated weighting. If it is greater than 0.9, then 

only 1 is added as it is not strongly similar. If the highest 

correlation coefficient value in the search window is less than 
0.9, it is assumed that there are no points similar and ignored. 

  

The accumulated weighting value is then compared to the 

point reliability threshold. If the weighting is smaller than the 

point reliability threshold then it is identified as a reliable 

point. If the weighting is greater than the point reliability 

threshold it is identified as an ambiguous point and is ignored 

when performing a search for the marked region. In the 

experiment, the point reliability threshold values considered 

are 10, 20 and 50.  

 
To see the effects of the point reliability threshold in the 

experiment, the required number of matches and search 

threshold has been set to 5 and 0.9 respectively. It is shown in 

figure 6c that a higher point reliability threshold results in an 

increase towards the percentage of tests passed. However, 

reliable points achieve better accuracy than non-reliable 

points, as shown in figure 6f. The product of combining the 

two results are, in order: 0.290, 0.250 and 0.226. Therefore, a 

recommendation is made to use a point reliability threshold of 

10 to cater for both correct and accurate results. 

 

     
 

 (a) (b) (c) 
 

     
 

 (d) (e) (f) 
 

Figure 6: Results of experiment varying various thresholds. (a), (b) and (c) 

shows tests passed with varying various thresholds. (d), (e) and (f) show the 

corresponding tests passed within 2% and 3% accuracy. 

C. Performance of Different Body Regions 

An evaluation is performed on each body region individually 

to see if some regions are found more easily than others. 

Recommended values for the different thresholds, mentioned 

previously, are used in determining the performance of 

different body regions.  

 

An analysis is performed on each body region to see whether 

some regions perform better than others. Figure 7 shows the 
percentage of tests passed for each region.  
 

 
 

Figure 7: Results of tests passed for each body region. 
 

The poorer performing regions, the abdomen, head and ribs, 

have been excluded to observe how it affects the overall 

performance. Figure 8 shows the performance using all the 

body regions and the other excluding the poorer performing 
regions. The blue, red and green indicates the tests passed and 

accuracies within 2% and 3% respectively. Removing the 

poorer performing regions results in an increase in the number 

of tests passed without having an impact on accuracy. This 

shows that certain regions of the body are easier to locate than 

others using the proposed online search. 
 

 

Figure 8: Results of the experiment using all and only specific regions. 

V. CONCLUSIONS AND FUTURE WORK 

The most significant result is that it is possible to automate 

the search for a region of interest on a real-time medical 

scanner. After performing an experiment consisting of 260 

tests, it has been found that it is possible to locate a region on 

the body, marked by the radiographer, with the aid of a camera 

attached to a c-arm. 
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The main factors that influence the search were the thresholds 

placed on the number of matches required, the search 

threshold, and the reliability of the feature points. An 

evaluation on the various thresholds, which consisted of 

varying the threshold values, was performed in order to see the 

impact on the results and a recommended value was provided 
for each threshold. Taking the recommended threshold values 

into consideration, the results are found to have an overall 

performance of 57% of which 48% and 72% were within 2% 

and 3% accuracy.  

 

It was also found that certain regions of the body were easier 

to locate than others. When ignoring the regions that were 

harder to locate, the abdomen, chest and head, the overall 

performance had increased to 67% of which 49% and 73% 

were within 2% and 3% accuracy respectively. This shows 

that certain regions of the body are easier to locate than others. 

  
Actual data could not be acquired as the Lodox Versascan is 

still under development. This was overcome by mimicking the 

Versascan environment as closely as possible and obtaining 

datasets accordingly. Once the Versascan is operational, it 

would be of interest to acquire datasets from the actual device 

and compare them to the results found in this paper. As this 

experiment has shown, the method used to perform an online 

search to locate the region of interest is moderately successful. 
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Abstract—We propose an algorithm based on the principle of dynamic
programming for the automatic segmentation of continuous speech into
phoneme-like units. A measure of local dissimilarity among consecutive
feature vectors is combined with a knowledge of the expected statistical
distribution of the segment lengths within a dynamic programming
framework to obtain an optimal placement of segment boundaries.
We compare the performance of our algorithm with the performance
of two recently-proposed alternatives by measuring how closely the
hypothesised boundaries match the TIMIT phone boundaries. The results
showed that we are able to improve on the performance of the two
contrasting approaches. Furthermore, we show that a hybrid approach
which combines aspects of all three algorithms leads to even better results.

I. INTRODUCTION

The task of accurately segmenting a speech signal into phoneme-
like units plays an important role in the speech processing field.
Although accurate manual segmentation can be achieved by trained
phoneticians, the task is tedious, expensive and intrinsically sub-
jective. In HMM-based ASR systems, time-aligned phonetic tran-
scriptions are often needed for the development of the pronunciation
dictionary and acoustic models. This is not always feasible, and is a
particular obstacle for the development of ASR systems for under-
resourced languages, for which no, or very little, transcribed phonetic
material is available. In these situations, automatic segmentation
algorithms can accelerate the task of developing a pronunciation
dictionary and obtaining suitable bootstrapping acoustic training data,
thereby substantially reducing the time it would take to develop
the ASR system. The availability of reliable automatic segmentation
algorithms is also useful in technologies outside ASR, such as the
study of pronunciation variation and the development of coherent
large-scale dictionaries.

Several approaches to the automatic segmentation of speech have
been proposed over the years. Some require prior training, relying
for example on HMM forced alignments [1]. Others make use of
previously stored speech segments for template matching by using
the phonetic transcription [2]. A third and more prevalent class of
algorithms rely solely on the acoustic information to detect transient
events in the speech signal [3]–[7]. When considering a under-
resourced setting in which speech corpora are unavailable or very
small, model training may not be feasible. Under these circumstances
this latter class of algorithms represents the most viable option.

In this paper we propose a new algorithm for the acoustic seg-
mentation of speech based on the principle of dynamic programming
(DP). DP-based segmentation has been proposed in [3], in which
a distortion metric within segments is minimised by using prior
knowledge of the number of phones in a sequence. The algorithm we
propose requires no information regarding the number of phones and
maximises the probability of a specific segment boundary sequence.

A well known class of speech segments are phonemes, the
identification of which is the goal of most published segmentation
algorithms. By using the annotated phoneme boundaries given in
TIMIT, the acoustic characteristics in the vicinity of the phoneme
boundaries as well as the lengths of the phonemes can be inspected.
The proposed algorithm then uses this prior information to infer the
probability of a boundary occurring at every specific point in time in
a speech signal. Dynamic programming principles are then applied
to detect the most probable sequence of boundary positions.

Section II gives a brief overview of the class of segmentation
algorithms based on transient events in acoustic information, and
includes a discussion on a few recent algorithms. Section III provides
a detailed description of the proposed DP-based segmentation algo-
rithm, and Section IV discusses the quality measures used to assess
segmentations. The experimental setup is specified in Section V,
and experimental results are given in Section VI. Finally concluding
remarks are presented in Section VII.

II. BACKGROUND

Many segmentation algorithms are based on the assumption that
there are regions in speech, termed speech segments, where the
acoustic features stay relatively constant, and that there are clear
transitions between such regions. To detect these transitions, the
algorithms employ some estimate of the local acoustic change in
the signal. ‘Local’ in this context refers to temporal acoustic changes
taking place at a specific time independent of any previous or future
acoustic changes within the signal. A function that quantifies these
local acoustic changes will be referred to as the local score function
in the remainder of this text. The local score function is central to
all acoustic segmentation methods, and therefore different types of
local score functions and their application in the recent literature will
briefly be reviewed.

A. Algorithms based on maximum local acoustic change

The most common approach used in speech segmentation is to
hypothesise segment boundaries at the times at which local acoustic
change is at a maximum. These local maxima are found by searching
for the peaks in the local score. However, the local score may contain
many small peaks, which are the result of small acoustic changes
that do not necessarily indicate segment boundaries. These additional
peaks can lead to over-segmentation, where more than one segment
boundary is hypothesised while only one is truly present. Over-
segmentation can be reduced by including a threshold below which
peaks are ignored. A selection of segmentation algorithms falling into
this category are reviewed in the following. They were specifically
chosen to illustrate a diversity of local score functions, of which a
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selection will later be compared experimentally. The local score will
henceforth be denoted as LS in equations.

1) Räsänen et al. [4]: The local score function used in this
algorithm is the cross correlation between two FFT magnitude
vectors. This is shown in Equation 1, where f and g represent the
FFT magnitude vectors for the frames to the left and to the right
respectively of the investigated frame, Fj .

LS(Fj) =
f.g

‖ f ‖‖ g ‖ (1)

Feature vectors that are similar will give a score close to 1,
and dissimilar vectors will give a score closer to 0. The algorithm
applies a non-linear filter to the cross-correlation sequence in order
to quantify the degree of uniformity in the region preceding and
following the point of interest. In a similar way, the dissimilarity
between these regions is also determined. The difference between
the dissimilarity and uniformity values leads to a signal of which the
valleys corresponds to probable segment boundaries. However, this
signal is very noisy, and there are many small valleys. The number of
these smaller valleys is reduced by application of a ‘minmax’ filter,
which searches a fixed region (nmm) around the point of interest to
find the local maximum and minimum values. The difference between
this maximum and minimum serves as the output of the filter at the
position of the minimum. This filter is applied throughout the signal
in non-overlapping regions. The filter output is a signal of which the
peaks represents possible boundaries. Given that the ’minmax’ filter
region is usually very small and applied in non-overlapping intervals,
many closely spaced peaks may still remain. Temporal peak masking
is therefore applied in a subsequent step. Two peaks falling within a
determined interval (td) of each other and which are above a chosen
threshold (pmin) are identified, and the highest peak retained. The
location of the highest peak is also shifted a small distance toward
the eliminated smaller peak in proportion to their amplitudes.

2) Ten Bosch et al. [5]: This work uses the angle between the
smoothed feature vectors just before and just after the point of interest
to quantify the degree of local change. This is given by Equation 2,
where f and g are the averages of the two feature vectors before and
after the frame of interest Fj respectively.

LS(Fj) = arccos
f.g

(‖ f ‖‖ g ‖) 1
2

(2)

12 MFCC and log energy together with their first and second
derivatives are used as a 39-dimensional feature vector. All local
maxima above a threshold (δ) are hypothesised as boundaries.

3) Estevan et al. [7]: This algorithm employs maximum margin
clustering to detect points of change in a feature vector consisting
of 12 MFCC coefficients, log energy and their first and second
derivatives. A sliding window, N frames wide and centered about
the frame of interest, sweeps through the signal. MMC clustering
(using a RBF kernel) is applied to the frames within this window. The
width of the RBF kernel, W , is estimated from a development set.
The MMC clustering results in a cluster label for each frame within
the window, and changes in these labels indicate possible segment
boundaries. It was found that the best way to detect these changes
is by using the Euclidean distance, as given by Equation 3, between
the cluster labels and the cluster means. Let f be the cluster label
of each frame within the sliding window, and g be the mean of the
cluster throughout the signal. Peaks in the Euclidean distance will

then indicate the segment boundaries.

LS(Fj) = [

T∑

l=1

(fl − gl)2]
1
2 (3)

4) Sarkar et al. [6]: This method differs from the previous three
by operating in the time domain rather than the frequency domain.
The local score function used in this case is the average level crossing
rate. The level crossing rate is closely related to the zero crossing
rate, but with multiple additional levels other than y = 0, and among
which the average crossing rate is taken. The levels can be distributed
uniformly or non-uniformly. For this choice of local score, a boundary
corresponds to a valley rather than a peak. As for some of the
preceding algorithms, a threshold is required to prune out shallow
valleys which lead to over-segmentation.

B. Algorithms based on minimising a distortion metric

Another approach to speech segmentation is to increase the unifor-
mity within segments, i.e. to minimise some distortion metric within
segments. In the work by Sharma et al. [3], the local score is the
Euclidean distance applied to MFCC features. The distortion within
a segment is calculated by Equation 5. This calculation employs the
local score at frame j, given by Equation 3, and the mean of the
local score from frame i to n, given by Equation 4. The segment
stretching from frame i to frame n is denoted by Si,n.

Mi,n =
1

n− i+ 1

n∑

j=i

LSj (4)

distortion metric(Si,n) =

n∑

j=i

(LSj −Mi,n)2 (5)

The overall distortion of the speech signal is a cumulative sum of
the distortions of all the segments. The overall distortion can be
minimised by applying a level-based DP algorithm to search for the
optimal segmentation, assuming that the number of levels (segments)
in the signal is known.

C. A proposed local score

For our formulation of the segmentation problem it is convenient
if the local score lies between the values of 0 and 1. We propose the
use of a normalised city block distance as shown in Equation 6,

LS(Fj) =

T∑
l=1

|fl − gl|

T∑
l=1

|fl|+
T∑

l=1

|gl|
(6)

where f and g are the feature vectors before and after the frame
of interest Fj. This proposed formulation of the local score will be
compared with other candidates in the experimental evaluation. Note
that parameterisations for f and g are not specified, allowing different
feature vectors to be used during experimentation.

III. A DP-BASED SEGMENTATION ALGORITHM

Most segmentation algorithms based on maximum local-acoustic
changes are prone to over-segmentation because they hypothesise
more than one segment boundary at a point of acoustic change. This
occurs due to the presence of multiple local maxima in the local
score. To counteract this, the algorithms include various types of
thresholds to eliminate such very short segments. Several examples
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of such measures were given in Section II. These remedies are ad-
hoc, however, and introduce additional parameters into the algorithm
that require optimisation.

The algorithm we propose includes an explicit probabilistic model
for the length of a segment. Segments that are either very short or very
long are penalised by their associated low probability. The probability
distribution of phoneme lengths for TIMIT can be estimated from
the phonetic annotations, as illustrated in Figure 1. For illustrative
purposes, the distribution is normalised with respect to its maximum
probability.

Fig. 1. Probability distribution of phoneme lengths in the TIMIT training
set [8].

A. Segment probability

To gain some insight into the behaviour of local scores near
segment boundaries, the local score in the close vicinity of phoneme
boundaries, as given by the TIMIT annotations, is calculated and used
to estimate a local score probability distribution given a boundary.
A similar distribution is determined for the local score values taken
far from boundaries, i.e. a local score probability distribution given
that there is no boundary. Figure 2 shows these distributions, each
normalised with respect to its maximum probability, for the local
score calculated with Equation 6 when using FFT magnitudes as the
feature vector. The distributions of the local score and the phoneme
length can now be used to determine the probability of a boundary
occurring at a specific frame in a speech signal.

Consider a signal consisting of N+1 frames. Now let the time of
occurrence of each frame correspond to a state of a HMM as shown
in Figure 3, where M is the maximum allowed number of frames
per segment and S0 is the time of occurrence of the first frame of
the signal. The vertical dashed arrows between S1 and S1, S2 and
S2, and between SN−1 and SN−1 indicate an expansion of the same
HMM state.

When a state is visited by a path through the Markov model
shown in Figure 3, a segment boundary is considered to occur at the
corresponding speech frame. The transition and emission probabilities
are calculated according to Equations 7 and 8 respectively, where SL
refers to the segment length, LS to the local score, and SB to the
occurrence of a segment boundary.

ai,j = P (Sj |SL(Sj , Si)) (7)

bj = P (SB|LS(Sj)) (8)

Fig. 2. Probability distribution estimates of local score values at, and away,
from phoneme boundaries for Equation 6 applied to the FFT magnitudes.
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Fig. 3. DP-based segmentation cast as a HMM.

The segment length in Equation 7 is equal to the time step between
two consecutive frames multiplied by the number of states separating
the currently visited state and its parent state, as shown in Equation 9,
where Sj is the current state, and Si is the parent state.

SL(Sj , Si) = (j − i) ∗ step (9)

Hence the transition probability is dependent only on the elapsed
time between states. The emission probability at state Sj, as shown in
Equation 8, is dependent on the local score LS(Sj). To calculate the
emission probability, Bayes rule is applied as shown in Equation 10,
where !SB refers to the absence of a segment boundary.

P (SB|LS(Sj)) =

P (LS(Sj)|SB)P (SB)

P (LS(Sj)|SB)P (SB) + P (LS(Sj)|!SB)P (!SB)

(10)
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The prior probability of a segment boundary can be estimated by
dividing the number phoneme boundaries in the TIMIT annotations
by the number of frames, as shown in Equation 11.

P (SB) =
number of phoneme boundaries in TIMIT

number of frames in TIMIT
(11)

The probability that a boundary occurs at a particular frame can
now be calculated by using Equations 9 and 10 in conjunction with
estimates of the various probability distributions.

B. Optimal path

To find the globally optimal path from S0 to SN , all possible
transitions shown in Figure 3 must be considered. This can be
accomplished by using a DP algorithm. The states that were visited
along the optimal path will identify the optimal segmentation. It is
important to note that S0 and SN are always included in the path,
and therefore the algorithm assumes that segment boundaries are
always present at the start and the end of the speech signal. This
means that any initial and final silence must be removed before
applying the algorithm.

C. Normalising for path length

During the Viterbi decoding, many probabilities are multiplied
together for any given path. When determining the optimal path,
shorter paths (which contain fewer multiplications and thus longer
segments) may be preferred, even when these have low associated
emission and transition probabilities. We compensate for this effect
by modifying the emission and transition probabilities as shown in
Equations 12 and 13.

ai,j = P (Sj |SL(Sj , Si))
SL(Sj ,Si) (12)

bj = P (SB|LS(Sj))
SL(Sj ,Si) (13)

These modifications normalise the path probability and remove the
bias towards segmentations containing fewer segment boundaries.

IV. ASSESSING SEGMENTATION ACCURACY

In order to assess the quality of automatic-generated segmentations,
we will determine how closely they correspond to the TIMIT phonetic
segmentations. This provides a useful measure of segmentation
accuracy. However it is dependent on the segmentation conventions
used in TIMIT. For example, even though it is common practice for
the /p/ to be segmented as a single phone in human annotations, the
silence (closure) associated with the stop is considered a separate
acoustic event in TIMIT. We found that the automatic segmentation
algorithms could detect these closures quite accurately, and therefore
decided to adhere to the original 61 TIMIT phone definitions without
modification.

A. Comparing segmentations by DP

Comparing two sequences of segment boundary times can again
be achieved by DP. We will proceed by first determining the best
alignment between two sequences of boundary times. Then we will
use this alignment to calculate a path cost. The alignment procedure
uses a matrix of path costs as shown in Figure 4.

The first boundary in both sequences must coincide, and this
corresponds to the bottom left cell of the matrix. Three alternative
scenarios are then considered: (i) a hypothesised boundary PH(i) is
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Fig. 4. Alignment matrix for segmentation scoring.

paired (matches) a boundary PR(j) in the reference segmentation, (ii)
a hypothesised boundary PH(i) is not paired with any boundary in
the reference transcription (insertion) or (iii) there is no hypothesised
boundary that can be paired with a boundary PR(j) in the reference
transcription (deletion).

All possible paths from the bottom left to top right in the matrix
shown in Figure 4 are computed recursively by dynamic program-
ming. Starting from the bottom left of this matrix, each path can be
extended upwards, to the right, or diagonally up and to the right,
indicating an insertion, a deletion or a match between boundaries
respectively. Each of these possibilities has a specific associated
cost. When a reference boundary falls between two hypothesised
boundaries, or vice versa, the cost is calculated by considering the
distance to the nearest of the two boundaries. When paths meet, only
the path with the lowest cost survives.

This procedure is applied iteratively, until all paths have reached
the top right cell, which will then contain the final alignment cost
between the two sequences. This cost reflects the difference between
the hypothesised and reference sequences since it is the cumulative
cost of every match, insertion, and deletion in the alignment. Fur-
thermore, the cost has dimensions of time. By dividing it by the
number of reference boundaries, the cost in seconds per reference
boundary can be obtained. This is the average time difference between
a hypothesised- and reference boundary and it will be used as a
figure of merit in our later experiments. In addition, the number of
insertions, deletions, and matches can be obtained by tracing back
along the optimal path.

B. Fixed margin method

It appears to be standard practice in related research to consider a
hypothesised and a reference segmentation boundary to be a match
whenever they occur within 20ms of one another [4]. All non-
matching boundaries are then either insertions or deletions. In order
to make our results more directly compatible with those of others, this
scoring framework has also been employed. An error measure termed
the average error is defined, which is the average of the percentage
insertions and deletions taken with respect to the number of reference
boundaries in a speech signal. Furthermore, this interpretation of
insertions, deletions and average error will be used.

V. EXPERIMENTAL SETUP

A. Data

Our experimental evaluations are based on the TIMIT database.
The development set specified in [8] was used to optimise all
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parameters, and the core test set defined in [8] was used exclusively
for final testing. There is no speaker overlap between these two
sets. The use of an explicit development set avoids biased results
which would be obtained if the performance of the algorithm was
measured on the same data used to optimise its hyperparameters. In
the literature dealing with automatic segmentation, the separation of
development and testing data was found not to be common. Leading
and trailing silences were removed to account for the assumption that
each utterance begins and ends with a segment boundary.

B. Feature vectors

We have chosen three feature vector configurations popular in
literature on automatic speech segmentation for comparative experi-
mentation.

1) FFT: Unprocessed 128-point FFT magnitudes
2) MFCC: 12 MFCCs and log energy
3) MFCC+∆+∆∆: MFCC with appended first and second deriva-

tives
By considering the local scores separately for the MFCCs, for the

delta and for the acceleration features, it was found that a peak for
the MFCCs or the acceleration components always coincides with a
valley for the delta component, and vice versa. To account for this,
the overall local score was calculated by averaging the local scores
calculated for MFCCs and acceleration components, and the negative
of the local score for the deltas.

C. The local score

Three local scores were investigated:
1) The cosine distance (C) shown in Equation 1,
2) The Euclidean distance (E) shown in Equation 3, and
3) The normalised city block distance (NCB) shown in Equation 6.
In our experiments, f and g were taken to be the averages of

two frames to the left and two to the right of the inspected frame
respectively. Depending on the local score, boundaries are expected
to occur at either peaks or valleys (local maxima or minima) of
the local score. Equation 10 is therefore only calculated at frames
which coincide with local maxima or minima of the local score and
a probability of 0 is assigned to all other frames.

D. The probability weights

As it stands, the DP segmentation algorithm will give equal weight
to the transition and emission probabilities, due to the segment length
and local score respectively. However, it may be beneficial to shift
the balance more strongly towards one or the other. By multiplying
the log values of the emission and transition probabilities by positive
constants that sum to one, this shift in balance can be achieved, and
will allow deletions to be traded for insertions and vice versa. Optimal
performance on the development set was achieved by assigning a
heavier weight to the emission probability (0.6–0.7) than to the
transition probability (0.3–0.4). This gives a stronger preference to
higher emission probabilities and leads to a reduction in insertions.

VI. EXPERIMENTAL RESULTS

A. Smoothing window size

In the following experiments a frame size of 16ms and a frame
shift of 4ms were used. Before calculating the local score, each
resulting MFCC and FFT value were smoothed by taking the av-
erage within a window centered on the feature vector in question.
Subsequently, the average DP cost (Section IV-A) and the average
error (Section IV-B) was calculated on the development set for
different smoothing window sizes applied to different local score

and feature vector combinations. Figures 5, 6, and 7 respectively
show these results for the cases in which the cosine distance is
applied to the FFT, the normalised city block distance is applied
to MFCCs, and the Euclidean distance is applied to MFCC with first
and second derivatives. For each configuration, all other parameters
were optimised on the development set.

Fig. 5. DP cost (Section IV-A) and average error (Section IV-B) for different
smoothing window sizes on the development set for the cosine distance
applied to the FFT.

Fig. 6. DP cost (Section IV-A) and average error (Section IV-B) for different
smoothing window sizes on the development set for the normalised city block
distance applied to the MFCCs.

The results show that the optimal smoothing window sizes are
similar for the FFT and MFCC parameterisations (16–24ms). A
longer window (around 40ms) is required by the MFCC+∆+∆∆
parameters, however. We believe that the introduction of first and
second differentials introduces additional local maxima into the local
score, which can lead to an increase in insertions. By lengthening the
smoothing window, this is compensated for.

B. Choice of feature vector and local score

The performance of the DP segmentation algorithm when using
the three different feature parameterisations and the three different
local score formulations was compared experimentally, and results are
shown in Table I. For each configuration, the length of the smoothing
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Fig. 7. DP cost (Section IV-A) and average error (Section IV-B) for different
smoothing window sizes on the development set for the Euclidean distance
applied to the MFCC with their first and second derivatives.

window as well as the probability weights are optimised on the
development set, and segmentation accuracies determined on the test
set. Both the DP path cost, in milliseconds per reference boundary,
and the fixed margin average percentage error are shown.

TABLE I
DEVELOPMENT- AND TEST-SET PERFORMANCE OF THE DP

SEGMENTATION ALGORITHM FOR THREE CHOICES OF FEATURE VECTOR
AND FOR THE NORMALISED CITY BLOCK (NCB), EUCLIDEAN (E) AND

COSINE (C) LOCAL SCORE (LS) FORMULATIONS.

Configuration DP Cost (ms) %ERR
Feature LS Dev Test Dev Test
FFT NCB 18.62 18.42 20.21 19.80
MFCC NCB 18.94 18.82 22.40 22.80
MFCC+∆+∆∆ NCB 19.28 18.83 21.81 22.07
FFT C 24.02 24.13 28.20 27.62
MFCC C 19.01 18.98 22.53 22.85
MFCC+∆+∆∆ C 18.94 18.72 21.56 21.72
FFT E 28.06 27.93 33.27 33.13
MFCC E 18.49 18.22 22.67 22.85
MFCC+∆+∆∆ E 17.77 17.58 21.08 21.40

The normalised city block distance delivers the best overall per-
formance. When applied to the MFCC+∆+∆∆ parameterisation, the
Euclidean distance achieved similar performance. A configuration
that stands out from the rest is the normalised city block distance
applied to the FFT, which greatly outperforms all other combinations
with the FFT feature vector. The FFT in general is the feature which
is most sensitive to the remaining parameters, and was seen to be
prone to over-segmentation. The FFT also has a higher dimensionality
than the other parameterisation. It appears from the results that the
normalised city block distance is most robust to this variation in
dimensionality. Thus, the the normalised city block distance with a
weighting leaning towards the emission probability (0.7) to reduce
insertions gives very promising results. Among the feature parametri-
sations, the MFCC and the MFCC+∆+∆∆ are most competitive.

When comparing performance on the development and on the test
sets, it is evident that the same patterns emerge from both. In the
experiments that follow, each local score’s best overall performing
configuration will be used. These are the normalised city block
distance for the FFT, the cosine distance for the MFCC+∆+∆, and
the Euclidean distance for MFCC+∆+∆. These will henceforth be

referred to as configuration C1, C2, and C3 respectively.

C. Silence removal

Many TIMIT sentences contain regions of silence in which tem-
poral changes nevertheless occur. In order to avoid the hypotheses
of segment boundaries in these regions, all boundaries were removed
at frames when the ratio of the average energy content from 30ms
before to 30ms after the frame in question, to the mean energy of the
signal fall below a certain threshold. Different threshold values were
investigated, and a typical result is shown in Figure 8. A threshold
of 0.2% (i.e. a value of 0.002) delivered optimal performances for
all configurations.

Fig. 8. DP cost (Section IV-A) and average error (Section IV-B) against %
energy threshold on the development set for configuration C1.

D. Comparison with other segmentation algorithms

In the previous sections, an optimal configuration for the DP
segmentation algorithm proposed in this paper is determined by
experimentation. In this section we will benchmark the performance
of this optimal configuration against two recent approaches to speech
segmentation found in literature [4] [5]. Both approaches belong to
the class of segmentation algorithms that rely on transient events in
the acoustical information, as described in Section II-A. The method
described in [4] claimed to achieve the same or better performance
than many earlier approaches, while [5] is an algorithm with which
the authors have had good prior experience.

Each method compensates for silences in its own way. The
algorithm given in [5] scales the local score by the log frame energy
to attenuate points of low energy, while the algorithm in [4] uses a
similar approach to that proposed in this paper, but uses the average
energy measured over the interval from -8ms to +30ms about the
point of interest, and a threshold which is a multiple of the minimum
energy for the signal. In the evaluation presented in the following,
the parameters of each method were optimised on the development
set.

Table II presents the DP cost in milliseconds per reference bound-
ary, the percentage insertions and deletions with respect to the number
of reference boundaries, and the average error for the optimised
cases on the development set. The values shown for configura-
tions C1, C2 and C3 are those achieved after silence removal.

When applying these parameter values to the core test set, the
results shown in Table III are obtained.
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TABLE II
PERFORMANCE COMPARISONS ON THE DEVELOPMENT SET AFTER

SILENCE REMOVAL.

Method DP Cost (ms) % Ins % Del %ERR
DP (C1) 17.98 15.56 24.16 19.86
DP (C2) 18.12 15.28 26.97 21.13
DP (C3) 17.04 18.15 23.05 20.60
Räsänen 18.91 17.92 26.99 22.46
ten Bosch 25.07 26.19 27.37 26.78

TABLE III
PERFORMANCE COMPARISONS ON THE CORE TEST SET AFTER SILENCE

REMOVAL.

Method DP Cost (ms) % Ins % Del %ERR
DP (C1) 17.92 14.49 24.53 19.51
DP (C2) 18.23 14.80 28.04 21.42
DP (C3) 17.13 17.14 24.93 21.03
Räsänen 19.40 17.18 28.19 22.68
ten Bosch 25.17 25.36 28.28 26.82

For illustrative purposes, the segmentations produced by the three
algorithms for the same sentence, dr6-fbch0-sa1, are shown in Fig-
ures 9, 10, and 11, where configuration C3 was used for the DP
algorithm. Each figure shows the first two seconds of the sentence
as well as the TIMIT phone boundaries. The dashed vertical lines
show the hypothesised boundaries, and the solid vertical lines show
the reference boundaries.

Fig. 9. Segmentation results for the DP algorithm on dr6-fbch0-sa1.

The vertical axis in Figure 9 for the DP algorithm shows the
emission probabilities. Unlike the other two approaches, there is
no threshold under which boundaries are ignored. Thus, even when
the local score results in a low emission probability, a boundary
can be hypothesised if the transition probability is high. This is
clear, for example, at the boundary that is hypothesised at the ‘aa’
phoneme. The converse may also be true, i.e. even when the emission
probability is high, a segment boundary may be suppressed by a low
transition probability, as illustrated at the second ‘iy’.

Figure 10 shows the output of the ‘minmax’ filter described in
Section II-A of the Räsänen algorithm. Notice that all peaks falling
within 32ms of each other have been combined by temporal peak
masking, and that the threshold in this case is 0.07, below which
all peaks are ignored. These parameter values were determined to be
optimal for the development set.

The local score of ten Bosch’s algorithm has been multiplied by
the log energy to reduce the insertion of boundaries in regions of

Fig. 10. Segmentation results for the Räsänen algorithm on dr6-fbch0-sa1.

Fig. 11. Segmentation results for the ten Bosch algorithm on dr6-fbch0-sa1.

silence, which are characterised by very low energy. Unfortunately
this also results in the introduction of unwanted small peaks when
the log energy increases while the local score decreases, or when
the energy decreases while the local score increases. Because the
segment boundaries usually coincide with the peaks of the local score,
these newly added peaks lead to insertions as shown, for example,
in Figure 11 at ‘er’ and at each ‘s’. This leads to over segmentation,
which is clear when looking at the higher percentage insertions in
Table III. From the development set it was found that the optimal
threshold for the ten Bosch algorithm is 0.13.

E. Combined methods

By inspection of the segmentation results produced by the DP
algorithm, it was found that there regularly are small emission prob-
ability peaks present between the boundaries of very long segments.
When these peaks coincide with high probability segment lengths,
as determined by the segment length distribution, boundaries are
hypothesised at these locations, resulting in unwanted insertions. With
some experimentation it was found that better results can be obtained
by applying a threshold to the emission probability (Equation 8)
before searching for the optimal path by DP. All probabilities above
the threshold are unchanged, and the probabilities below the threshold
are reduced to 0. A variety of threshold values were investigated on
the development set for each of the chosen three DP configurations,
with all other parameters fixed at their previously found optimal
values. Figures 12 and 13 show the resulting effect on the DP cost and
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on the average error for configuration C1. By inspecting the average
error graph, there is a point at which the reduction in insertions is
greater than the rise in deletions. However, the average error can
only be reduced to a certain point, after which the hypothesised and
reference boundaries rapidly become misaligned. This is indicated at
the point of DP cost increase. The DP cost is therefore the best way
to determine the optimal threshold.

Fig. 12. DP cost (Section IV-A) against emission probability threshold on
the development set for configuration C1.

Fig. 13. Average error (Section IV-B) against emission probability threshold
on the development set for configuration C1.

It was found that thresholds of 0.1, 0.5, and 0.1 lead to optimal
performance on the development set for configurations C1, C2 and C3
respectively. When applied to the core test set, this leads to the results
in Table IV.

TABLE IV
METHOD COMPARISONS, AFTER EMISSION PROBABILITY THRESHOLD

WERE APPLIED, ON THE CORE TEST SET.

Method DP Cost % Ins % Del %ERR
DP (C1) 17.68 12.83 24.96 18.89
DP (C2) 18.08 13.91 28.44 21.17
DP (C3) 16.99 16.65 25.02 20.83
Räsänen 19.40 17.18 28.19 22.68
ten Bosch 25.17 25.36 28.28 26.82

By comparing the results in Tables III and IV, improvements in
performance for all three configurations are seen. Two key values
that stand out from Table IV are the small DP cost obtained by
configuration C3, and the small average error obtained by configu-
ration C1. The overall best, and most consistent configuration thus
far, is configuration C1, which has the normalised city block distance
and the FFT.

VII. SUMMARY AND CONCLUSION

We have proposed an algorithm based on the principle of dynamic
programming for the automatic segmentation of continuous speech
into phoneme-like units. A measure of the local dissimilarity between
feature vectors is combined with a statistical description of the ex-
pected segment lengths within the dynamic programming framework
in order to determine the optimal locations of segment boundaries
within the speech utterance. We find that this approach leads to
performance improvements relative to two alternative methods drawn
from the literature. Analysis of the strengths of the individual
techniques revealed that further improvements can be obtained by
a hybrid approach employing aspects of each. We conclude that the
use of dynamic programming as a basis for speech segmentation is a
successful approach. In future work we plan to analyse the occurrence
of insertion and deletion errors more carefully with respect to the
type of phoneme within which they occur, as well as the role of
context in the placement of segment boundaries. The effectiveness
of our DP-based segmentation will also be tested on other languages
using the distributions created from TIMIT to see how universal the
segment boundary behaviour is. Furthermore, we will investigate the
sensitivity of the segmentation algorithms to parameter changes, and
the effect of increased parameters.
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Abstract—A novel method for estimating the variance and
standard deviation of the additive white Gaussian noise contained
in an image will be presented. Only a single image is used to
estimate the noise properties. Local image outliers are discarded,
this allows us to separate the additive zero mean white Gaussian
noise contained in a noisy image from the original image
structure. Local variance estimates can then be calculated from
the extracted noise. These local variance estimates are weak and
can be influenced by misclassified image information. Robust
statistics are then used to fuse the weak local variance estimates
to obtain a robust global noise variance estimate. This method of
estimating the noise properties is computationally efficient and
provides reliable estimation results in synthetic and real-world
imagery. The accuracy and processing complexity of the proposed
algorithm will be compared against the current state-of-the-art
noise estimators.

I. INTRODUCTION

Images are often corrupted by noise which could have been
introduced during the transmission or acquisition phase of the
imaging process [1]. Poor imaging sensors and low lighting
conditions can increase the presence of noise. Consider the
noisy image formation model provided in Eq. 1:

I(x, y) = f(x, y) + n(x, y). (1)

where I is the observed image affected by noise, f is the
uncontaminated image and n is uniform distributed white
Gaussian noise. The input image is contaminated by additive
white Gaussian noise with an unknown standard deviation.

An estimate of the level of noise is required by many image
processing and computer vision algorithms. Noise removal[2]
and de-blurring algorithms[3] can benefit from accurate noise
estimates. Other image processing task such as edge and fea-
ture detection can be improved by selecting optimal thresholds
to limit the impact of noise [4].

Noise can be estimated from multiple images in stationary
sequences, this is considered to be an over-constrained prob-
lem. The images are fused together to remove the noise and
to approximate the original clean image [5]. A temporal mean
is calculated, multiple pixel samples are combined over time
to estimate the original pixel value.

The estimation of the noise variance from a single image
is however an under-constrained problem [6]. If a smoothness

assumption is made on the local image structure, neighbouring
image samples can be utilized to approximate a better or
more robust estimate of the current pixel. A spatial mean is
calculated removing some of the noise present in the image.
This has the drawback of losing some high frequency image
detail that does not hold to the smoothness assumption.

Aja-Fernandez et al. used local statistics to estimate the
variance of the introduced noise. A simple method was pro-
posed that calculates the Mode of the distribution of local
variances estimates calculated in an image [7]. This method
will be referred to as Mode09 and fails if the image does not
contain a sufficient amount of low-variability areas.

A fast noise variance estimator was proposed by Immerkaer,
referred to in the text as Immerkaer96 [8]. This method only
requires that a 3 × 3 mask be processed over the image,
the results are then summed and multiplied by a constant to
obtain the noise variance. The mask is separable and only 14
integer operations per pixel is required, making this the fastest
algorithm. Immerkaer notes that in highly textured regions in
an image, lines will be perceived as noise. This will result
in unusable noise variance estimates in images dominated by
high frequency information.

TaiYang08 was designed to exclude image detail and struc-
ture from the noise variance estimation process [9]. Image
detail is first detected through edge detection, these detected
regions are then excluded from the variance estimation calcu-
lation. The edge detection threshold parameter is adaptively
tuned to the image content. Tai et al. state that the algorithm
performs well over a large range of noise variance levels.

A detailed break down of the proposed noise estimation
algorithm will be provided in Section 2, each of the processing
steps will be discussed in detail. In Section 3 we will describe
the experimental setup used for testing and in Section 4 we will
provide estimation accuracy and performance results of the
different noise estimators, as-well as a comparative analysis
of the results.

September 18, 2012
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Fig. 1. Overview of the single image noise variance estimator

II. NOISE ESTIMATION

An overview of the steps involved in determining the noise
variance from a single image is provided in Fig. 1. Two small
median filters are used to remove outliers from the noisy
image. This enables us to approximate the original image
structure and preserve detail. The structure image and original
input image can then be used to separate the noise component
from the image data. This is achieved by locating differences
between the noisy image and the structure image. Since the
structure image is only an approximate reconstruction of the
original image, some image data can be classified as noise. To
limit the misclassified image data’s contribution to the noise
variance estimate. The statistical mode of all the local variance
estimates are calculated. This provides a robust statistical
measure of the noise variance located in an image. Each step
will now be discussed in more detail.

A. Approximate original structure

Many noise estimation algorithms attempt to remove noise
from the original image by convolving the image with a
Gaussian kernel. Convolution with small filtering kernels are
not resilient against image outliers. The noise values have a
large influence on the neighbouring pixels which reduces the
accuracy of the estimation. The median filter is robust against

outliers, assuming there is structure associated with the content
of the image. Noise will be recognized as potential outliers.

The 2D median filter is edge preserving but not corner pre-
serving. The noisy image should be filtered with the smallest
possible median filter to preserve as much image detail as
possible [10]. Large median filters have a tendency to remove
noise as well as high frequency information. Two small 1D
median filter were used, first to remove horizontal artefacts
and secondly to remove vertical artefacts. The 3 × 1 and a
1 × 3 median filter preserved edges as well as most corners.
The resulting image is an approximation of the original image
before noise was introduced.

B. Extract squared noise components

Now that we have obtained an approximation of the original
image. We are able to separate the noise component from
the noisy image. The noise component for every pixel can be
extracted from the noisy input image and the structure image
as defined by Eq. 2:

noise component = (structure image− input image)2
(2)

where the input image is the original input image contam-
inated by noise and the structure image is an approximation
of the original image. At every position in the image the
structure image is subtracted from the noise image. The result
is then squared to produce rudimentary local noise variance
estimates.

C. Smooth local variance estimates

The local variance estimates could still be substantially
affected by inherent image detail. A smoothing operation
is performed to force the variance estimates to be more
locally coherent. Empirical selection refers here to the process
of experimentation with different parameters and observing
the resulting variance estimation errors. The Gaussian kernel
with σ = 2 was empirically selected as a good smoothing
function for the variance estimates. The separability property
of the Gaussian function was used to optimize the convolution
process [11]. The local variance estimates were then filtered
with a 13 × 1 filter and then by a 1 × 13 filter. This would
have had the same effect as filtering with a 13× 13 filter, but
reduces processing resources.

D. Calculate Mode of distribution

We will now try to find the variance estimate or variance
estimate range that occurs most often in the local variance
estimates. The statistical Mode operation was used [12]. A
histogram was generated from the local variance estimates,
each local variance estimate was placed in a list of buckets.
Its position in this list was determined by its noise variance
value. The first bucket would contain all the smallest local
variance estimates and the last bucket would contain all the
largest variance estimates. The list size was determine using
Eq. 3:

bucket count = floor

(
estimate count

bucket size

)
(3)
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where estimate count is the total number of local variance
estimates, bucket size is the minimum number of values that
would have been placed in each bucket if the values were
uniformly distributed. A bucket size of 10 was selected to
provide accurate and reliable results. Selecting small bucket
sizes will result in more accurate variance estimates. If the
bucket size is selected to be to small, duplicate maximum
buckets could occur resulting in unstable noise variance esti-
mates. The next step is to find the bucket containing the most
variance estimates. This estimate is the local variance value
that occurred the most frequently in the image. The middle of
the variance estimate range corresponding to the largest bucket
is selected as the variance estimate of the noise in the image.

III. EXPERIMENTAL SETUP

The accuracy of the noise variance estimators was deter-
mined by adding white Gaussian noise of a specific variance
to an image. The noise estimator then had to estimate the
amount of noise that was added. Since small amounts of noise
exist even in high quality photos, a ground truth dataset could
not be established. To limit the amount of noise in the test
dataset. Large natural photos were down sampled to reduce
the affect of noise. The noise would be reduced due to the
averaging process. Since all noise could not be removed from
the natural photo an additional synthetically generated dataset
was also used for testing. These images are free of noise but
do not have the complexity of natural photos.

Both the natural and the synthetic datasets comprised of
images that contain a large amount of high frequency in-
formation as well as images dominated by low frequency
information. Some of the tested noise estimation algorithms
perform better when there were an abundance of uniform areas
in the image. Others would perform better at estimating small
amounts of noise accurately, but would underestimate the noise
when large amounts of noise was introduced. The opposite is
also true, many noise estimation algorithms can determine the
variance of large amounts of noise but would overestimate
small amounts. The proposed noise estimation algorithm was
designed to perform well over the whole range of noise levels.

The reliability of each estimator was determined by testing
over a range of noise variance levels. The noise levels added
to the original image range from low to severe levels of noise.
Examples of the noise variance range used for testing can
be seen in Fig. 2, the image pixel values were scaled to the
range of [0..1]. Each candidate noise estimator was given the
opportunity to estimate the noise variance contained in the
resulting noisy image. This process was repeated 10 times
and the average variance determined by the estimators was
logged. At each iteration a new set of random noise variables
of a specific variance were generated. This was then added to
the original image.

The estimation error percentage was calculated using Eq.
4. The estimated variance and ground truth variance for the
test is converted to a standard deviation. From the standard
deviations a similarity ratio is calculated.

(a) Original image

(b) Noise Variance=0.00008

(c) Noise Variance=0.00128

(d) Noise Variance=0.02048

Fig. 2. Images containing different levels of additive Gaussian noise
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(a) Grove

(b) Urban

Fig. 3. Synthetic images from Middlebury stereo dataset [13].

estimation error =

∣∣∣∣∣1.0−
√
estimated variance√
true variance

∣∣∣∣∣×100.0
(4)

A. Synthetic dataset

Synthetic images from the Middlebury College stereo op-
tical flow dataset were used. These images are well known
in the image processing community. The first frames from
the Grove and Urban datasets were used to evaluate the noise
estimators and can be seen in Fig. 3. The Grove image contains
an abundance of high frequency information while the Urban
image has more uniform regions. An accurate estimation of
the noise variance should be obtainable with these noise free

(a) Aircraft

(b) Forest

Fig. 4. Natural image dataset

images. High frequency information can adversely influence
the noise estimation accuracy and image detail is often mis-
classified as noise. Large amounts of high frequency image
data can make it hard to differentiate between noise and
information.

B. Natural image dataset

For the natural image test, two photos where selected
containing high and low frequency information. They can be
observed in Fig. 4. Exact estimation of the noise variance is
difficult. The test images already contain small amounts of
noise introduced during the image formation process. For this
test we will assume that the small amount of noise already
present in the image is negligible. Since we do not know the

50



noise characteristics of the test images the noise estimator will
overestimate the noise slightly. This is to compensate for the
presence of existing noise.

IV. EXPERIMENTAL RESULTS

A. Synthetic tests

(a) Noise variance estimates for various degrees of additive gaussian
noise

(b) Estimation error for tested noise variance

Fig. 5. Grove noise variance estimation results

In Fig. 5 it can be observed that in images with some uni-
form regions our proposed estimator excels. It can accurately
estimate the variance of the noise over the whole spectrum.
The other methods perform poorly in low noise situations and
overestimate the variance. This can be attributed to the poor bit
resolution of the images, which makes it difficult to distinguish
between small intensity changes.

In the Urban test, the estimation methods did not overesti-
mate the noise variance as severely as in the Grove example.
This can be seen in Fig. 6. Even though the geometry
represented in the image is simple, they are textured with
high resolution material textures. Due to the dense pixel

(a) Noise variance estimates for various degrees of additive gaussian
noise

(b) Estimation error for tested noise variance

Fig. 6. Urban noise variance estimation results

information, noise classification is more difficult. The pro-
posed method provided the highest estimation accuracy. Some
algorithms provided more accurate result for single estimation
tasks but performed poorly in others. The Mode09 gave very
erratic results due to the bucket size used for histogram mode
calculations. This made tuning over the whole testing spectrum
difficult. The proposed noise estimator provided consistent
results over all the synthetic tests.

B. Natural image test

Immerkaer96 did not do so well in the natural image
tests and was outperformed by almost all competing methods
except in the high noise variance cases. The proposed method
achieved high accuracy over the whole variance range. Espe-
cially in the low noise scenarios which occur regularly in low
cost sensors and low lighting environments. The high noise
test is a bit extreme and does not occur regularly in visible
light cameras.
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(a) Noise variance estimates for various degrees of additive Gaussian
noise

(b) Estimation error for tested noise variance

Fig. 7. Aircraft noise variance estimation results

The estimation accuracy dropped substantially in the Forest
test as seen in Fig. 8. The Forest image does not contain large
uniform areas such as in the previous test image. Mode09 did
not provide consistent results between the two tests sets. In the
low frequency test it performed well, accuracy was reduced in
the high frequency test. The other methods provided reason-
able accuracy except TaiYang08 which performed poorly in
the high noise situations.

C. Normalized processing complexity

The amount of noise in an image does not affect the pro-
cessing complexity of any of the tested algorithms. This means
that over the whole tested noise variance range each algorithm
took approximately the same duration to complete. The total
processing time required by each method to process the Grove,
Urban, Aircraft and Forest dataset images were normalized to
obtain an estimate of the processing complexity compared to
each other. An algorithm with higher processing complexity

(a) Noise variance estimates for various degrees of additive gaussian
noise

(b) Estimation error for tested noise variance

Fig. 8. Forest noise variance estimation results

Fig. 9. Normalized processing complexity of noise estimation algorithms

will take longer to process the same image, processed by a
lower processing complexity algorithm. As can be seen in
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Fig. 9 the proposed method had a relatively low processing
complexity for the acquired accuracy. The Mode09 required
the most processing resources, while Immerkaer96 was the
fastest but with reduced accuracy.

V. CONCLUSION

A robust and computationally efficient single image noise
estimation algorithm was presented. This method removed
noisy artefacts from the observed image and calculated an ap-
proximation of the original image by rejecting image structure
outliers. The reconstructed image is then used to separate the
noise component from the observed noisy image. Weak local
noise variances estimates were then calculated and combined
to produce a reliable global noise variance estimate. This
reduced the influence of misclassified image information on
the noise variance estimation process. The proposed method
produced superior estimation results compared to the current
state-of-the-art noise estimation algorithms. It also produced
consistent result over a range of synthetic and natural images,
containing high and low frequency information. Reliable re-
sults over a large range of noise levels were also obtained,
ranging from low to extreme imaging conditions.
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Abstract—Image deblurring algorithms generally assume that the 

nature of the blurring function that degraded an image is known 

before an image can be deblurred. In the case of most naturally 

captured images the strength of the blur present in the image is 

not known. This paper proposes a method to identify the 

standard deviation of a Gaussian blur that has been applied to a 

single image with no a priori information about the conditions 

under which the image was captured. This simple method makes 

use of a property of the Gaussian function and the Gaussian scale 

space representation of an image to identify the amount of blur. 

This is in contrast to the majority of statistical techniques that 

require extensive training or complex statistical models of the 

blur for identification.   

Keywords-Gaussian blur, blur identification, blur estimation, 

scale space. 

I.  INTRODUCTION  

In almost all vision systems, biological or mechanical, the 
phenomenon of blur can be observed. Blur manifests itself as a 
degradation of spatial detail or high frequency visual 
information. This results in a reduction of edge sharpness and 
loss of the finer detail. There are many causes of blur but the 
most fundamental is the diffraction limit of a vision system that 
contains an aperture [1]. Some other causes of blur are defocus, 
motion during exposure, atmospheric turbulence and upscaling 
of images [1, 2, 3].  

Blurring is a distortion of an image that reduces the amount 
of information contained in that image. While it is impossible 
to build a physical system that can capture arbitrarily sharp 
images it is mathematically possible to reconstruct a portion of 
the lost information [4]. This process is called image 
deconvolution or image restoration and is essentially an inverse 
filtering process. The blurring effect is modelled as a 
convolution of the original image with a blurring kernel or 
Point Spread Function (PSF) with some additive white 
Gaussian noise as shown in the following equation [5].  

𝑖 𝑥, 𝑦 =  𝑓 𝑥, 𝑦 ∗ ℎ 𝑥, 𝑦 +  𝑛 𝑥, 𝑦 , (1)  

Where i(x,y) is the distorted 2D image with the 2 dimensions 

denoted by x and y, f(x,y) is the undistorted image, h(x,y) is the 

blurring function PSF which is convolved with the input 

image and n(x,y) is the additive white Gaussian noise present 

in the scene [5].  

 

Usually it is assumed that the PSF of the blurring distortion 
is known. An operation is then performed that is the inverse of 
that distortion to attempt to undo that distortion [4, 5].   

The image deconvolution problem has been explored quite 
thoroughly in the literature. The basic approaches of inverse 
filtering, least squares filtering and iterative filtering can be 
found in most image processing textbooks such as [5, 6]. More 
modern methods have also been discussed in [7, 8, 9] to name a 
few.  

When the parameters of the PSF of the blurring function is 
not known and has to be estimated from the input image the 
problem becomes known as a blind deconvolution problem [5]. 
Blur identification techniques need to be employed to estimate 
the nature of the blur in the observed image. Numerous 
approaches to this problem have been proposed in the 
literature. The vast majority of approaches make use of image 
statistics to provide an estimate of the blur. In [10] a maximum 
likelihood estimation technique is used, [3] uses an 
autoregressive–moving-average (ARMA) process and [11] 
uses a regularization approach. 

Non-statistical  approaches also exist, for instance in [12] 
the original unblurred image is estimated and used to estimate 
what blur was applied to result in the degraded image. The 
approach that most resembles ours is a parametric approach 
where the blur is considered to conform to an assumed blur 
model with a single parameter. A search space of possible blur 
parameters is traversed and the input image is deconvolved 
with each parameter value. A sharpness metric is used to 
determine which parameter results in the sharpest output 
image. In this case the sharpness metric used was kurtosis [13]. 

There are a variety of types of blur found in images but we 
will focus on Gaussian blur. This blur approximates the blur 
caused by upsampling an image fairly well and is a very good 
approximation of blur introduced to an image by capturing a 
scene through atmospheric turbulence [5]. 

The technique proposed in this paper focuses on identifying 
the standard deviation (σ) of a Gaussian blur applied to an 
input image. An interesting property of the Gaussian function 
is employed to identify the variance of the Gaussian blur in the 
input image by examining its scale-space representation [14]. 
The scale-space representation has been used previously in [15] 
to detect edges. In [15] edges are considered to be ideal step 
functions that have undergone blurring due to lighting and 
focal characteristics of the imaging system through which they 
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were captured. These blurs were modelled as Gaussian blurs. 
Through analysis of the derivatives of an image at various 
scales in the scale-space it was possible to locate blurred edges 
and identify the degree to which they were blurred. 

The remainder of this paper will be structured as follows. 
Section II will present the theory employed in this algorithm. 
Section III will describe the algorithm itself. Section IV will 
present some experiments and discussion of their results and 
finally Section V will be the conclusion. 

II. BACKGROUND 

A. An Interesting Property of the Gaussian distribution 

In image processing the most common operations use kernel 

filters that are panned around the image. The Gaussian 

equation used to produce these types of kernels is considered 

to have a zero mean. Thus the one dimensional Gaussian 

equation we are using is defined as follows: 

𝐺 𝑥, σ2 =  𝑎𝑒
−𝑥2

2σ2 , (2)  

Where a is the amplitude of the curve and σ
2
 is the variance of 

the Gaussian and its square root σ is the standard deviation 

[14]. For generating kernels for image processing a is 

generally considered to be 1. 

The Gaussian equation exhibits self-similarity and thus the 

cascade property where if two Gaussians are convolved with 

each other they produce a new Gaussian as follows [14]: 

 

𝐺 𝑥, σ𝐴
2 ⊗ 𝐺 𝑥, σ𝐵

2  =  𝐺 𝑥, σ𝐴
2 + σ𝐵

2  , (3)  

 

In this paper we exploit an interesting feature of the Gaussian 

equation. Given a Gaussian with a constant standard deviation 

σ1, if we convolve this Gaussian with another Gaussian with 

standard deviation σ2  we get a resulting Gaussian with the 

standard deviation of  σ1
2 + σ2

2 . If we then subtract the 

resulting Gaussian from the original Gaussian with standard 

deviation σ1 and absolute the result we get a measure of the 

difference or error between the original Gaussian and the new 

Gaussian. This process is described in the equations below and 

figure 1. 

  

𝐸 =  𝐺 𝑥, σ1
2 − 𝐺 𝑥, σ1

2 ⊗ 𝐺 𝑥, σ2
2   , (4)  

𝐸 =   𝐺 𝑥, σ1
2 − 𝐺 𝑥, σ1

2 + σ2
2   , 𝑥 ∈  −𝐵; 𝐵  & 𝒁, (5)  

Where x is an integer that ranges between integer bounds 

defined by  -B and B. 

 

If you perform this process using a chosen value for σ1 and a 

range of values for σ2 and then plot the resulting errors you 

will find the response shown in figure 2. What is interesting is 

that the error curve contains a point of inflection where the 

concavity of the curve changes. To find the exact point of 

inflection we must look for extrema in the first derivative of 

the error curve which is shown in figure 3. 

 
Figure 1: Error between 2 Gaussians 

 
Figure 2: Error between a Gaussian with constant standard 

deviation σ1=11 and a second Gaussian with standard deviation 

 𝛔𝟏
𝟐 + 𝛔𝟐

𝟐 where σ2 is varied over a range. 

 
Figure 3: First derivative of the Error with respect to σ2 
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As can been seen from figure 3 the maximum value of the first 

derivative of the error corresponds to the point of inflection in 

the error curve. This also corresponds with the chosen value 

for σ1 which in this case was 11.  This shows that while the 

error is increasing monotonically when σ2 is smaller than σ1 

the error increases at a faster rate than when σ2 is larger than 

σ1. This phenomenon can be used to determine the value of σ1 

by only varying the value of σ2 and searching for the point of 

inflection on the error curve. 

B. The scale space 

Scenes in the world appear very different when viewed from 

varying scales. For example a tree viewed from 1 meter away 

would be made up of individual branches, a trunk and leaves 

while if it was viewed from 1 km away it would appear to be a 

single solid object. The fact that scale is so important in 

describing the structure of objects being observed has led to 

the development of multi-scale representations of images. 

Being able to isolate the structures contained in an image at a 

given scale is an immensely powerful tool in being able to 

extract useful information from an image [14]. 

 

A large number of multi-scale representation techniques have 

been proposed in the literature. One of the first was the quad-

tree representation which iteratively divides an image into 

smaller rectangles based on the information content inside 

each division [16]. Sampling pyramids have also been widely 

used. In these algorithms an image is recursively halved in 

size using a sub-sampling scheme and smoothed at each step 

to give a pyramid of images where each is half the size of 

level below. This approach is limited in the size of the steps at 

which its sampling size is reduced and thus objects at scales 

that exist between and levels of the pyramid are lost [14].  

 

The scale-space representation was proposed to combat this 

problem. The scale-space is a representation that comprises a 

continuous scale parameter and preserves the same spatial 

sampling at all scales. It is shown in [14] that the only kernel 

that can achieve this is the Gaussian kernel. This approach 

takes an input image and blurs the image with a series of 

Gaussian kernels, each with a larger variance than the last. As 

the image becomes more and more blurred the finer scale 

information is averaged out and the larger scale structures are 

all that are left. In this way we can produce a series of images 

that each contain a different scale of structures but we do not 

introduce any quantization noise. 

 

To take this representation a step further we can subtract each 

level of this multi-scale representation from the one below it 

to produce a Difference-of-Gaussian (DoG) representation of 

the image. This representation is essentially the second-order 

derivative of the images at each scale level. This multi-scale 

gradient information has been used in many feature detection, 

object detection and segmentation algorithms of which the 

most notable is probably the SIFT feature detector [17]. 

III. ALGORITHM DESCRIPTION 

The algorithm described in this paper starts with an input 

image which we assume has been blurred with a Gaussian 

kernel as shown in the following equation.  

 

𝐼 = 𝐹 ⊗ 𝐺 𝑥, σ1
2 , (6)  

Where I is the input image, F is the image without the blur and 

the function G is a Gaussian kernel with a standard deviation 

of σ1.  The goal of the algorithm is to identify the standard 

deviation of this blur with no a priori information about the 

conditions under which the image was captured.  

The next step is to construct a scale space representation of the 

input image I. This is done by blurring the input image I with 

a range of Gaussian kernels with increasingly large standard 

deviations. The range of standard deviations is calculated in a 

similar fashion to [17]. We start at a standard deviation of 1 

and we call each doubling of this initial value an octave of σ 

values. We choose how many levels to divide each octave 

into. The range is then constructed as described by the pseudo-

code in the following figure. This code assumes we want to 

construct 5 octaves of  σ  values with 10 divisions in each 

octave. 

 

 

 
Figure 4: Pseudo-code describing generation of 𝛔 values for the 

scale-space representation 

To construct the scale-space representation D we then 

convolve the input image with a Gaussian kernel with each of 

the σ values in the generated range. 

 

𝐷 σ2 = 𝐹 ⊗ 𝐺 𝑥, σ1
2 ⊗ 𝐺 𝑥, σ2

2 , (7)  

Where σ2 is the standard deviation from our generated range 

and σ1 is the standard deviation of the Gaussian kernel we are 

trying to detect. The next step is to find the absolute error 

between the input frame and the images in the scale-space 

representation. 

 

E(σ2) =  𝐹 ⊗ 𝐺 𝑥, σ1
2 −  𝐹 ⊗ 𝐺 𝑥, σ1

2 ⊗ 𝐺 𝑥, σ2
2  , (8)  

E(σ2) = 𝐹 ⊗  𝐺 𝑥, σ1
2 −  𝐺 𝑥, σ1

2 ⊗ 𝐺 𝑥, σ2
2  , (9)  

Due to the distributability of convolution it can be seen that 

the error E contains the equation 4 convolved with the 

unblurred image F. This implies that the same analysis of the 

error response of E can be applied to determine the value of 

σ1.  

octaveDivisions = 10  

numOfOctaves = 5 

scaleFactor = 2.0^(1.0/octaveDivisions) 

numOfLevels = octaveDivision*numOfOctaves+1 

sigma(1) = 1; 

 

For s = 2 to numOfLevels 

 Sigma(s) = sigma(s-1)*scaleFactor 

end 
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Thus once we have the error response for all values of σ2 in 

our scale-space we find the first derivative of E with respect to 

σ2. We use the basic finite difference technique to estimate the 

derivative of the range of σ2 values and E as following set of 

convolutions. 

𝑑𝐸 = 𝐸 ⊗ [−1  1], (10)  

𝑑σ = σ2 ⊗ [−1  1], (11)  

Where the [−1, 1] term is a discrete kernel with two elements. 

The final step of the algorithm is to find the maxima of dE/dσ 

and the corresponding σ2 value. This value is the detected 

standard deviation of the blur that the input image contained. 

This process of blurring an image with a series of Gaussians 

with increasing standard deviations is also used to produce the 

scale space representation of an image. Thus this algorithm 

can be cheaply performed in tandem with algorithms that 

make use of the scale space representation of an image. 

We found that the algorithm was fairly sensitive to additive 

white noise and as such we introduced an iterative median 

filtering pre-processing stage to the algorithm to aid in 

suppressing noise. This stage consisted of applying two 

iterations of a 3x3 median filter to the input image before the 

above described process is performed. 

IV.    EXPERIMENTS 

To examine the performance of the algorithm at detecting 

unknown Gaussian blurs in natural images we performed the 

following experiments. Four test photographs were chosen and 

are shown as figures 5 through 8 below. 

Each image was degraded with a Gaussian blur with standard 

deviations ranging from 1 to 20. After each blur was applied 

an additive white Gaussian noise was applied resulting in a 

signal-to-noise (SNR) of 30 dB (strong noise) and 40 dB 

(milder noise). The algorithm was then used to measure the 

amount of blur in the image. The results of these experiments 

are displayed in figures 9 through 12. 

 

 

 
Figure 5: Aircraft test image 

 
Figure 6: City test image 

 
Figure 7: Bridge test image 

 
Figure 8: Forest test image 

As can be seen the algorithm successfully identifies the 

strength of the Gaussian blur applied to the images quite 

accurately in a range of standard deviations from 1 to 20 
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which is a far wider range of sigma values than algorithms 

currently in the literature. The presence of noise does decrease 

the accuracy of the identification especially in the Aircraft 

image which has large areas of uniform colour where noise 

becomes very apparent but the iterative median filtering does 

make the algorithm fairly resistant to noise. 

 

It is interesting to note that in the Aircraft test image the 

strength of the identified blur does get over estimated. This is 

due to the large uniform coloured areas which have very little 

high frequency information content. This lack of high 

frequency content makes the images appear to be more blurred 

than they really are. In contrast the blur in the City test image 

is consistently underestimated due to the large amount of high 

frequency information present in the image. This over 

abundance of high frequency information makes the image 

appear to be less blurred than it is. 

 

 

 
Figure 9: Blur identification results for City and Aircraft test 

images with 30 dB of additive white noise 

 

 
Figure 10: Blur identification results for Bridge and Forest test 

images with 30 dB of additive white noise 

 
Figure 11: Blur identification results for City and Aircraft test 

images with 40 dB of additive white noise 

 
Figure 12: Blur identification results for Bridge and Forest test 

images with 40 dB of additive white noise 

A final test was performed where an image that contains 

natural blur due to atmospheric turbulence is used as an input 

image. The strength of the blur is identified and the image is 

deconvolved using a plain Wiener filter using the identified 

Point Spread Function (PSF) [5]. The results of this 

experiment can be seen in figure 13. It is apparent that the 

identified blur strength is correct and the deconvolution 

deblurs the image without introducing ringing artifacts 

associated with an incorrectly identified PSF. 

V. CONCLUSION 

In this work is was shown that it is possible to detect the 

standard deviation of a Gaussian blur that has been applied to 

an image with no a priori information about the conditions 

under which the image was captured. The method uses an 

interesting property of the Gaussian function. When a series of 

Gaussians with increasing standard deviations are convolved 

with the Gaussian to be identified an error is produced. The 

error response this process produces has an inflection point 
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where the standard deviations of the Gaussians coincide and 

allows us to identify the standard deviation of the Gaussian 

being analyzed. This process is shown to work with a 

Gaussian blur applied to natural images. This method of 

blurring an image with a series of Gaussians is also used to 

produce the scale space representation of an image and can be 

performed in parallel with any algorithm that uses a scale 

space representation of an image. 

 

The experiments show that in natural images with the presence 

of noise it is possible to identify Gaussian blurs with standard 

deviations that span a wide range without using any sort of 

statistical methods that require extensive training. It is also 

shown how this method can be used to identify the blur 

present in an image blurred naturally by atmospheric 

turbulence and allows one to deconvolve that image 

successfully using a basic Wiener filter.  

 

 
 

 
Figure 13: The standard deviation of the blur present in a real 

image blurred by atmospheric turbulence is identified and used 

to deconvolve the image using a basic Wiener filter. 
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Abstract—Contrast enhancement is a classic image restoration
technique that traditionally has been performed using forms of
histogram equalization. While effective these techniques often
introduce unrealistic tonal rendition in real-world scenes. This
paper explores the use of Retinex theory to perform contrast
enhancement of real-world scenes. We propose an improvement
to the Multi-Scale Retinex algorithm which enhances its ability
to perform dynamic range compression while not introducing
halo artifacts and greying. The algorithm is well suited to be
implemented on the GPU and by doing so real-time processing
speeds are achieved.

Index Terms—Contrast Enhancement, Retinex, Adaptive, Multi-
Scale Retinex, GPU

I. INTRODUCTION

The human eye is a very complex and amazingly versatile
imaging system. It exhibits an enormous dynamic range
and can change its sensitivity very rapidly to operate in a
large range of light levels; this ability is called brightness
adaption. However the range of distinct intensities that the
eye can distinguish at any one time is quite small compared
to the total range of intensities it can adapt to perceive. This
means the eye will struggle to discern very dim intensities
when simultaneously exposed to very bright intensities.
Unfortunately most artificial imaging systems have a much
poorer level of brightness adaption than the human eye and
as such can capture a very low dynamic range of intensities
[1].
This results in many digital images exhibiting poor contrast
either globally or in local regions. Contrast refers to the
difference between the highest and lowest intensities used to
represent an image. The wider the range of intensity values
used to represent the information in an image or area of an
image the higher the contrast. Contrast can also describe the
distribution of intensity values used to represent the structures
in the image. If the occurrence of intensity values are evenly
distributed over the entire range of possible values it will
be easier for a human viewer to to distinguish differing
intensities. This is due to the fact that the various intensity
levels will be spread further apart and are thus easier for our
eyes to tell apart [1], [2].
There are a number of situations that can result in images
exhibiting poor contrast. Some examples include images
captured over a long range through the atmosphere where

scattering and aerosols in the air result in the representation
of the scene only occupying a small portion of the possible
intensity values [3]. A second example is scenes with a
very high dynamic range where portions of the image are
in shadow and another portion of the image contains very
bright information; this is otherwise known an High-Dynamic
Range images (HDR). A final example is in medical scans
where information produced by the detectors is very densely
packed into the digital image representation [4].
The literature contains many techniques for contrast
enhancement. The simplest is to apply an offset and gain to
the image intensities based on the minimum and maximum
values found in the image. This technique does improve
contrast of most images but it is very sensitive to noise and
outliers as a single noisy pixel can be found to be one of the
extreme values and drastically perturb the scaling [2].
Histogram equalization quickly became a popular form of
contrast enhancement and was first applied to medical scan
images. These techniques operate based on the histogram of
intensity values of an image. They seek to redistribute the
intensities in the image in such a way as to achieve a uniform
distribution of intensities across the entire intensity range [4].
Basic histogram equalization considers the histogram of
the entire image in a global fashion, and as such struggles
in images where a small portion of the image exhibits a
drastically different intensity distribution which would then
throw off the equalization for the rest of the image. To combat
this Adaptive Histogram Equalization (AHE) was developed
which performed the same process on a per-pixel basis based
only on the pixel’s neighbourhood. This approach achieves
much higher contrast but amplifies noise, often in an extreme
manner [5].
One of the most versatile forms of AHE is Contrast-Limited
Adaptive Histogram Equalization (CLAHE) which puts a limit
on just how drastically an intensity level can be redistributed.
This algorithm works extremely well on medical images
and fairly well on most real-world images. It has the added
advantage of being relatively simple and as such has been
implemented in a real-time system using specialized hardware
[6]. While there has been an enormous amount of research
done into histogram based contrast enhancement algorithms,
such as [7], [8], they have some drawbacks. These algorithms
tend to produce unrealistic effects when they are applied
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to real-world images which is why they have mainly been
applied to scientific images like medical, thermal and satellite
images. In addition while consumer Graphics Processor Units
(GPU) have provided a parallel computing platform that has
accelerated the implementation of real-time image processing
algorithms the construction of the histogram is awkward on
the parallel architecture of the GPU. Efficient implementations
of the histogram have been proposed for GPU frameworks
like CUDA but for lower level GPU API’s like OpenGL
the histogram is still costly to compute. This paper explores
another approach to contrast enchantment which is better
suited to real-world scenes and easily implemented on the
GPU.
In this paper we are going to make use of Retinex theory
to perform contrast enhancement. Retinex theory was first
proposed by Land and McCann in [9] to describe a model
of how the eye perceives light intensities, which is often at
odds with the actual physical intensities the eye experiences
[10]. This theory has been greatly expanded for use in image
processing since its proposal in papers such as [11]–[14].
This paper aims at furthering this approach which due to
its origins in Retinex theory produces very natural looking
results and lends itself well to real-time implementation on
the GPU.

The remainder of this paper will be structured as follows.
Section II will provide a description of Retinex theory and its
application to contrast enhancement. Section III will present
the proposed algorithm. Section IV will show our results and
Section V will conclude the paper.

II. OVERVIEW OF RETINEX-BASED CONTRAST
ENHANCEMENT

Retinex theory was developed by Land and McCann to
model the disparity they observed between the lightness of
various parts of a scene perceived by the human eye and
the absolute lightness that was actually incident on the eye.
What they found was that the eye does not perceive absolute
lightness but rather relative lightness. This means that the eye
perceives the variations of relative lightness in local areas
in the scene [9], [10]. This phenomenon is what gives the
human eye its great dynamic range and is illustrated in the
classic optical illusion shown in Fig. 1. While it is difficult
to believe, square A and square B in Fig. 1 are the exact
same colour. We perceive that square B is a lighter colour
because it is surrounded by darker squares and in contrast
to its immediate neighbours it is indeed lighter. Square A on
the other hand appears to be dark because in contrast to its
immediate neighbours it is darker. Our eyes and our brain
cannot help but perceive the absolute lightness of square B to
be brighter than square A even though we can see that they
are identical in the second image.

The second element of Retinex theory that we exploit
to achieve contrast enhancement is that our eyes exhibit a
logarithmic response to lightness. This is to allow us to
differentiate a greater number of dim intensities compared to

(a) (b)

Fig. 1. (a) The Adelson Checker Shadow Illusion [15] (b) Proof that square
A and B are identical intensities

bright intensities [1]. This allows us to operate better in dark
environments which are far more challenging for our visual
system than bright environments. This means that using a
logarithmic mapping Retinex based algorithms map intensities
using a response curve that appears more natural to our eyes.

Equations 1 and 2 show the basic formulation of the Single
Scale Retinex (SSR) scheme.

R(x, y) =
log I(x, y)

log[F (x, y) ∗ I(x, y)] (1)

R(x, y) = log I(x, y)− log[F (x, y) ∗ I(x, y)] (2)

where I(x, y) is the 2-dimensional input image, ”∗” denotes
the convolution operator, F (x, y) is the surround function, and
R(x, y) is the SSR output. F (x, y) is the function that defines
the shape and weighting of the averaging kernel used as a
measure of the neighbourhood lightness for each pixel [11]. It
can be seen that SSR can be considered to be a logarithmic
mapping of the ratio of the current pixel intensity to the
average intensity around the pixel. In [11] it is shown that
the best choice for the surround function is a Gaussian which
not only gives the best results but has the added advantage of
being a separable kernel. A separable 2D kernel is one that
can be expressed as the outer product of 2 vectors. This means
that instead of applying the kernel in its 2 dimensional form
one can apply each of the constituent vectors. This approach
drastically reduces the number of computations required to ap-
ply the kernel to an image. Equation 3 describes the Gaussian
function.

F (x, y) = Ke−
x2+y2

2σ2 (3)

where σ is the standard deviation that controls the scale of the
surround. K is chosen to normalize the kernel such that:

∫∫
F (x, y) dx dy = 1. (4)

SSR does exhibit a few problems in that if the scale is set
too small you get good dynamic range compression but you
generate a halo effect around edges. If you set the scale
too high you get less dynamic range compression and a
greying effect can be seen in more uniform areas. In [12]
it is shown that applying the Retinex scheme at only a single
scale cannot simultaneously provide good tonal rendition and
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good dynamic range compression and thus they proposed a
Multi-Scale Retinex (MSR) algorithm. This algorithm applies
the Retinex technique at several scales and then combines the
results using a weighted sum to produce an output as shown
in equation 5.

RMSR(x, y) =

N∑

n=1

wnRn(x, y) (5)

where RMSR(x, y) is the Multi-Scalar Retinex (MSR) output,
Rn(x, y) is the output of Single Scale Retinex (SSR) at
different scales, and wn are the weights associated with the
different scales. The weights are chosen so that

∑
wn = 1,

and N designates the number of scale levels used.

The MSR output contains logarithmic values that run
from very small negative numbers into the positive domain.
As such the final step in the algorithm is to normalize the
resulting values to fall between 0 and 1. This is done using a
gain/offset scheme as described in equation 6.

RMSRi(x, y) = α[

N∑

n=1

wnRni(x, y)]− β (6)

where α is called the gain and β is the offset. β is based
on the minimum value in the image and used to ensure that
the minimum value in the final resulting image is 0. The gain
α is calculated by dividing 1 by the difference between the
maximum and minimum values in the MSR output and scales
final resulting image so that its maximum value is 1. These
values are calculated globally which means that this approach
has a similar problem to a global histogram equalization in that
if the image contains areas with drastically different intensity
distributions the global α and β will not be ideal for all the
regions in the image.

III. PROPOSED ALGORITHM

In this paper we offer an improvement over the classic
formulation of the MSR algorithm. To improve the dynamic
range compression of the algorithm without incurring the halo
artifacts we propose using an adaptive approach to calculating
the gain and offsets for the final stage of the algorithm
and to blend these results with the those produced by the
global calculation. The overview of our proposed algorithm
is illustrated in Fig. 2.

Our approach draws from the adaptive techniques used in
CLAHE [6]. The image is firstly divided into a set of tiles.
The β values are then found for each tile by calculating the
minimum intensities. Next the α values are found for each tile
by finding the difference between the maximum and minimum
intensities. This process produces a 2-dimensional field of α
and β values the same size as the number of tiles selected.
The next step is to expand the field of α and β values to be
the same size at the image. This is done using bilinear inter-
polation. This method is chosen because bilinear interpolation
is cheap to calculate on the GPU. Once we have expanded the
α and β fields we will have values for each pixel of the MSR

Fig. 2. Overview of proposed algorithm

image. We can now apply the α and β values to normalize
the image. An example of the result of applying the adaptive
α and β values can be seen in Fig. 3.

As can be seen in Fig. 3 by applying the adaptive α and β
values we do achieve good dynamic range compression but in
tiles where the image intensities are very uniform we end up
drastically amplifying the noise in that tile. When calculating
the global α and β values it is very unlikely that the entire
image will be a uniform intensity and as such we will not
experience this over-gain. Thus we will not experience the
same noise amplification we see when using purely adaptive
values for α and β. Due to this problem we propose blending
the outputs of the global gain/offset correction step and the
adaptive gain/offset correction step to achieve a compromise
between contrast enhancement and noise amplification.

To facilitate the blending of the Global and Adaptive
MSR results we have to produce a blend map. We found
that the full sized field of α values gives a good indication
of how the two MSR images should be blended. Areas that
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Fig. 3. Result after applying the adaptive α and β values to the MSR image
of the Road input image which can be seen in figure Fig.7. The indicated
region shows the over-gain problem experienced in areas of the image where
the image intensities are very uniform.

require a very large gain usually are areas that are very
uniform in intensity and as such areas that should contain a
larger portion of the Global MSR output. Areas that required
a low α value should contain a larger portion of the Adaptive
MSR output. As such our blend map is produced by first
normalizing the interpolated field of α values by dividing by
the maximum α value which can be seen in Fig. 4.

Fig. 4. Example of a blend map for the Road image

Once we have the normalized blend map we can combine
the Adaptive MSR and Global MSR outputs as a weighted
sum which can be seen in equation 7.

RMSRB = φ×RMSRG + (1− φ)×RMSRA (7)

where φ represents the normalised blend map image, RMSRG

represent the Global MSR image, RMSRA the MSR Adaptive
image, and RMSRB the MSR blended image.
The final design decision we had to undertake was to select the

number of scales, size of the scales and the weightings of the
scales for the MSR algorithm. In [12] it is shown that 3 scales
are sufficient to achieve good tonal rendition and dynamic
range compression and this observation was confirmed in our
experiments. Jobson et al. suggest standard deviations of 15,
80 and 250 for the scales used to enhance images under a
megapixel in size. We found that these values produced good
results but needed to be scaled for images of differing sizes
for optimal results. It was also noted that a Gaussian kernel
with a standard deviation of 250 is very large and almost
encompasses an entire image with a VGA resolution. In the
interest of reducing the amount of computation required for the
algorithm instead of computing the surround function averages
of the largest scale we considered them to be the mean value
of the entire image. This can be computed efficiently and
produces very similar results as using the large scale suggested
in [12]. For the two smaller scales we used a basic heuristic,
which we based on empirical testing, to choose the scale size
based on the input image size. The standard deviation of the
surround function for the smallest scale was considered to be
1.5% the size of the width of the image. The second scale was
considered to be 5% the size of the width of the image. Finally
we had to choose the weighing of scales and we found that
while the best results were produced by heavily weighting the
largest scale it was critical to have an element of the smaller
scales in the algorithm output to enhance the contrast of small
image structures. The weights we used for the smallest to
largest scales were 0.2, 0.1 and 0.7 respectively. We leave
the investigation of what the optimal scales and weightings
are for future work.

IV. EXPERIMENTAL RESULTS

To demonstrate the performance of our proposed algorithm
we have selected three images. The first is a HDR image
and the final two are images that have been captured
through atmospheric turbulence. The proposed algorithm
will be compared to four traditional contrast enhancement
techniques. Those techniques include Histogram Equalization
(HE), Adaptive Histogram Equalization (AHE), Contrast
Limited Adaptive Histogram Equalization (CLAHE), and
traditional MSR. The results can be seen in Fig. 5, 6 and 7

In Fig. 5 we can see that our proposed Adaptive Multi-
Scale Retinex (AMSR) algorithm gives the most pleasing
results for this extreme HDR image. Much of the information
in the dark areas on the left of the image that were originally
hidden is revealed while also providing good contrast in the
bright areas of the image. The HE result is very legible but
is can be seen that there is saturation in the brightest and
darkest areas in the image which is to be expected for a
global approach. AHE gives a very strong contrast but is
very noisy and unrealistic. CLAHE we found does not cope
well with HDR images and even when the Clipping Limit is
manually tuned we could not produce an image where neither
the dark or light portions of the image were saturated. Global
MSR does perform well for this image but as can be seen
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AMSR achieves greater contrast, especially in the darkest
and brights areas, while retaining realistic tonal rendition.

Fig.6 is a difficult image because it is exhibits a very
low contrast and has a large proportion of areas of uniform
intensity. In Fig.6 we see that global HE tends to produce
unrealistic results and AHE gives strong contrast but is
extremely noisy. CLAHE and MSR both produce decent and
very similar results but AMSR manages to produce the best
tonal rendition especially in the darker area on the left of the
tower. For Fig.7 CLAHE produces better results than standard
MSR but we can see that the proposed AMSR algorithm
produces the best contrast enhancement consistently across
the entire image. Again HE produces unrealistic results and
AHE is extremely noisy due to the large uniform regions.
It is interesting to look at the histograms of the images in
Fig.7 which can be seen in Fig.8. It is apparent that our
AMSR algorithm produces the histogram with the smoothest
and widest spread without resulting in saturation at the black
or white bounds of the histogram. The smooth histogram
produced by AMSR captures the same peaks that can be
seen in the histogram of the original image and distributes
them very neatly across the intensity range resulting in a
high contrast output that appears natural to a human viewer.
Unfortunately there are no empirically-based metrics in the
literature that have been able to objectively and reliably
measure the perception of the contrast of complex real
world images by a human observer, however work is being
performed to develop such a metric based on the survey of
a large sample of human observers [16]. In this paper we
employed the classic information metric of entropy [1] as
an attempt to quantitatively measure the quality gain the
algorithms produce, table I shows these results. Firstly we
can see the problem with using these sorts of metrics in the
results for the AHE outputs. These images are extremely
noisy and the metric perceives the noise as large amounts of
information even though noise is not perceived as useful to
a human observer. We can however see that for the CLAHE,
MSR and AMSR results we get a useful comparison. In the
HDR image Shadow MSR out performs CLAHE but AMSR
gives the most information gain. In Road and Tower we can
see that CLAHE produces more information than MSR but
AMSR beats CLAHE in both cases.

Original HE AHE CLAHE MSR AMSR

Tower 5.95 5.4806 7.8496 6.5591 6.3629 6.7471

Road 6.4857 5.8594 7.993 7.3181 7.0171 7.4123

Shadow 6.0406 5.0049 7.8669 6.8229 7.4627 7.7254

TABLE I
ENTROPY TEST RESULTS

The AMSR Algorithm was implemented for the GPU using
OpenGL. The algorithm was run on a desktop computer with
the specifications show in table II. For comparison we used

a GPU implementation of the CLAHE algorithm which uses
scattering to produce histograms and is discussed in [17] and
the source code can be found [18]. The AMSR and CLAHE
implementations were run using the Tower and Road images
found in Fig.6 and 7. The results are shown in table III.
As can been seen the AMSR algorithm runs faster than the
CLAHE algorithm by almost an order of magnitude. This
is because the AMSR algorithm is based on a series of
basic kernel convolutions and does not require the awkward
implementation of the histogram that is required in CLAHE.

CPU Intel Core I7-2600k 3.4 GHz Processor

RAM 8 GB DDR3 RAM

GPU nVidia GTX 580 graphics card

TABLE II
SPECIFICATION OF THE DESKTOP COMPUTER USED IN THE PERFORMANCE

TESTS

560x460 resolution 876x592 resolution

CLAHE 30 fps 14 fps

AMSR 296 fps 131 fps

TABLE III
PERFORMANCE TEST RESULTS

V. CONCLUSION

Contrast enhancement is a classic image restoration
technique that has been employed to improve the legibility
of images and the information they contain since the times
of analog image capture. The traditional approach to digital
contrast enhancement is to employ a form of histogram
equalization. While this approach does improve contrast it
often produces an unrealistic and saturated effect which is
very apparent when applied to real-world scenes. This paper
explores the use of Retinex theory for the purpose of contrast
enhancement. An overview of Retinex theory and its use
as a digital image processing technique in the form of the
Single-Scale and Multi-Scale Retinex algorithms is provided.

This paper proposes an improvement to the traditional
global Multi-Scale Retinex algorithm which allows it to
improve its dynamic range compression while not producing
the traditional artifacts associated with Retinex based methods.
The Adaptive Multi-Scale Retinex algorithm makes use of a
model of how our eyes naturally perceive scenes and as such
the output of the algorithm looks very natural to a human
viewer. The experimental results show that for real-world
images AMSR produces slightly better results than CLAHE
which is currently the most versatile contrast enhancement
algorithm in the literature. Our Adaptive Multi-Scale Retinex
algorithm is also well suited to implementation on the GPU
and achieves speeds around 10 times faster than a GPU
implementation of CLAHE as AMSR is based on simple
kernel convolutions and does not require the awkward GPU
implementation of the histogram.
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(a) Original (b) HE (c) AHE

(d) CLAHE (e) MSR (f) proposed

Fig. 5. Contrast enhancement results for the HDR Shadow [19] image

(a) Original (b) HE (c) AHE

(d) CLAHE (e) MSR (f) proposed

Fig. 6. Contrast enhancement results for image Tower which has been captured through atmospheric turbulence
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(a) Original (b) HE

(c) AHE (d) CLAHE

(e) MSR (f) proposed

Fig. 7. Contrast enhancement results for image Road which has been captured through atmospheric turbulence
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(a) Original (b) HE (c) AHE

(d) CLAHE (e) MSR (f) proposed

Fig. 8. Histograms for Fig. 7 Road.
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Abstract—Despite the fact that image texture features ex-
tracted from high-resolution remotely sensed images over urban
areas have demonstrated their ability to distinguish different
classes, they are still far from being ideal. Multiresolution gray-
scale and rotation invariant texture classification with Local
Binary Patterns (LBPs) have proven to be a very powerful texture
feature. In this paper we perform a study aiming to improve
the performance of the automated classification of settlement
type in high resolution imagery over urban areas. That is, we
combined the LBP method based on recognising certain patterns,
termed “uniform patterns” with the rotational invariant variance
measure that characterises the contrast of the local image
texture, then combined multiple operators for multiresolution
analysis. The results showed that the joint distribution of these
orthogonal measures improve performance over urban settlement
type classification. This shows that variance measure (contrast)
is an important property when classifying settlement types in
urban areas.

I. INTRODUCTION

Rapid and massive growth of population and migration to
urban areas results in a rapid and random spread of formal
and informal physical infrastructure. Effective and regular
monitoring of this spread of infrastructure is vital in delivering
basic engineering services such as water, sewerage and solid
waste removal, and providing essential services such as health
and education. For a successful monitoring system, an effective
detection method of this infrastructure is crucial. Traditional
methods such as census, gathering demographic data, and
mapping using samples are impractical and unsatisfactory for
urban management [1]. However, using remote sensing tools
an automated system can be used as a detection tool of phys-
ical infrastructure [2]. Using high resolution imagery (e.g.,
QuickBird, a high-resolution commercial earth observation
satellite), texture feature algorithms have been shown to be
effective in detecting and describing settlement types in urban
areas [3].

In a study to compare texture algorithms in urban settle-
ment classification, the Local Binary Pattern (LBP) texture
feature algorithm proved to be most effective in classifying
the low-income and informal settlement types [4]. A 2-D
surface texture has two properties, spatial structure (pattern)

and contrast (“amount of texture”). The LBP is simple to
compute and by definition is gray scale invariant, that is, it
neglects contrast properties which makes the LBP algorithm
an excellent measure for spatial structures. However, due to
viewing- and illumination-geometry effects, the LBP algorithm
was shown to offer less than ideal generalization performance
[3]. For settlement classification one would think neglecting
the contrast measure would improve performance, but this
does not appear to be the case for generalization performance.
Contrast may have a significant effect in the classification of
settlements.

Ojala [5] showed that combining spatial structure with the
gray level contrast can improve performance in classifying
texture features. In an attempt to improve performance for ur-
ban settlement classification, we apply this theory and evaluate
the significance of contrast in urban settlement classification.
The proposed algorithm uses the same rotational gray scale
and rotational invariant LBP and combines it with a rotational
invariant Variance measure which characterises the contrast.

In this paper (using Van den Bergh’s [3] work on cross-
date imagery for comparative results), we show that adding
the rotational invariant variance measure to the gray-scale
and rotational invariant LBP improves performance. The per-
formance of the extended LBP algorithm then depends on
the number of bins (features) used to calculate the Variance
measures.

Section 2 briefly discusses prior and related urban set-
tlements classification algorithms, and a brief derivation of
the algorithms used. Section 3 discusses the experimental
procedure i.e., extraction of the input images, LBP features
extraction, extended LBP feature extraction and classification
of the settlement types. Results with discussion are discussed
in section 4, followed by conclusions in section 5.

II. PRIOR AND RELATED WORK

Image texture analysis methods have been broadly divided
into three categories: statistical methods (here a texture image
is described by a collection of statistics of the selected feature,
e.g., Co-occurence Matrix), model based methods (a texture
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image is modeled as a probability model or as a linear
combination of a set of basis functions, e.g., Wavelet transform
[6] and Markov model [7]) and structural based methods
(a texture image is viewed as consisting of many textural
elements called texels, arranged according to some placement
rules, e.g., Morphological Profiles [8]) [9].

In urban area images stuctural based methods have been
shown to be successful in setting apart different settlement
types [2]. The LBP (structural method) appeared to be most
effective when compared to other known texture algorithms
(e.g. Gray-level Co-occurrence Matrix (GLCM), Granulomet-
rics and Discrete Wavelet Transform (DWT)) [4]. The LBP
was used for cross-date Quickbird image (Soweto, located
in Gauteng, South Africa as study area) urban settlement
type classification and the results were not as impressive due
to effects of varying viewing- and illumination geometry of
satellite images [3].

The cross-date images study [3] involved the classification
of two scenes of the same area acquired under different
conditions. The images were acquired at different times of the
year, which altered the orientation and length of the shadows.
An ideal texture feature is one that is insensitive to such
changes whilst being sensitive to settlement type. The addition
of a contrast component to the LBP features does not directly
effect the desired invariance to shadow orientation and length,
but it is expected that the richer features will nevertheless
improve settlement classification accuracy. The same data set
(Soweto case study) will be used as basis for comparison with
the extended LBP algorithm.

The extended LBP is a joint distribution of gray-scale
and rotational invariant LBP with the rotational invariant
Variance measure. We do not go into detail in the derivation
of the algorithms but only report the equations used. The full
derivations can be found in [5].

A. Gray-Scale and Rotational Invariant Local Binary Patterns

LBPs by definition are invariant with respect to any mono-
tonic transformation of the gray scale. This is achieved by
considering just the signs of differences instead of the exact
values of the gray scale. Consider texture T

T ≈ t(s(g0 − gc), s(g1 − gc), . . . , s(gP−1 − gc)) (1)

in a local neighbourhood with gray levels of P (P > 1) image
pixels. Where gP (p = 0, . . . , P − 1) gray values, gc being the
centre gray value (see figure 2a), and

s(x) =

{
1, x ≥ 0
0, x < 0

(2)

the sign is 1 if positive and 0 if negative. The above is
transformed into a unique P-bit pattern code by assigning
binomial coefficient 2P to each sign s(gP − gc):

LBPP,R =
P−1∑

p=0

s(gP − gc)2P (3)

LBP features are then calculated using the rotational invariant
LBP with “uniform patterns” (uniform circular structures,
illustrated in figure 2b):

LBPriu2
P,R =

{ ∑P−1
p=0 s(gp − gc) if U(LBPP,R) ≤ 2

P + 1 otherwise
(4)

where

U(LBPP,R) =
|s(gP−1 − gc)− s(g0 − gc)|
+
∑P−1

p=0 |s(gP − gc)− s(gP−1 − gc)|.
(5)

U(“pattern”) is a uniformity measure, which corresponds to
the number of spatial transitions in the “pattern” and super-
script (riu2) is rotation invariant “uniform” binary patterns
that have a U value of at most 2.

B. Rotational Invariant Variance Measures

Local gray level variance can be used as a contrast measure
and can be derived as follows:

VARP,R =
1

P

P−1∑

p=0

(gp − µ)2,where µ =
1

P

P−1∑

p=0

gp. (6)

VARP,R is invariant against shifts in gray scale and rotation
along the circular neighbourhood.

To improve performance of the LBP we consider
its joint distribution with the local variance denoted as
LBPriu2

P,R/VARP,R

III. EXPERIMENT

The data consisted of two QuickBird images over the
Soweto area: one acquired on 2005-10-18 (early summer, rain
season, called d1), and another on 2006-05-30 (early winter,
called d2) [3]. QuickBird is a sun-synchronous polar-orbiting
remote sensing satelitte with a panchromatic sensor with a
0.6 m ground sampling distance. This high resolution band,
together with four multispectral bands at 2.4 m resolution,
makes QuickBird ideal for urban monitoring. The study area
contains a large variety of formal and informal settlements.
Four settlement types are investigated: formal suburbs(FS),
formal settlements with backyard shacks (FSB), ordered
informal settlements (OIS), and a non-built-up (NBU) class to
represent vegetation and bare areas. Figure 1 provides some
samples of what these settlement classes look like.

The experimental procedure was as follows:
1) Extract input images

Two QuickBird images (Panchromatic images with a
resolution of 0.6 m) over the same area at different times
with different viewing- and illumination geometries
were acquired. From each image, polygons containing
examples of different settlement types were extracted,
from which multiple non-overlapping examples of each
type were extracted. From each polygon, square tiles
(120 m × 120 m) from random locations entirely within
the demarcated polygons were extracted. Tiles were
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(a) formal settlement (b) formal settlement with back-
yard shacks

(c) ordered informal settlement (d) non-built-up

Fig. 1. Examples of the settlements classes found in Soweto

paired, so that the same location is extracted from both
dates (images) [3].

2) Extract LBP features
We construct regular circular neighbourhoods with
P (P > 1) image pixels and radius R (R > 0),
with the coordinates of the gray values gP being
(−R sin (2πp/P )),(R cos (2πp/P )) at gc(0, 0). Gray
values that do not fall exactly in the centre pixel are
estimated by interpolation, see figure 2a. From the
circular neighbourhood we measure the LBPs using
equation 3. We construct a look-up table that contains all
the uniformity measures corresponding to the number of
image pixels used, see figure 2b. Using the look-up table
LBPs with uniform patterns are extracted. Uniformity
measures U with the value of at most 2 are stored as
uniform patterns with bin labels (0→ P− 1) while the
non-uniform patterns are stored as bin label (P + 1),
where bins 0 → P − 1 correspond to a texture feature
from equation 5, see figures 2b and 2c.

3) Extended LBP features extraction
Using the circular neighbourhoods as mentioned above
we calculate the Variance measure using equation 6.
Since Variance measures have continuous outputs, quan-
tization is needed. The bin breaks are constructed such
that they are evenly spaced according to the variance
percentiles, that is, by adding up all the feature distribu-
tions for every single model image in a total distribution
and using R1 we calculate the bin breaks for different
number of bins (3 → 20 bins in this case). We then
constructed a simple 2D joint distribution histogram

1http://www.r-project.org/
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(a) Local circularly symmetric neighbourhood set (P =
8) of radius R, where g1, g3, g5, g7 are estimated by
interpolation.
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(b) The Look Up Table (LUT): To achieve rotation invari-
ance the LUT is used to store all the posible the uniform
patterns to their unique code i.e., for P = 8, nine “uniform”
patterns with the numbers (0 – 8) corresponding to their
unique LBPriu2

8,R codes.

9

(c) A sample of nonuniform patterns, all of which are
labeled as code 9.

Spot Spot/flat Line end Edge Corner

(d) Different texture primitives detected by the uniform
patterns of LBP.

Fig. 2. Black and white circles correspond to bit values of 0 and 1 in the
8-bit pattern of the operator.

i.e LBP/VAR for each bin size for different P and R
values. Multiresolution features are obtained by simply
concatenating LBP features extracted at multiple radii
(R parameter in equations 4 and 6).

4) Training (Subset A) and Testing (Subset B)
We determine the generalization performance for the
different texture features algorithms by evaluating the
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LBP code = 8

LBP code = 6

LBP code = 5

LBP code = 5

Fig. 3. Extraction of LBP features for P = 8.

performance of the Support Vector Machine (SVM)
classifier over the six possible combinations (i.e. Ad1 ⇀↽
Bd1, Ad2 ⇀↽ Bd2, Ad1 ⇀↽ Ad2, Ad1 ⇀↽ Bd2, Bd1 ⇀↽
Ad2, Bd1 ⇀↽ Bd2 sets). We use Weka’s2 Sequential
Minimal Optimization (SMO) algorithm for training the
support vector classifier.

IV. RESULTS AND DISCUSSION

In a comparative study investigating the best algorithm for
settlement classification, the LBP algorithm showed excellent
performance [4]. However, it did not perform well when it
was tested for cross-date imagery over the same area as
the study mentioned above [3]. A study extending the LBP
by adding variance measures (contrast properties) for texture
classification, showed the extended LBP to be very powerful.
We repeated the cross-date study for LBP [3] and implemented
this new extended LBP with variance measures for urban
settlement classification where the details are reported in
table I.

TABLE I
THE NUMBER OF PATTERNS IN EACH CLASS, FOR EACH SUBSET.

FS FSB OIS NBU Total

Subset A 557 2820 2059 1358 6794
Subset B 496 3915 1969 1180 7560

To obtain the standard deviations on various classifica-
tion results, the following procedure was used to evaluate a
given configuration using data sets X and Y (where X =
Ad1

and Y = Bd1
):

1. Train a support vector machine (SVM) using the whole
of set X .

2. Partition set Y in 10 folds using stratified sampling to
preserve related class frequency.

3. Evaluate the SVM (trained on X) on each of the 10
folds of Y , obtaining the one accuracy figure for each
fold.

2www.cs.waikato.ac.nz/ml/weka/

4. Exchange X and Y , and repeat 1–3.
This process, denoted by X ⇀↽ Y , produces 20 individual
values for each accuracy metric, which were then used to
calculate a mean and standard deviation for each metric. We
distinguish between two classes of test, namely same-date
(when both training and test sets are derived from the
same-date satellite image) and cross-date (when two different
satellite scenes were used). The difference in performance
between these to classes highlights the degree to which
a particular classifier is invariant to changes in shadow
orientation and length.

From figure 4 it is clear that the extended LBP outperforms
the LBP with no variance measures, achieving accuracies
close to 95% and more for same-date experiments
(e.g., Ad1 ⇀↽ Bd1). Even for cross-date data set (i.e.,
Ad1 ⇀↽ Bd2, Ad2 ⇀↽ Bd1) the LBPriu2

P,R/VARP,R achieved
close to 90%.
Overall performance is slightly improved by using
the multiresolution features (see figure 4(a) and
4(b)), with the improvement being higher for
LBPriu2

8,1 /VAR8,1 + LBPriu2
16,2/VAR16,2 + LBPriu2

24,3/VAR24,3

achieving accuracies close to 95% on cross-date performance.

A more detailed comparison of the LBP and extended
LBP with multiresolution is reported in table II, where we
can clearly see the effects of adding the variance mea-
sures, bin sizes, and multiple resolutions. In all cases the
LBPriu2

P,R/VARP,R features outperform the LBPriu2
P,R features.

The performance drastically improves with the increase of bin
sizes (3–6) but then fluctuates slightly as the number of bins
are increased. Table II also shows a slight improvement from
LBPriu2

P,R/VARP,R (8,1) to LBPriu2
P,R/VARP,R (8,1 + 16,2) but

for LBPriu2
P,R/VARP,R (8,1 + 16,2 + 24,3) we observe slightly

higher increase on accuracies. On all the figures in figure 4
we observed a peak around bin 7, and as the number of
bins increased the performance was not meaningfully better.
We then took bin 7 as the optimum number of bins and
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Fig. 4. Boxplots showing the overall performance(%) for LBPriu2
P,R (LBP) and LBPriu2

P,R/VARP,R (Bins) over same date and cross date imagery with
multiresolution data sets (b) and (c).

investigated its accuracies in terms of per-class true positive
(TP) rate (see table III). It is clear that the performance of
the algorithm is depended on the settlement type, where we
see that for formal settlements with backyard shacks (FSB)
and non-built up (NBU) classes the TP values are much
higher than those of formal settlements (FS) and ordered
informal settlements (OIS) classes. The standard deviations

for Ad1 ⇀↽ Bd2 are high in all cases except for the NBU class
where its standard deviation is high at Ad1 ⇀↽ Ad2. Table III
also reveals that 100% classification accuracy was attained for
certain classes, which is too good to be true, and calls for
further investigation of the algorithms with a larger data set.
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TABLE II
A SAMPLE OF THE RESULTS IN FIGURE 4 IN TABLE FORMAT, WHERE THE HIGHEST PERFOMANCE IS HIGHLIGHTED IN EACH DATA SET.

Data set LBPriu2
P,R LBPriu2

8,1 /VAR8,1

P,R=8,1 3 6 8 10 12 14 16 (bins)

Ad1 ⇀↽ Bd1 92.44 (1.185) 93.91 (1.507) 95.99 (0.708) 95.83 (0.814) 95.36 (1.658) 95.75 (0.932) 95.53 (1.537) 94.85 (1.096)
Ad1 ⇀↽ Ad2 78.48 (3.610) 84.80 (5.675) 93.30 (0.864) 92.81 (1.982) 93.89 (1.259) 92.85 (1.891) 93.67 (1.453) 93.77 (1.552)
Ad1 ⇀↽ Bd2 71.44 (15.932) 81.09 (3.921) 90.06 (1.745) 85.68 (5.302) 88.89 (1.909) 85.50 (5.274) 87.02 (3.251) 86.78 (2.553)
Bd1 ⇀↽ Bd2 78.44 (14.956) 79.81 (1.549) 87.89 (6.545) 88.08 (6.537) 87.70 (7.207) 88.42 (6.309) 88.25 (6.814) 88.58 (6.372)
Ad2 ⇀↽ Bd1 75.90 (3.820) 82.45 (5.730) 90.79 (3.757) 91.29 (3.227) 90.11 (4.327) 89.82 (4.720) 90.20 (4.571) 90.12 (4.843)
Ad2 ⇀↽ Bd2 91.99 (2.149) 95.22 (3.294) 98.02 (2.055) 98.33 (1.656) 98.00 (2.053) 98.01 (2.027) 98.08 (1.946) 97.73 (2.257)

P,R=8,1+16,2 LBPriu2
8,1 /VAR8,1 + LBPriu2

16,2/VAR16,2

Ad1 ⇀↽ Bd1 92.26 (2.831) 93.92 (2.624) 96.21 (1.625) 96.11 (1.141) 96.17 (1.358) 95.80 (1.033) 96.51 (0.970) 95.92 (0.715)
Ad1 ⇀↽ Ad2 79.90 (6.158) 87.33 (5.677) 94.62 (1.088) 95.20 (0.699) 94.53 (1.148) 95.89 (1.359) 95.24 (1.277) 94.68 (1.445)
Ad1 ⇀↽ Bd2 73.58 (9.492) 87.48 (6.647) 94.00 (3.186) 94.01 (1.717) 91.59 (0.761) 90.17 (0.987) 90.30 (0.962) 90.46 (0.800)
Bd1 ⇀↽ Bd2 81.26 (12.159) 87.32 (2.321) 92.24 (2.311) 93.96 (1.207) 92.60 (2.442) 92.98 (2.227) 92.88 (2.608) 93.99 (1.657)
Ad2 ⇀↽ Bd1 82.30 (7.146) 85.04 (6.422) 93.67 (1.498) 94.51 (2.046) 94.14 (2.461) 93.55 (2.978) 94.04 (2.370) 94.08 (2.505)
Ad2 ⇀↽ Bd2 95.22 (0.544) 95.93 (2.999) 98.99 (0.991) 98.83 (1.178) 98.88 (1.143) 98.87 (1.111) 98.96 (1.070) 98.82 (1.204)

P,R=8,1+16,2+24,3 LBPriu2
8,1 /VAR8,1 + LBPriu2

16,2/VAR16,2 + LBPriu2
24,3/VAR24,3

Ad1 ⇀↽ Bd1 94.03 (2.553) 96.16 (1.956) 97.64 (0.826) 97.45 (0.540) 97.61 (0.559) 97.69 (0.280) 97.96 (0.433) 97.39 (0.420)
Ad1 ⇀↽ Ad2 86.50 (0.658) 92.05 (2.222) 94.21 (1.594) 93.92 (0.699) 93.96 (0.548) 94.16 (0.673) 93.41 (0.361) 94.05 (0.785)
Ad1 ⇀↽ Bd2 77.95 (4.768) 90.85 (4.571) 94.00 (4.330) 92.89 (2.253) 91.85 (2.182) 91.05 (1.842) 91.79 (2.069) 91.44 (2.051)
Bd1 ⇀↽ Bd2 79.43 (1.220) 92.57 (0.624) 96.36 (1.469) 97.23 (1.561) 95.74 (0.640) 96.61 (0.693) 96.31 (0.553) 96.76 (0.645)
Ad2 ⇀↽ Bd1 86.83 (4.893) 87.36 (5.396) 95.67 (0.708) 96.09 (0.430) 95.85 (0.543) 96.16 (0.636) 96.04 (0.541) 96.09 (0.545)
Ad2 ⇀↽ Bd2 96.00 (0.693) 97.05 (1.797) 98.93 (1.069) 98.89 (1.083) 98.98 (1.027) 98.81 (0.904) 98.99 (0.973) 98.94 (0.972)

TABLE III
OVERALL CLASSIFICATION ACCUARACY FOR MULTIRESOLUTION LBPriu2

P,R/VARP,R AT LOWEST BIN SIZE THAT YIELDS OPTIMUM PERFORMANCE.

P,R Bins Data set Overall FS FSB OIS NBU
Accuracy(%) TP(%) TP(%) TP(%) TP(%)

8 7 Ad1 ⇀↽ Bd1 95.782 (1.584) 87.170 (12.486) 96.330 (3.662) 96.060 (4.370) 100.00 (0.000)
Ad1 ⇀↽ Ad2 94.061 (0.885) 82.255 (20.412) 98.910 (0.485) 86.870 (3.202) 95.895 (4.277)
Ad1 ⇀↽ Bd2 89.658 (0.798) 76.580 (24.491) 97.615 (0.767) 65.725 (3.179) 99.900 (0.205)
Bd1 ⇀↽ Bd2 87.194 (7.331) 79.032 (20.347) 94.340 (3.273) 62.645 (37.457) 99.950 (0.154)
Ad2 ⇀↽ Bd1 91.641 (3.418) 79.412 (19.230) 95.675 (3.214) 82.310 (15.862) 97.905 (2.224)
Ad2 ⇀↽ Bd2 98.029 (2.050) 96.817 (5.791) 99.985 (0.067) 90.085 (10.299) 100.00 (0.000)

8+16 7 Ad1 ⇀↽ Bd1 96.643 (1.343) 88.608 (10.171) 96.535 (3.387) 99.380 (0.763) 100.00 (0.000)
Ad1 ⇀↽ Ad2 95.244 (0.598) 91.088 (12.430) 99.175 (0.505) 85.685 (5.515) 96.220 (3.924)
Ad1 ⇀↽ Bd2 93.680 (2.471) 83.285 (18.089) 94.890 (1.558) 87.390 (10.179) 99.900 (0.205)
Bd1 ⇀↽ Bd2 92.882 (1.954) 82.093 (16.429) 96.550 (0.839) 84.915 (14.865) 99.950 (0.154)
Ad2 ⇀↽ Bd1 94.572 (1.676) 80.125 (18.795) 98.275 (1.166) 91.720 (7.774) 98.350 (1.913)
Ad2 ⇀↽ Bd2 99.054 (0.987) 96.537 (5.980) 99.850 (0.199) 97.255 (2.874) 100.00 (0.000)

8+16+24 7 Ad1 ⇀↽ Bd1 97.765 (0.476) 90.170 (10.245) 98.650 (1.402) 99.080 (1.123) 100.00 (0.000)
Ad1 ⇀↽ Ad2 94.312 (1.702) 83.343 (17.415) 99.890 (0.180) 82.685 (14.843) 97.100 (3.007)
Ad1 ⇀↽ Bd2 93.842 (2.980) 76.737 (22.774) 98.735 (1.323) 85.930 (14.559) 99.950 (0.154)
Bd1 ⇀↽ Bd2 96.107 (0.904) 85.737 (18.993) 97.970 (0.683) 95.630 (3.977) 99.975 (0.112)
Ad2 ⇀↽ Bd1 95.398 (0.482) 83.028 (18.519) 98.530 (1.249) 92.940 (2.316) 99.470 (0.983)
Ad2 ⇀↽ Bd2 98.995 (1.047) 95.340 (7.982) 99.665 (0.367) 98.440 (1.693) 100.00 (0.000)

V. CONCLUSION

This paper presented a settlement classification experiment
involving two scenes of the same area, acquired under different
conditions, including seasonal changes in vegetation and the
length and orientation of shadows cast by the buildings. The
results indicate that adding the rotational invariant variance
measure to the rotational and gray-scale invariant LBP does

improve performance in classifying settlement types in urban
areas. We can then conclude that contrast properties are
significant in the task of classifying settlement type. Some
differences remain between the classification performance in
same-date experiments vs cross-date experiments; this is not
entirely unexpected, since the addition of the contrast features
is unlikely to provide robust invariance to the influence of
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shadows. The good news, however, is that the gap between
same-date and cross-date classification performance closed
somewhat with the addition of contrast features, rather than
widen.

Improvements to image features that result in better clas-
sifier generalization performance brings us one step closer
towards operational implementation of a fully automated
settlement type classification system. Once such a system
has achieved adequate classification accuracy, the goal of
automated change detection in urban areas is within reach.
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Abstract—Most image processing and machine vision algo-
rithms are evaluated on synthetic images, usually of known target
patterns, to determine their effectiveness under controlled con-
ditions. Such synthetic images are often rendered using an area-
weighted strategy, which implies that the point spread function
(PSF) of the simulated optical system is a box function. This
paper discusses several rendering strategies that can be employed
to extend the generation of synthetic images to more general
point spread functions. In particular, high-accuracy algorithms
for rendering Gaussian and circular aperture diffraction PSFs
are presented.

I. INTRODUCTION

Machine vision algorithms are typically hard to implement
correctly because small errors in the implementation may not
necessarily lead to easily observable errors in the output.
To guard against such implementation errors it is prudent to
test the algorithm under controlled conditions. This usually
requires synthetic images with known properties, such as
dynamic range, signal-to-noise ratio, noise distribution, and
optical system point spread function.

A quick review of the literature will reveal that many such
experiments simplify the synthetic image generation process
by assuming that the noise is additive in nature, with a
Gaussian distribution, and that the optical system PSF can
be approximated as a Gaussian. These assumptions make for
an efficient implementation, especially if a Gaussian blur is
used to simulate the effect of the PSF at the target resolution
of the synthetic image. Although these assumptions are not
inherently poor for the evaluation of many machine vision
algorithms, it is desirable to have more realistic simulation
methods available for evaluating those methods that require
greater accuracy in PSF and noise simulation.

A few algorithms can be tested rigorously using relatively
simple test images. One example is the slanted edge algorithm
that estimates optical system resolution by computing the
Modulation Transfer Function (MTF) of a knife-edge tar-
get [1]. For this algorithm the synthetic image can be a simple
step function in intensity, with the edge rendered at a specific
angle, and with a known PSF. Other examples include super-
resolution methods, where multiple low-resolution images are
combined to construct a higher resolution image [2]. These
algorithms can be evaluated by presenting them with synthetic
images of simple geometric shapes (e.g., black polygons on
white backgrounds), and measuring the resolution of the super-
resolved output using the slanted edge algorithm mentioned

above. Lastly, the accuracy of algorithms designed to extract
simple features from images, such as rectangle-, circle- or
ellipse-detection algorithms [3] can be evaluated on simple
synthetic images consisting of black polygons on white back-
grounds.

In all of the above cases the algorithms are best evaluated
on synthetic images where the PSF closely matches the PSF of
the expected real-world application, which typically requires
modeling at least lens aperture diffraction and photosite aper-
ture effects. Surprisingly, details on rendering synthetic images
with PSFs that accurately capture the desired properties are not
often included in papers relying on such synthetic images for
validation experiments.

This paper discusses several algorithms that may be used to
render synthetic images with specific point spread functions,
focusing on some common PSFs, including a box function
PSF, a Gaussian PSF, a circular aperture diffraction PSF, and
a birefringent crystal optical low pass filter PSF.

II. BACKGROUND

A. Point spread functions

The point spread function describes the finite impulse re-
sponse of an imaging system, in other words, the response
when imaging a point source. The PSF is defined in the spatial
domain, and has a frequency domain analogue that is called
the modulation transfer function (MTF), which can be obtained
via the Fourier transform.

Unless the PSF is itself an impulse function, it will distribute
the light originating from a point source over a region with
non-zero area. Visually, this spreading is perceived as blur; for
a point source, we will observe a larger blob. If the true object
being imaged is not a point source, the effect of the PSF may
be more complex in appearance. In practice, the interaction
of the PSF and the discrete sensing elements (photosites) of a
digital image sensor can be thought of as “placing the PSF at
the centre of each photosite, and weighting the light coming
from the true object according to the PSF”. The resulting
image is thus the convolution of impulse functions placed at
the photosite centres, the PSF, and the true object.

If the PSF is shift invariant, i.e., identical across the focal
plane, then the convolution can be implemented efficiently in
the Fourier domain as the product of the Fourier transform of
the true object and the MTF, followed by an inverse Fourier
transform to return to the spatial domain.
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Fig. 1. Box function PSF

Fig. 2. Gaussian PSF

B. Common point spread functions

Some of the commonly occurring point spread functions
follow:

1) Box PSF: The box function PSF corresponds to the
rectangular photosites of a matrix sensor. As such, any image
formed by a matrix sensor will ultimately involve a convo-
lution step with the box function. A fill factor of less than
100% may imply that the effective box function is narrower
than the photosite pitch, and a non-square photosite geometry
(e.g., L-shaped) may be in effect; both these factors can be
modelled if desired by piecewise decomposition into multiple
smaller box functions.

The 2D box function is visualised in Figure 1. Fortunately,
the 2D box function PSF lends itself to a highly efficient im-
plementation when rendering polygon shapes: each photosite’s
intensity is simply proportional to the area of the pixel covered
by the target polygon. This intersection can be computed using
the Sutherland-Hodgman polygon clipping algorithm [4], for
example.

2) Gaussian PSF: The Gaussian PSF is often used to
introduce a blur effect into synthetic images. Although the
Gaussian PSF does not correspond to any common phys-
ical phenomenon, it does serve as a coarse approximation
to diffraction effects. The primary reason for its popularity
appears to be ease of implementation and use.

A 2D Gaussian PSF is shown in Figure 2. Although a direct
implementation of this PSF is straightforward, it is rather more
involved to obtain highly accurate synthetic images; one such
method is discussed below in Section III-D.

3) Circular aperture diffraction PSF: Light passing
through a circular aperture is affected by Fraunhofer diffrac-
tion to produce a light intensity distribution known as the Airy
pattern [5]. The width of this pattern is inversely proportional
to the diameter of the aperture, thus smaller apertures produce
wider Airy pattern point spread functions. For incoherent light,

Fig. 3. Circular aperture diffraction PSF
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Fig. 4. Circular aperture diffraction MTF

the Airy pattern is defined as

I0 ·
(
2J1(x)

x

)2

(1)

where J1 is the Bessel function of the first kind, of order one,
and I0 represents the peak intensity. Note that x = πq

λN
, where

λ is the wavelength of the light, N is the aperture f-number,
and q is the radial distance from the axis passing through the
centre of the aperture. This PSF is illustrated in Figure 3. The
concentric side-lobes of the pattern are barely discernible after
the second cycle, however, the support of the Airy pattern is
infinite, and the side-lobes never quite reach zero.

The Fourier transform (or Modulation Transfer Function,
MTF) of the Airy pattern is the Chinese hat function:

chat(s) =
2

π

(
cos−1(s)− s

√
1− s2

)
(2)

where 0 < s ≤ 1 represents the normalised spatial frequency,
which is defined such that s = λNf , with f denoting un-
normalised frequency. This function is illustrated in Figure 4,
which clearly shows that the Airy pattern PSF acts as a low-
pass filter.

The Airy pattern is of particular importance to the rendering
of synthetic images produced by a lens, since even in the
absence of a physical aperture stop the lens itself acts as
an aperture. For a wavelength of 550 nm and a photosite
pitch of 5 micron, diffraction will reduce system resolution for
apertures with an f-number greater than f/5.6. For even smaller
photosite pitch values, this maximum allowed f-number must
be decreased even further to prevent loss of resolution owing
to diffraction.

In the frequency domain, the Airy pattern MTF reaches
exactly zero and remains at zero beyond the critical frequency
f = 1

λN
. This property is poorly approximated by a Gaussian

PSF (which also has a Gaussian MTF), which does not decay
quite as rapidly as the Airy pattern MTF. Should one wish
to approximate the Airy pattern with a Gaussian regardless of
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Fig. 5. 4-dot birefringent OLPF PSF with a 0.75 photosite pitch displacement

its limitations, the best-fitting Gaussian approximation in the
least-squares sense can be obtained by choosing the standard
deviation to be σ ≈ 0.425λN .

4) Birefringent OLPF PSF: An optical low-pass filter
(OLPF) can be used to suppress the power at frequencies above
the Nyquist limit for a given photosite pitch. Strictly speaking,
this is a requirement to ensure correct sampling, and aliasing
artifacts may appear in images captured with an optical system
that lacks an OLPF. If the lens aperture is chosen carefully
with respect to the photosite pitch, it is possible to employ
diffraction to act as a low-pass filter, but this approach is
not practical for larger photosite pitches (e.g., larger than 5
micron) when used with large relative apertures. If a Bayer
colour filter array is included in the sensor design, it becomes
even more important to minimise aliasing, which may manifest
as colour interpolation errors.

One method of constructing an OLPF is through the use
of a birefringent material, i.e., a crystal that forces photons
to take different paths depending on their polarization. One
such material is Lithium Niobate, which can be used to split
an unpolarised beam into one horizontally polarised beam
and one displaced parallel beam containing only the vertically
polarised photons [6]. If an image passes through such a filter,
the resulting image leaving the filter will be the superposition
of the image and copy of the image displaced by a distance
d, which effectively blurs the image in the direction of the
displacement. Two such filters can be combined (with an
appropriate depolariser in between) to effect a blur in both
directions.

A 4-dot birefringent OLPF PSF is illustrated in Figure 5.
The exact shape of the PSF is dependent on the displacement,
d, effected by the birefringent plates. In general, it is desirable
to choose the displacement as a function of the photosite pitch
so that the filter cut-off frequency is related to the Nyquist
frequency of the sensor.

An implementation of the 4-dot OLPF for synthetic image
rendering is a straightforward extension of the method used
for a box function PSF. The process is simply repeated four
times with four displaced box function PSFs.

C. Combining point spread functions

As already alluded to above, the system PSF is a combina-
tion of the individual PSFs encountered along the optical path.
Provided that phase effects can be ignored, such as when light
passes from the lens onto the sensor, the PSFs can be combined
by direct convolution. Equivalently, the MTFs of the various
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components along the optical path can simply be multiplied to
obtain the system MTF. This approach can be used to combine
the lens (diffraction) response, OLPF response (if present)
and photosite aperture response to obtain the system response.
Unfortunately, the effects of defocus cannot be integrated with
this approach, and are therefore not considered in the sequel.

Some useful combinations, corresponding to typical con-
figurations encountered in real optical systems, will now be
considered.

1) Circular aperture diffraction + photosite aperture: This
system corresponds to a monochromatic matrix sensor and lens
combination. It is also appropriate for Bayer CFA sensors that
do not contain an OLPF. The MTFs of the components, as
well as the combined system MTF, are illustrated in Figure 6.

2) Circular aperture diffraction + 4-dot OLPF + photosite
aperture: This configuration is common for large-photosite
Bayer CFA systems, such as commercial Digital Single Lens
Reflex (DSLR) cameras. The OLPF helps to suppress colour
interpolation artifacts as well as regular aliasing artifacts. An
example of an OLPF MTF curve is shown in Figure 7, using
a beam separation distance d = 0.75 pixels. This effectively
attenuates the system response strongly at frequencies above
0.67 cycles per pixel, but does not completely eliminate power
above Nyquist (0.5 cycles per pixel).

III. RENDERING STRATEGIES

Several strategies for rendering synthetic images will now
be discussed. To simplify the discussion, it will be assumed
that the target object is a black polygon rendered against a
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white background. Furthermore, it is assumed that the edges
of the target object are perfect step functions.

One of two basic operations are required to implement the
proposed rendering strategies: an indicator function operator,
and a polygon-polygon intersection operator. The indicator
function operator returns a value of 1 if its argument is inside
the target polygon, and 0 otherwise. The polygon-polygon
intersection operator returns a real number representing the
area of the polygon formed by the intersection of the two
polygon arguments to the operator.

Both of these operators can be implemented reasonably
efficiently for polygon target objects. A simple point inclusion
operator can be defined for some non-polygonal target objects,
such as circular and ellipsoidal discs, but these target shapes
can be approximated as polygons to the required accuracy if
necessary.

All the strategies presented below are attempts to compute
the integral that results when convolving the target object
indicator function and the desired PSF. Since the extent of the
target object is finite, it is convenient to express the intensity
of the pixel at location (x, y) in the synthetic image as an
integral over the target object, i.e.,

I(x,y) =

∫

R2

1P (x)f(x,y)(x)dx (3)

where 1P (x) denotes the indicator over polygon P , and f(x,y)
represents the PSF centered at location (x, y). This can be
simplified to

I(x,y) =

∫

P

f(x,y)(x)dx (4)

by restricting the integral to the region bounded by the polygon
P , when appropriate.

Except for the box function PSF, approximate solutions to
these integrals must be obtained using numerical integration
methods. When the PSF itself is the result of the convolution
of simpler PSFs, e.g., the combined effect of a square photosite
aperture and circular aperture diffraction, the problem is com-
pounded because the PSF itself becomes another integral to be
approximated. As is often the case, Monte Carlo integration
methods are a convenient way of computing these integrals.

A. Uniform oversampling

Using the indicator function, the synthetic image can be
rendered by generating a set of sampling points coinciding
with the centre of each pixel in the synthetic image. Each of
these points can then be tested against the indicator function
to determine whether the sample falls inside the target object,
or not, colouring the resulting pixel accordingly.

This strategy is computationally efficient, but leads to severe
aliasing, visible as “stair steps” along the edges of the target.
The aliasing is due to the low sampling rate, at one sample
per pixel, compared to the infinite bandwidth required to
render the edge correctly. Two straightforward extensions can
be employed to mitigate the aliasing: 1) render the synthetic
image at a higher resolution, followed by downsampling to
the desired resolution, or 2) oversampling on a uniform grid
with sub-pixel spacing (Figure 8).

Fig. 8. Uniform oversampling using box PSF indicator function

Fig. 9. Area-weighted rendering by polygon intersection

These two oversampling strategies can produce identical
results, but the first strategy is computationally more com-
plex, and requires significantly more memory. The additional
samples should be weighted according to a properly scaled
(spatially) grid of weights representing the desired PSF. Both
these strategies introduce distortion of lower frequencies if
the PSF is not band limited, i.e., if the support of the PSF is
infinite, like in the case of a Gaussian PSF or an Airy pattern
PSF. This error is bounded, and clearly an approximation can
be constructed at any desired accuracy.

B. Area-weighted sampling

The box function PSF presents a special case for which an
exact solution can be obtained efficiently. Note that the support
of the box function is finite, with its extent typically being a
square with sides equal to the photosite pitch, and that the
function is constant over the region where it is non-zero. The
result of convolving a box function placed at a given pixel
centre and the target polygon is proportional to the area of
intersection between the target polygon and the box function’s
support (Figure 9).

C. Gaussian PSF importance sampling

The Gaussian PSF has infinite support, which implies that
any point-based sampling strategy must inherently introduce
some error. A naive approach to rendering a synthetic image
with a Gaussian PSF would be to use the uniform oversam-
pling strategy (Section III-A), and choosing the individual
sample weights from the desired Gaussian function. This
strategy has two significant weaknesses: 1) the PSF will be
truncated at the boundary of the uniform sampling grid, and
2) the samples that fall in the tails of the Gaussian PSF will
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contribute little to the overall integral, yet they outnumber
the samples in the central region of the Gaussian where the
weights are much larger.

A much better strategy is to compute the convolution
integral using Monte Carlo sampling. In particular, importance
sampling strategies allow us to sample the PSF according to
its actual density [7, section 7.6]. If we wish to approximate
the integral I over the volume V, then importance sampling
reformulates the problem as

I ≈ 1

N

N−1∑

i=0

f(xi) =
1

N

N−1∑

i=0

f(xi)

p(xi)
(5)

where f(xi) represents the integrand, and p(xi) the probability
of sampling point xi. It is assumed that

∫
p(x)dx = 1. The

benefit of importance sampling is that we can choose a
distribution p(x) that is easily invertible, but matches f(x) as
closely as possible. Uniform oversampling is simply a special
case of importance sampling where all points on the uniform
grid are equally likely, and happen to be uniformly spaced.

The sampling strategy is thus to generate a set of sampling
positions that follow a chosen distribution p(x), a method
known as inverse transform sampling [7, section 7.2]. Let F
denote the cumulative distribution function of p(x). Then
F−1(U) ∼ F , where U is a uniform variate in the range [0, 1].
Thus, starting from a uniform variate u in the range [0, 1], we
can obtain a sample x with distribution p(x) by transforming
u as x = F−1(u).

This method does not require an analytical form for F−1; a
table-based inversion or a polynomial approximation is often
adequate. When rendering a Gaussian PSF, we choose to
distribute x as x ∼ N(0, σ), which can be achieved through
Moro’s inversion [8]. Since we can choose the standard
deviation σ to exactly match the desired Gaussian PSF, and
generate x with the exact same distribution, we can simplify
Equation 5 to

I ≈ 1

N

N−1∑

i=0

f(xi)

p(xi)
1P (xi)

≈ 1

N

N−1∑

i=0

1P (xi), (6)

since f(xi) = p(xi). If the sampling distribution of xi matches
the PSF exactly, then the samples 1P (xi) should not be
weighted by the PSF at xi, in contrast to the uniform grid
sampling method.

Importance sampling naturally distributes the sampling
points according to the weight of the PSF (a Gaussian, in
this case), which implies that more samples will be taken
close to the centre of the PSF where the relative weight is
large. This in turn reduces the variance of the Monte Carlo
integral I, which reduces the number of samples required to
reach a specified level of accuracy. In addition, the inverse
transform sampling method can theoretically generate points
in the far tails of the Gaussian, which implies that the PSF is
not artificially truncated at a certain size. This minimises the

Fig. 10. Importance sampling with a Gaussian distribution

distortion of lower frequencies associated with a fixed-size
uniform sampling grid.

An efficient implementation of this importance sampling
approach is to pre-compute the values of xi using a Gaussian
centered at (0, 0). The sampling positions xi can then translated
to the pixel centred at p = (x, y), thereby avoiding the need
to recompute sampling points for each pixel (Figure 10).

D. Gaussian PSF numerical integration

An alternative integration technique is applicable to Gaus-
sian PSFs if an acceptably accurate approximation to the error
function erf(x) is available. Starting from Equation 4, the
polygon is partitioned into horizontal strips. In the limit, an
infinitely thin strip reduces to the one-dimensional integral
along the line y = yc:

Iyc =

∫ Pr(yc)

Pl(yc)

f(x)dx (7)

where Pl(yc) and Pr(yc) denote the left and right x values of
the intersections of the polygon P with the line y = yc. This
definition only allows for convex polygons, but the extension
to concave polygons will be analogous to that used to rasterise
concave polygons.

The erf(x) function can be harnessed to derive a closed form
solution to the integral in Equation 7, to yield

Iyc = erf(Pr(yc))− erf(Pl(yc)), (8)

assuming that appropriate standardisation has been applied to
Pr(yc) and Pl(yc).

Equation 8 provides a closed-form solution to the integral
along any given horizontal slice through the polygon P . This
allows us to perform numerical integration, using the adaptive
version of Simpson’s method, to compute the integral over
all of P by integrating over the range of y values spanned
by P . Figure 11 illustrates the integral that is computed
for a wide Gaussian PSF centered at a pixel close to the
boundary of a square target pattern. This method supports
general Gaussian PSFs, including astigmatic Gaussian PSFs
with full covariance matrices. If the PSF’s axes are rotated
with respect to the reference frame, then the simplest strategy
is to rotate the target polygon to ensure that cross-sections
along the integration axes are separable.
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Fig. 11. Gaussian PSF bounded by target polygon. Area under curve is
desired image intensity for pixel at centre of Gaussian peak

Fig. 12. Importance sampling with an Airy pattern distribution

This particular method can be exceptionally accurate, de-
pending on the parameters of the adaptive numerical integra-
tion routine. It is possible to choose these parameters so that
the computational complexity is comparable to that of the
importance sampling rendering method, but yielding higher
accuracy synthetic images.

E. Diffraction + box function importance sampling

Equation 3 is appropriate for rendering simple point spread
functions, but does not address compound PSFs, such as the
system PSF of a square photosite aperture PSF combined with
a circular aperture diffraction pattern PSF. It is possible to
perform the convolution of these two PSFs as a preprocessing
step, thereby obtaining a single PSF which could be used in
a table-driven importance sampling scheme.

A more elegant solution is to combine the area-weighted
rendering strategy directly with the importance sampling
scheme. Consider the set of sampling positions generated from
a Gaussian distribution, as described in Section III-C. Rather
than computing the Monte Carlo integral of this Gaussian
PSF convolved with the target polygon indicator function,
we can replace the indicator function test with a step that
computes the area of the intersection of the target polygon and
a square polygon (with photosite pitch side lengths) placed
at each sampling position. This process thus performs the
convolution of the target polygon and the photosite aperture
box function first, using this result to compute the Gaussian
PSF convolution using importance sampling.

To extend this method to a circular aperture diffraction PSF,
we simply replace the Gaussian-distributed sampling positions
with samples following the appropriate Airy pattern distri-
bution (Figure 12). The Airy pattern distribution of samples
is obtained through a look-up table that approximates the
cumulative Airy pattern distribution.

F. Diffraction + OLPF importance sampling

The method described in Section III-E can be extended to
render the effects of a 4-dot OLPF. Rather than computing the
intersection of a single square with the target polygon at each
sampling position, we instead compute the average of four
such intersections, with each square placed at the appropriate
offset as defined in the OLPF’s specification. This approach
is, of course, four times more computationally expensive.

G. Spectral sampling

Diffraction effects are wavelength dependent, which may
have significant implications on computational complexity if
wide-band panchromatic systems are to be simulated, since the
most accurate simulation would involve rendering and blend-
ing synthetic images at multiple wavelengths, and combining
them with the appropriate spectral-response weighting. Sim-
ulation of synthetic images intended for algorithms running
on a Bayer Colour Filter Array (CFA) sensor (which covers
most colour cameras) would require rendering at least three
separate synthetic images (one for each band), possibly more
if the colour filters are particularly wide. Fortunately, many
algorithms (e.g., ellipse-detectors) can be verified at a single
wavelength.

IV. PERFORMANCE EVALUATION OF RENDERING
STRATEGIES

A. Comparison of Gaussian PSF rendering accuracy

The following rendering algorithms were tested:
• 11 × 11×UP is a uniform sampling strategy of 11 × 11

points centered around the target pixel. The sampling
positions are truncated to the nearest integer to represent a
standard linear filter without any sub-pixel sampling. This
is equivalent to applying a Gaussian filter after rendering
the synthetic image with one sample per pixel.

• 11×11×U is a uniform sampling strategy of 11×11 points,
but the sampling points are scaled relative to the desired
Gaussian width. Sub-pixel spacing is used.

• 121×IS is an importance sampling method, with 121 (i.e.,
11× 11) samples from the same Gaussian distribution as
that specified in the PSF. Sub-pixel spacing is used.

• 2025×IS is an importance sampling method, with 2025
samples drawn from the same Gaussian distribution as
that specified in the PSF. Sub-pixel spacing is used.

• NI is a numerical integration implementation relying on
an adaptive version of Simpson’s rule (Section III-D).

These algorithms were evaluated over a range of images
with Gaussian PSFs. Different standard deviation values were
selected to evaluate performance over both small and large
(relative to pixel size) PSFs. In addition, the sub-pixel position
of the step edge was varied over 25 sub-pixel offsets to produce
a more accurate assessment of algorithm performance.

The MTF50 metric is defined as the resolution at which the
MTF curve reaches a contrast value of 50%, and is generally
considered as a measure of resolution that correlates well with
subjective human judgement of the sharpness of an image. For
a Gaussian PSF, the relationship between MTF50 and standard
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Fig. 13. Edge spread functions of 121×IS, 11× 11×U and 11× 11×UP
rendering methods.

deviation is fixed, hence standard deviation may be expressed
as an MTF50 value in cycles per pixel. The range investigated
in Table I runs from MTF50=0.1 (equivalent to Gaussian SD
of 1.874) to MTF50=0.4 (equivalent to an SD of 0.468).

Figure 13 illustrates the intensity profile across the step
edge subject to a Gaussian PSF with SD=0.625 (MTF50=0.3),
rendered using the 11 × 11×U and 121×IS algorithms. None
of the curves are smooth (compared to the expected exact
Gaussian integral), but it is clear that the importance sampling
algorithm is significantly closer to the desired curve (not
shown). Table I confirms that the RMSE of the importance
sampling algorithm is roughly 4 times smaller than the uniform
grid sampling algorithm for the illustrated case, and that the
integer-pixel grid uniform sampling algorithm (11 × 11×UP)
fails miserably with such narrow PSFs.

The edge profile of the direct numerical integration algo-
rithm (NI) is so accurate that it differs from the expected
analytical profile only in the least significant bit of the 16-bit
values used to represent intensities, i.e, differences are of the
same magnitude as potential rounding errors. This rendering
algorithm is therefore suitable for creating reference images.

To assess the impact of PSF accuracy on a real-world
application, the slanted-edge algorithm was used to evaluate
the MTF50 values of the various synthetic images. The results
are shown in Table II. Even though the RMS errors of the NI
method were significantly smaller than those of the 121×IS
and 2025×IS algorithms, it appears that this does not translate
into smaller errors in the MTF50 values as measured by
the slanted-edge algorithm. One potential explanation is that
the slanted edge method is more sensitive to lower spatial
frequencies, so that the apparent roughness of the 121×IS
algorithm (seen in Figure 13) manifests mostly at frequencies
above Nyquist. The result is that additional accuracy in the
PSF (as offered by the 2025×IS and NI algorithms) offers no
real-world advantage for the slanted-edge algorithm.

B. Comparison of Airy pattern PSF rendering accuracy

The accuracy of the algorithms of Section IV-A were
evaluated on an Airy pattern PSFs; the NI algorithm cannot
be applied to the Airy pattern, and has been replaced by an
importance sampling algorithm set to take 40401 samples per
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Fig. 15. Comparison of the MTF of a synthetic image with that of a knife-
edge target imaged with a Nikon D40 camera.

pixel. The simulated pixel pitch was fixed at 4.88 micron, and
green light (550 nm) was chosen to compute the diffraction
pattern. Different numerical apertures were investigated, since
this controls the effective width of the Airy pattern relative to
the pixel size.

From Table III is can be seen that the importance sampling
algorithms once again have a decisive lead over the uniform
sampling strategies (also visible in Figure 14). It does appear
that the accuracy improves very slowly with an increase in
the number of samples taken. One of the main reasons for
this apparent slow increase is the large support of the Airy
pattern. Since the importance sampling algorithms have been
limited to a radius of 18 units (scaled according to f-number), a
significant part of the tail of the Airy pattern is being truncated.
This results in a lower limit on the RMSE values computed on
the ESF, which cannot be reduced by increasing the number
of samples while keeping this radius fixed.

C. Demonstration of system PSF accuracy

The accuracy of the combined PSF rendering strategy
discussed in Section III-F is demonstrated in Figure 15. A
Nikon D40 camera was used to image a knife-edge target,
after which the slanted-edge algorithm was used to obtain the
empirical MTF of the combined lens, OLPF and photosite
aperture system. Focus bracketing was used to ensure that the
system MTF is as accurate as possible, and a lens that is known
to be diffraction limited was used. The MTF curve extracted
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TABLE I
MEAN RMSE FOR GAUSSIAN PSFS WITH DIFFERENT STANDARD DEVIATIONS, OVER 25 DIFFERENT SUB-PIXEL SHIFTS.

Target Mean RMS error ± standard deviation

MTF50 11× 11×UP 11× 11×U 121×IS 2025×IS NI

0.10 1.47e−02 ± 4.00e−05 1.24e−02 ± 1.68e−05 3.04e−03 ± 1.39e−05 4.05e−04 ± 2.01e−06 4.80e−06 ± 1.04e−07
0.15 1.94e−02 ± 7.91e−05 1.00e−02 ± 1.33e−05 2.44e−03 ± 1.44e−05 3.28e−04 ± 2.36e−06 3.88e−06 ± 7.87e−08
0.20 2.32e−02 ± 2.66e−05 8.62e−03 ± 2.01e−05 2.10e−03 ± 1.11e−05 2.80e−04 ± 2.86e−06 3.33e−06 ± 7.72e−08
0.25 2.70e−02 ± 6.81e−05 7.69e−03 ± 1.32e−05 1.87e−03 ± 1.21e−05 2.50e−04 ± 3.05e−06 2.94e−06 ± 8.54e−08
0.30 3.07e−02 ± 3.62e−05 7.00e−03 ± 1.72e−05 1.71e−03 ± 1.57e−05 2.28e−04 ± 2.96e−06 2.70e−06 ± 9.95e−08
0.35 3.47e−02 ± 3.12e−05 6.47e−03 ± 2.65e−05 1.58e−03 ± 1.42e−05 2.11e−04 ± 2.06e−06 2.48e−06 ± 8.16e−08
0.40 3.82e−02 ± 6.14e−05 6.02e−03 ± 1.14e−05 1.48e−03 ± 1.86e−05 1.97e−04 ± 2.77e−06 2.32e−06 ± 6.53e−08

TABLE II
MEAN MTF50 ACCURACY EVALUATION FOR GAUSSIAN PSFS WITH DIFFERENT STANDARD DEVIATIONS, OVER 25 DIFFERENT SUB-PIXEL SHIFTS.

Target Mean error (%) ± standard deviation

MTF50 11× 11×UP 11× 11×U 121×IS 2025×IS NI

0.10 3.750 ± 0.016 5.206 ± 0.050 3.296 ± 0.036 3.343 ± 0.025 3.389 ± 0.008
0.15 1.513 ± 0.039 3.722 ± 0.059 1.563 ± 0.077 1.494 ± 0.028 1.521 ± 0.012
0.20 0.819 ± 0.060 3.039 ± 0.066 0.868 ± 0.086 0.787 ± 0.035 0.806 ± 0.014
0.25 0.743 ± 0.086 2.752 ± 0.046 0.555 ± 0.057 0.394 ± 0.030 0.414 ± 0.022
0.30 3.906 ± 0.125 2.420 ± 0.066 0.181 ± 0.177 0.119 ± 0.037 0.137 ± 0.036
0.35 24.573 ± 0.347 2.662 ± 0.080 0.066 ± 0.050 0.113 ± 0.051 0.103 ± 0.051
0.40 150.000 ± 0.000 2.063 ± 0.100 0.278 ± 0.143 0.327 ± 0.073 0.321 ± 0.075

TABLE III
MEAN RMSE FOR AIRY PATTERN PSFS AT DIFFERENT APERTURE VALUES, OVER 25 DIFFERENT SUB-PIXEL SHIFTS.

Relative Mean RMS error ± standard deviation

aperture 11× 11×UP 11× 11×U 121×IS 2025×IS 40401×IS

f/2.8 3.00e−02 ± 5.76e−05 1.00e−02 ± 4.53e−05 3.55e−03 ± 1.97e−05 1.80e−03 ± 1.43e−06 1.68e−03 ± 1.06e−06
f/5.6 3.85e−02 ± 5.61e−05 1.43e−02 ± 5.83e−05 5.02e−03 ± 1.13e−05 2.52e−03 ± 1.11e−06 2.34e−03 ± 6.48e−07
f/8 4.12e−02 ± 5.00e−05 1.71e−02 ± 5.83e−05 5.94e−03 ± 9.97e−06 2.86e−03 ± 6.12e−07 2.63e−03 ± 3.15e−07
f/16 2.86e−02 ± 2.37e−05 2.41e−02 ± 5.40e−05 7.75e−03 ± 6.24e−06 3.03e−03 ± 9.18e−07 2.84e−03 ± 9.17e−07
f/32 3.22e−02 ± 1.88e−05 3.37e−02 ± 3.63e−05 8.61e−03 ± 7.62e−06 3.15e−03 ± 3.49e−06 2.91e−03 ± 3.26e−06

from the synthetic image matches the empirical camera MTF
reasonably well.

D. Rendering time

Due to space constraints, detailed rendering time results
have been omitted, but brief results follow. All synthetic
images were rendered as 446 × 446 pixel images, containing
a single square target of 250 × 250 pixels in size. Rendering
a Gaussian PSF (standard deviation of 0.625 pixels) and an
Airy pattern PSF (f/8, λ = 0.55µm, pitch= 4.88µm) yields the
following rendering times:

Gauss. Alg.: 11× 11×U 121×IS 2025×IS NI
Time (s) : 1.1 3.4 4.15 42.38

Airy Alg.: 11× 11×U 121×IS 2025×IS 40401×IS
Time (s) : 0.8 0.819 3.65 67.7

Rendering times depend somewhat on the diameter of the
PSF, with wider PSFs rendering more slowly, owing to an
adaptive early convergence test. Including the effects of the
photosite aperture is expensive: the 2025×IS rendering times
increase to 29.5 s and 119 s for the single-photosite aperture
and 4-dot OLPF simulations respectively.

V. CONCLUSIONS

This paper described a variety of rendering algorithms that
may be applied to generate synthetic images with specific point
spread functions. These algorithms have been demonstrated to
be very accurate, while keeping the computational complexity
relatively low. The results highlight that simple strategies (e.g.,

fixed-grid uniform sampling) produces much worse results
than the importance sampling methods for the same number
of samples.

The rendering methods introduced here can be used to
generate reference synthetic images to the desired level of
accuracy, and are available in the MTF Mapper project (http:
//sourceforge.net/projects/mtfmapper). These images can be
used to calibrate other algorithms, e.g., the slanted-edge MTF
estimation algorithm, or to evaluate super-resolution or shape-
detection algorithms.
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[3] J. Ouellet and P. Hébert, “Precise ellipse estimation without contour point
extraction,” Machine Vision and Applications, vol. 21, no. 1, pp. 59–67,
2009.

[4] I. Sutherland and G. Hodgman, “Reentrant polygon clipping,” Commu-
nications of the ACM, vol. 17, no. 1, pp. 32–42, 1974.

[5] G. Airy, “On the diffraction of an object-glass with circular aperture,”
Transactions of the Cambridge Philosophical Society, vol. 5, p. 283, 1835.

[6] R. Palum, “Optical antialiasing filters,” in Single-Sensor Imaging: Meth-
ods and Applications for Digital Cameras, R. Lukac, Ed. Boca Raton,
FL: CRC Press, Sept. 2008, pp. 105–136.

[7] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical recipes:
The art of scientific computing, 3rd ed. Cambridge university press, 2007.

[8] B. Moro, “The full Monte,” Risk, vol. 8, no. 2, pp. 57–58, 1995.

82



1

Investigating Parameters for Unsupervised
Clustering of Speech Segments using TIMIT

Lerato Lerato and Thomas Niesler
Department of Electrical and Electronic Engineering

University of Stellenbosch, South Africa
{llerato, trn}@sun.ac.za

Abstract—We investigate the application of agglomerative
clustering to short segments of speech signals. The successful
direct clustering of such sub-word speech segments has direct
application in the automatic derivation of pronunciation variants
for use in automatic speech recognition (ASR) systems. We
consider several configurations of hierarchical agglomerative
clustering in order to determine the best configuration for the
speech clustering task. Similarity between segments is computed
by dynamic time warping (DTW), within which the application
of Euclidean and city-block distance measures were evaluated.
The effect of path length normalisation of the DTW score is
considered, and finally the application of three different between-
cluster distance measures is compared. Experiments are carried
out on a subset of the phone segments present in the TIMIT
database. We find that the city-block distance in conjunction with
a normalised DTW score and the Ward cluster linkage method
lead to best results.

I. INTRODUCTION

The objective of this paper is to investigate the parameters
that influence the unsupervised clustering of short segments of
speech data. Clustering spans many fields of pattern recogni-
tion, such as image processing, speech processing and docu-
ment recognition. We focus on a speech processing application
in which short segments of audio taken from a corpus of
connected speech must automatically be grouped into different
clusters in an effort to group similar sounds. In order to allow
controlled experimentation and the evaluation of clustering
results, the segments we consider are phone units taken from
the TIMIT speech corpus.

The unsupervised clustering of sub-word speech sounds
has several applications in speech processing. One of these
is the automatic generation of pronunciations for use in an
automatic speech recognition (ASR) system. This application
was considered in [1], where the authors bootstrap a system
using grapheme-based subword models. Later work in which
this restriction was removed indicated that careful attention
to the clustering of audio segments would be required [2]. In
this paper, we address this issue. Other applications of the type
of clustering that we consider include automatic keyword dis-
covery [3] in which frequently recurring words or phrases are
detected in untranscribed audio. Mareuil et al [4] and Imperl et
al [5] clustered speech segments from multiple languages for
applications in multilingual speech recognition and language
identification respectively. Mak and Barnard [6] cluster speech
segments using agglomerative hierarchical clustering (AHC) in
an approach that is similar to ours. They however use Gaussian

probability density functions and the Bhattacharyya distance to
find the inter-cluster similarity. In contrast to the work covered
in [2], we focus exclusively on the clustering problem and
experiment with several configurations in order to determine
how the parameters affect the performance of the algorithm.
Neel [7] performs cluster analysis in various ways on TIMIT
speech data. In this work however the number of clusters was
fixed. We attempt unsupervised clustering in which the data
are clustered purely on the basis of the feature representation.

II. AGGLOMERATIVE HIERARCHICAL CLUSTERING

Cluster analysis is the process of discovering the natural
groupings of a set of patterns, points or objects [8], [9],
[10], [11]. The analysis itself is based on the hypothesis
that similarity between related points in the data set should
be high while similarity between different points should be
low. The points are then grouped according to this similarity.
Agglomerative hierarchical clustering (AHC) is one approach
to performing the grouping task.

AHC is a bottom-up method that merges pairs of clusters
according to a certain similarity measure. Initially each data
point (speech segment) forms a singleton cluster. At this stage
the number of clusters is equal to the number of speech
segments. Subsequently clusters are merged in a pairwise
fashion until a single cluster remains. This procedure generates
a tree-like hierarchical grouping known as a dendrogram, as
illustrated in Figure 1.

In order to determine the similarity between two clusters,
the similarity between individual members of the clusters must
also be computed. These members are in our case segments of
speech, and their similarity will be computed using dynamic
time warping (DTW), which will be described in Section
II-A. Furthermore, once the similarity between individual
cluster members is known, the similarity between the clusters
themselves can be computed in a variety of ways. Some of
these linkage methods will be described in Section II-B.

A. Dynamic time warping

Dynamic time warping (DTW) is an algorithm that cal-
culates the similarity between two sequences of generally
unequal length. DTW was once the basis of template-based
isolated-word speech recognition, but has been superseded by
statistical techniques such as hidden Markov models (HMMs)
[12], [13]. For our application, in which we would like
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Figure 1. An example of agglomerative hierarchical clustering (AHC) and
the associated dendrogram.

to assess the similarity between two specific but otherwise
arbitrary segments of speech, it is well-suited.

Let the two speech segments in question be S1(α) and
S2(ω), where α = 1, 2, . . ., A and ω = 1, 2, . . ., Ω. S1 =
{X1, X2 . . ., XA}, S2 = {Y1, Y2 . . ., YΩ} and Xα or Yω are
the T-dimensional feature vectors. Now consider a Ω×A local
distance matrix, D, whose entries are the distances between all
possible pairs of feature vectors from the two segments. The
distance measures can be chosen to suit the application, and
we will consider the Euclidean and the city-block distances in
our evaluation. The Euclidean distance is given by:

d(Xα, Yω) =

√√√√
T∑

i=1

(xαi − yωi)2 (1)

while the city-block entry is expressed mathematically as:

d(Xα, Yω) =
T∑

i=1

|xαi − yωi| (2)

From the matrix D, the best alignment between the se-
quences S1(α) and S2(ω) can be computed recursively by the
principle of dynamic programming [13]. The score associated
with this best alignment can then be taken as a measure
of similarity between the two sequences. By dividing this
score by the total length of the alignment path, a measure
of the average per-frame similarity can be obtained. Both
normalised and unnormalised versions of the DTW score will
be considered in our experimental evaluation.

B. Linkage methods

Dynamic time warping allows the similarity between two
individual speech segments to be evaluated. However, during
clustering, the similarity between two clusters of segments
must also be computed. There are several strategies to compute
this inter-cluster similarity, and we have chosen three of
these linkage methods for experimental evaluation: average-
link, complete-link and Ward-link [10], [11]. We chose these
linkage methods because of their popularity and also that the

shapes of data points used has not been analysed in detail.
We will use the following notation for the description of the
linkage methods:
• U and V are two clusters whose similarity must be

measured.
• K and L are the number of elements in U and V

respectively.
• When cluster U contains segment ci, we denote this by
ci ∈ U .

• d(ci, cj) is the distance between two segments, as calcu-
lated by DTW.

The average-link uses the average distance computed be-
tween all possible pairs of observations drawn from U and
V . The criterion joins clusters with small variances and is
less influenced by outliers than many other methods. It can
mathematically be presented as:

Simave(U, V ) =
1

K × L
∑

ci∈U

∑

cj∈V
d(ci, cj) (3)

The complete-link criterion considers the points in each
cluster that are furthest apart. This can make it vulnerable
to outliers as such anomalous points will often be the most
distant. However it has the advantage of preferring compact
clusters. It is calculated as:

Simcomp(U, V ) = max
ci∈U,cj∈V

d(ci, cj) (4)

The Ward-link method considers the increase in the total
intra-cluster sum-of-squares that results when two clusters are
merged. This intra-cluster sum is defined as the sum of squares
of the distances between all members of the cluster and its
centroid. This method tends to join clusters with a small
number of observations. It is mathematically presented as:

Simward =
‖cU − cV ‖2
(1/K + 1/L)

(5)

where ‖cU − cV ‖2 is the distance between the centroids, cU
and cV , of clusters U and V respectively.

III. CLUSTER EVALUATION

In general, the clustering process will make errors, for
example by placing two dissimilar segments in the same
cluster, or by assigning similar segments to different clusters.
Ideally, however, each cluster contains segments from only
one phone, and all the segments of a particular phone belong
to the same cluster. In order to to evaluate the success of the
clustering process, we require measures that will indicate the
extent to which these competing goals are achieved. Several
methods have been proposed to accomplish this [14] and of
these we have chosen two for our experimental evaluation. Let
us consider our data to consist of N segments that belong to
J different classes. Ideally1 the number of clusters K, also
referred to as the cardinality, should equal the number of
classes. Now assume the following notation:

1This has the disadvantage of considering alternative groupings of acousti-
cally similar clusters as errorful. We leave the analysis of this effect to future
work, in which ASR evaluations are incorporated.
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• G = {G1, G2, ..., GK} where G is the set of clusters
and Gk is cluster k that contains speech segments.

• C = {C1, C2, ..., CJ} where C is the set of classes and
Cj is a set of phones with the same class.

• maxj |Gk ∩Cj | represents the number of occurrences of
the most frequent phone in cluster Gk.

A. Normalised mutual information

The normalised mutual information (NMI) is based on the
mutual information between classes and clusters [9],[14]. The
mutual information is denoted by I(G,C) and is given by:

I(G,C) =
∑

Gk∈G

∑

Cj∈C
P (Gk ∩ Cj) log

P (Gk ∩ Cj)
P (Gk)P (Cj)

(6)

where P (Gk), P (Cj) and P (Gk ∩ Cj) are the probabilities
of a speech segment occurring in cluster Gk, in class Cj and
in both cluster Gk and class Cj , respectively.

The mutual information measure, I(G,C), does not pe-
nalise cardinalities. To make it sensitive to the varying number
of clusters, it can be normalised by a factor based on the
entropy of both clusters and classes. This normalising factor is
given by: 1/2[H(G)+H(C)], where H(.) denotes the entropy.
H(G) measures cluster cohesiveness [15] and is given by:

H(G) = −
∑

Gk∈G
P (Gk) logP (Gk) (7)

H(C) is a measure of class cohesiveness and is calculated
similarly. Normalising I(G,C) in this way makes it respond
to cardinality, because entropy tends to increase with the num-
ber of clusters. The normalised mutual information criterion
is therefore given by:

NMI(G,C) =
I(G,C)

1/2[H(G) +H(C)]
(8)

The NMI is always a number between 0 and 1 where 1 denotes
purely clustered data.

B. The F-measure

The F-measure is based on recall and precision for each
cluster with respect to each class in the data set [10], [16]. The
precision and recall quantities are based on: (1) a true positive
decision (TP) where two similar segments are assigned to the
same cluster, (2) a true negative decision (TN) in which two
dissimilar segments are assigned to two different clusters. The
sum of TP and TN are known as the correct decisions. In
addition, a false positive (FP) error occurs when two dissimilar
segments are assigned to the same cluster. A false negative
(FN) error, on the other hand, emerges when two similar
segments are placed into different clusters. Precision, Prc, is
given by:

Prc =
TP

TP + FP
(9)

where TP + FP =
∑K
i

(|Gi|
2

)
, TP =

∑K
i

(
Qi

2

)
+ 1 and

Qi = maxi |Gi∩Cj |. Equation 9 is the ratio of segments from
the same class in the particular cluster to the total number of
segments in that cluster.

Recall, Rec, is given by:

Rec =
TP

TP + FN
(10)

where FN + TN =
(
N
2

)
− (TP + FP ),

FN =
∑J
i

(
Vi

2

)
− TP , Vi = |Ci ∩Gj | and |Ci ∩Gj | is the

number of segments of the same phone in cluster j.
The recall expression is the ratio of segments from the

same class in the particular cluster to the total number of all
segments that belong to the same class in all clusters. The
F-measure is quantified as:

F =
2× Prc×Rec
Prc+Rec

(11)

which can be further refined by introducing a mechanism that
allows more weight to be assigned to recall or to precision.
Let β be a constant and rewrite the F-measure as:

Fβ =
(β2 + 1)× Prc×Rec
β2 × Prc+Rec

(12)

We select β > 1 to give more weight to recall . When β = 1
Equation 12 simplifies to Equation 11.

IV. DATA PREPARATION

Our experimental evaluation is based on speech data taken
from the TIMIT speech corpus [17]. The speech is param-
eterised as a series of feature vectors composed of Mel
frequency cepstral coefficient (MFCCs). MFCC’s are chosen
on the basis of their robustness and frequent usage in well
performing speech processing systems. In particular, cepstral
mean normalisation can be applied to minimise speaker and
channel effects.

Due to the large number of inter-segment similarities that
must be calculated during clustering, we have based our
experiments on a subset of the TIMIT data. A total of 100
speakers were chosen from the seven dialects present in the
corpus. Speaker selection was random, but an even distribution
across the dialect regions and an equal male/female balance
within each region were ensured. For these 100 speakers,
the five phonetically compact SX sentences were considered,
bringing the total number of utterances in our dataset set to
500.

From each utterance, all occurrences of the phones listed in
Table I were extracted for experimentation. The table shows
that two sets of data were chosen for experimentation: a
short set (set 1) and a long set (set 2 ), and that the short
set is a subset of the long set. The reason for including
two sets of data was to allow contrastive experimentation
when investigating the effect of path length normalisation on
clustering performance. In particular, the short set was chosen
in initial experiments but was found to be rather homogeneous,
consisting exclusively of vowels and of segments with fairly
similar lengths. The long set, on the other hand, is more diverse
since it includes semivowels, and a greater variety of segment
lengths, as illustrated in Figure 2.
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Phone set Segments
Set 1 (short set) aa, ae, ah, eh, ih, iy, uh

Set 2 (long set) aa, ae, ah, eh, ih, iy, uh, er,
ey, ix, aw, axr, l, oy, r, y

Table I
TIMIT DATA USED FOR EXPERIMENTATION.

Figure 2. Average durations of the segments in sets 1 and 2.

V. EXPERIMENTAL SETUP

The dynamic time warping distance measures that were
considered (Euclidean and city-block) as described in Sec-
tion II-A were implemented in C++. The linkage methods
and hierarchical clustering process detailed in Section II were
implemented using the Octave statistical toolbox. Various
configurations of the clustering process were applied to the
datasets described in Table I with the specific aim of answering
the following questions:

1) Does the Euclidean or the city-block distance measure
yield better clustering when implemented within the
DTW similarity measure?

2) Should the DTW distance be normalised with the path
length or not?

3) Which linkage method gives best clustering results:
average, complete or Ward?

In each set of experiments, the clustering threshold was varied
in order to establish the effect of the number of clusters on
performance.

VI. EXPERIMENTAL RESULTS

A. City-block vs Euclidean distance in DTW
First we investigate the effect on clustering performance of

varying the method used to compute the the distance between
individual feature vectors as part of the DTW alignment. The
NMI and the F-measure cluster evaluation metrics are used to
assess the quality of every set of clustering results. Figure 3
shows these results for the smaller dataset (set 1). The Ward
linkage method was employed throughout as this was found
to lead to better results than the other linkage methods, as will
be demonstrated later.

Figure 3 shows that optimal performance is achieved for
between approximately 15 and 40 clusters, and that the city-
block distance generally outperforms the Euclidean distance
in this range.

Figure 3. Clustering performance in terms of NMI and F-measure for the
city-block and Euclidean DTW distances for data set 1.

B. Normalised path length in DTW

We have already observed in Figure 2 that the phone
segments vary in length. The DTW procedure results in the
best alignment between two speech segments of arbitrary
length. Since the DTW score increases monotonically along
the alignment path, it is in principle possible that the alignment
of a long and a much shorter segment lead to a better
score than the alignment of two longer segments, even when
the former are acoustically dissimilar and the latter similar.
In order to account for this, the alignment score can be
normalised by its length, leading to a per-frame rather than an
overall score. Figure 4 shows the effect of this normalisation
on the NMI and the F-measure for city-block-based DTW on
the smaller dataset (set 1), while Figure 5 shows the same
experiment for the larger dataset (set 2).

Figure 4. Comparison of normalised and unnormalised city-block based
DTW for data set 1.

For the smaller dataset (set 1), path normalisation leads
to deteriorated performance, while the reverse is true for the
larger dataset (set 2). We ascribe this difference to the relative
homogeneity of set 1. Since the phone lengths and also the
sounds are fairly similar in this set (all vowels), the scenario
in which a very short and a very long segment that are
acoustically quite different lead to a better overall alignment
score is rare. Since the length of the segment itself includes
discriminatory value, its effect on the alignment scores can
be beneficial, and its removal by normalisation detrimental.
However, when the lengths of the segments, as well as the
sounds themselves, are more diverse (set 2 contains both
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Figure 5. Comparison of normalised and unnormalised city-block based
DTW for data set 2.

vowels and semivowels) the benefits of normalisation begin
to dominate.

C. Evaluation of the linkage methods

Using the city block distance in conjunction with the
unnormalised DTW score for the shorter dataset (set 1), as well
as the city block distance in conjunction with the normalised
DTW score for the longer dataset (set 2), the effect of varying
the linkage method used to determine inter-cluster similarity
could be studied. The performance for the respective cases in
terms of the F-measure are shown in Figures 6 and 7.

Figure 6. Evaluation of linkage methods for data set 1.

We observe that, for the smaller dataset (set 1), use of the
Ward linkage method leads to best performance when the
number of clusters is small. The peaks in performance for
the average-link and complete-link methods occur when the
number of clusters is larger, and are lower. For the longer
dataset (set 2), a similar picture emerges.

D. Number of clusters

From Table I it is evident that the ’true’ number of clusters
in the data is 7 and 16 for set 1 and set 2 respectively. However,
the peaks in Figures 6 and 7 correspond to approximately
15 and 40 clusters respectively. It appears therefore that the
overall quality of the clusters is better when it is allowed to
exceed the ’true’ number of clusters by a factor of between 2
and 3.

Figure 7. Evaluation of linkage methods for data set 2.

VII. DISCUSSION AND CONCLUSIONS

We have presented a comparative evaluation of several
configurations of agglomerative hierarchical clustering applied
to the grouping of subword speech sounds. Due to the high
computational cost of the experiments, a subset of the TIMIT
data was used. Our experiments showed that the best clusters
were obtained when calculating the DTW score using the city
block distance and normalising it with respect to the alignment
path length. Furthermore, the Ward inter-cluster distance let to
better clusters than the average and complete linkage methods.

Although the number of clusters leading to best performance
was found to exceed the actual number of classes in the data
by a factor of between 2 and 3, this may be due to contextual
effects. As experience in automatic speech recognition has
shown, co-articulation may cause the same phone to differ
acoustically from other instances due to differing left and/or
right contexts. Similar variability may be introduced by dif-
ferences in speaker dialect or gender. These factors could also
limit the achievable accuracy of the clustering process itself.
In future work, this aspect will be more carefully investigated.

The appreciable differences in the results obtained for the
smaller and the larger datasets also indicate that experiments
on the full set of phones are requited in order to obtain defini-
tive answers to our research questions. Hence the optimisation
and parallelisation of the clustering algorithms will also form
part of our ongoing work.

REFERENCES

[1] B. R. R. Singh and R. Stern, “Automatic generation of subword units for
speech recognition systems,” IEEE Transactions on Speech and Audio
Processing, vol. 10, no. 2, pp. 89–99, 2002.

[2] G. Goussard and T. Niesler, “Automatic discovery of subword units and
pronunciations for automatic speech recognition using TIMIT,” in Proc.
PRASA, (Stellenbosch, South Africa), 2010.

[3] A. Park and J. Glass, “Towards unsupervised pattern discovery in
speech,” in Proc. ASRU, (San Juan, Puerto Rico), 2005.

[4] C. C.-A. P.B. de Mareuil and M. Adda-Decker, “Multi-lingual automatic
phoneme clustering,” in Proc. ICPhS, (San Francisco), 1999.

[5] B. H. B. Imperl, Z. Kacic and A. Zgank, “Clustering of triphones using
phoneme similarity estimation for the definition of a multilingual set of
triphones,” Speech Communication, vol. 39, no. 4, pp. 353–366, 2003.

[6] B. Mak and E. Barnard, “Phone clustering using the Bhattacharyya
distance,” in Proc. of ICSLP, (Philadelphia, USA), 1996.

[7] J. Neel, “Cluster analysis methods for speech recognition,” Master’s
thesis, KTH Royal Institute of Technology, Stockholm, 2002.

[8] C. Fraley and A. E. Raftery, “How many clusters? Which clustering
method? Answers via model-based cluster analysis,” The Computer
Journal, vol. 41, pp. 578–588, 1998.

87



[9] J. A. E. Amigo, J. Gonzalo and F. Verdejo, “A comparison of extrinsic
clustering evaluation metrics based on formal constraints,” Information
Retrieval, vol. 12, no. 4, pp. 461–486, 2009.

[10] C. D. Manning and P. Raghavan, Introduction to Information Retrieval.
Cambridge University Press, 2008.

[11] A. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recogni-
tion Letters, vol. 31, no. 8, pp. 651–666, 2010.

[12] L. R. C. Myers and A. Rosenberg, “Performance tradeoffs in dynamic
time warping algorithms for isolated word recognition,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, vol. 28, no. 6,
pp. 623–635, 1980.

[13] F. J. Owens, Signal Processing of Speech. Macmillan Press, 1993.
[14] J. E. N. X.Vinh and J. Bailey, “Information theoretic measures for clus-

terings comparison: Variants, properties, normalisation and correction
for chance,” Journal of Machine Learning Research, vol. 11, pp. 2837–
2854, 2010.

[15] M. Sileshi and B. Gamback, “Evaluating clustering algorithms: Cluster
quality and feature selection in content-based image clustering,” in WRI
World Congress on Computer Science and Information Engineering,
(New York, USA), 2009.

[16] B. Larsen and C. Aone, “Fast and effective text mining using linear-time
document clustering,” in Proc. ACM SIGKDD, (New York, USA), 1999.

[17] A. K.Halberstadt and J. Glass, “Heterogeneous acoustic measurements
for phonetic classification,” in Proc. Eurospeech, (Rhodes, Greece),
1997.

88



Performance Evaluation of Spot Detection
Algorithms in Fluorescence Microscopy Images

Matsilele Mabaso∗, Daniel Withey‡, Natasha Govender§ and Bhekisipho Twala†
∗ ‡ §MDS(MIAS)

Council for Scientific and Industrial Research
Pretoria, South Africa,

Email: ∗MMabaso@csir.co.za; ‡DWithey@csir.co.za; §NGovender@csir.co.za
†Department of Electrical and Electronic Engineering

University of Johannesburg
Auckland Park, South Africa

Email: BTwala@uj.ac.za

Abstract—Detection of messenger Ribonucleic Acid (mRNA)
spots in fluorescence microscopy images is of great importance
for biologists to better understand cell function. Fluorescence mi-
croscopy and specific staining methods make biological molecules
appear as bright spots in image data. Manual analysis of such
data is both time consuming and laborious and can lead to errors.
In this study we compare several computer-based methods for
detection of spots in fluorescence microscopy images. The al-
gorithms under comparison are, Isotropic Undecimated Wavelet
Transform, Feature Point Detection, H-Dome transformation and
Laplacian of Gaussian. The performance of the algorithms is
validated using synthetic and real image data. The synthetic
images were corrupted by Gaussian noise of different levels and
the real images were obtained using fluorescence microscopy.
Algorithm performance is compared based on detection accuracy.

I. INTRODUCTION

In recent years, advances in molecular and cell biology have
triggered the development of a highly sophisticated imaging
tool known as fluorescence microscopy [1]. Fluorescence
microscopy is used to visualize and study intracellular
processes. This is accomplished using a specific staining
method to make the biological molecules appear as bright
particles (spots) when viewed through a microscope, as
shown in Figure 1. These bright particles are local intensity
maxima whose intensity level is significantly different from
their neighbourhood.

Spot detection is a fundamental step for biologists to better
understand intracellular processes. The goal of spot detection
is to obtain information about the location and properties of
the features (spots). However, quantitative analysis of these
spots is often still reliant on manual evaluation which is a
tedious process involving many hours of human inspection,
and is impractical for use on large data sets. Therefore it
is useful to use computer based-algorithms to automate this
process. Hence, there is a great demand for the automation of
spot detection methods and it is attracting increased research
attention.

Over the past years, a number of computer based detection

Fig. 1. Sample image obtained using fluorescence microscopy.

methods have been proposed to address the task of manual
analysis. These methods are based on gray-scale opening of
top-hat filter [2] and adaptive thresholding [3]. These methods
do not give satisfactory results with biological images for
two main reasons: first, biological images have low signal to
noise ratios (SNRs) and second, the image may present an
uneven background [4]. Recent methods are based on wavelet
transform techniques such as isotropic undecimated transform
[4], improved wavelet transform [5] and multiscale variance
stabilizing transform [6].

In this work we compare the performance of several detection
methods used to detect bright particles in fluorescence
microscopy images, using both synthetic images and real
images. The methods under comparison are Isotropic
Undecimated Wavelet Transform (IUWT) [4], Feature
Point Detection (FPD) [7], H-Dome transformation [8] and
Laplacian of Gaussian (LoG) [9]. The first three methods
have performed well in previous studies [10, 11], however
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no comparison was done with LoG, though it has been
used successfully in microscope image analysis [9]. Our
comparison takes into account various conditions of spots eg.
different intensity and radius of spots as well as noise and
non-uniform background intensity.

The layout of the paper is as follows: Section II discusses the
related work and section III describes the various algorithms
used in the experiments. Section IV presents the performance
measures and in section V experiments are discussed. Section
VI discusses the experimental results, and finally, the conclu-
sions are given in section VII.

II. RELATED WORK

A lot of research effort on spot detection methods has been
performed during the last few years. Recent work can be
found in [10, 11]. This can be divided into two groups of
detection methods, supervised and unsupervised detection
methods. Supervised methods require learning as the first
step while unsupervised methods do not require learning. In
our study we considered four unsupervised detection methods.

Smal et al. (2010) [10] recently performed a quantitative
comparison of various spot detection methods used in
fluorescence microscopy imaging. The methods under
comparison consisted of seven unsupervised and two
supervised methods. The experiments were conducted on
synthetic data of three different types, for which the ground
truth was available. The experiments were also conducted on
real image data obtained from two different biological studies.
The results suggested that at a very high noise the supervised
methods perform best overall. A similar study was conducted
in [11] consisting of eleven spot detection algorithms from
various application fields and tests were performed using
both synthetic and real images. Their studies found major
differences in the performance of different algorithms, in
terms of both object counts and segmentation accuracies.

Olivo-Marin (2002) [4] introduced a method for detecting
spots in 2D fluorescence microscopy images which was
further modified to deal with 3D images in [12]. The method
is based on the multiscale product of subband images resulting
from the a trous wavelet transform [13] of the original image
and can extract information such as the number and position
of spots in an image. The algorithm showed good detection;
however, failed to detect spots when SNR was low and when
spots were far from the focal point.

In addition, [14] introduced a technique for detecting spots in
fluorescence microscopy images. The method is based on Top-
hat transformation by Rotational Morphological Processing
(RMP) and a structuring element (SE). The method was
reported to perform better than the H-dome transformation
and top-hat filter.

III. SPOT DETECTION METHODS

The following are detection methods considered in our study.

A. Feature Point Detection (FPD)

The method of feature point detection was proposed in [15]
and used for the detection and tracking of particles in cell
images in [7].
The algorithm consists of four steps:

1) Image restoration: this step corrects imperfections in the
image using a box-car average estimation and simultane-
ously enhances spot-like structures by convolving with
a Gaussian kernel. The convolution kernel is given by:

Kw =
1

Kw
0

[
1

B
exp(− i

2 + j2

4λ2n
)− 1

(2w + 1)2

]
, (1)

where Kw
0 and B are normalization factors, λn defines

the kernel width and w is a user-tunable constant, thus
the final image after restoration is given by:

If (x, y) =
w∑

i=−w

w∑

j=−w
I(x− i, y − j)Kw(i, j), (2)

where(x, y) and (i, j) are pixel coordinates in the image
and kernel, respectively.

2) Estimating the particle location: this is done by locating
local intensity maxima in the filtered image, If (x, y). A
local maximum is considered to be a spot if it has the
highest intensity within a local window and the intensity
is in the rth highest percentile.

3) Refining the particle location: this step reduces the stan-
dard deviation of the position measurement. It is based
on the assumption that the local intensity maximum of
point P at (x̂p, ŷp) is near the geometric center (xp, yp)
of the spot. The offset is approximated by the distance
to the gray-level cetroid in the filtered image, If (x, y):

[
εx(p)

εy(p)

]
=

1

m0(p)

∑

i2+j2≤w2

[
i

j

]
If (x̂p+ i, ŷp+ j).

Factor m0(p), is the sum of all pixel values over feature
point P given as:

mo(p) =
∑

i2+j2≤w2

If (x̂p + i, ŷp + j). (3)

Then the refined location estimate is determined as:

(x̃p, ỹp) = (x̂p + εx(p), ŷp + εy(p)). (4)

4) Non-particle discrimination: this step rejects false iden-
tifications from sources such as auto fluorescence and
dust. This step is based on the intensity moments of
order 0 and 2, and identifies true particles as those within
a cluster in the m0,m2 plane. A detailed description of
the discrimination step can be found in [7].

90



B. H-Dome Transformation

The method of H-dome transformation was proposed in [8].
The method is based on the mathematical morphology:

Hdome(I(x, y)) = I(x, y)− ρI(I(x, y)− h), (5)

where (I(x, y)−h) denotes the result of subtracting a constant,
h, from a gray-scale image I(x, y), and ρI(I(x, y)−h) is the
morphological reconstruction of the gray-scale image, I(x, y)
from (I(x, y)−h). The gray-level reconstruction is obtained by
geodesic dilation of (I(x, y)−h) under I(x, y). The H-Dome
transform enhances local intensity maxima. In our experiments
we used the Matlab function, imhmax as the implementation
of the H-Dome method.

C. Isotropic Undecimated Wavelet Transform (IUWT)

The method of IUWT was proposed in [4] for the detection of
of spots in biological images. The algorithm is based on the
assumption that spots will be present at each scale of wavelet
decomposition and thus will appear in the multiscale product.
The algorithm starts by convolving the image I(x, y) row by
row and column by column with a symmetric low pass filter
h = [1, 4, 6, 4, 1]/16 , resulting in a smoothed image Ii(x, y).
This process is repeated for J scale levels, augmenting the
filter with 2i−1 − 1 zeros between taps in each case. The
corresponding wavelet coefficients, Wi(x, y), are given as:

Wi(x, y) = Ii−1(x, y)− Ii(x, y), 0 < i ≤ J. (6)

Then, a hard thresholding is applied to reduce the effect of
noisy wavelet coefficients with ti = kσi, where σi is the
standard deviation of the noisy wavelet coefficients at scale
i and k = 3.

thard(Wi, ti) =

{
Wi(x, y), Wi(x, y) ≥ ti. (7)
0, Wi(x, y) < ti (8)

Thus, after hard thresholding, a multiscale product of each
wavelet coefficient is computed to get a correlation image,
PJ(x, y),

PJ(x, y) =

J∏

i=1

Wi(x, y). (9)

All the values in the correlation image are compared to
predetermined detection level, ld, to discriminate between
particle and background, and get a binary image of particles.
A spot is accepted only at positions where the correlation is
above ld,

PJ(x, y) =

{
255, |PJ(x, y)| ≥ ld. (10)
0, Otherwise (11)

D. Laplacian of Gaussian

The method of Laplacian of Gaussian (LoG) was proposed
in [9] for the detection and counting of mRNA spots. This
methods counts the number of bright particles (spots) in
images. The algorithm is based on the second order partial
derivative of the Gaussian kernel:

Gσ(x, y) =
1

2πσ2
exp

[
− x2 + y2

2σ2

]
, (12)

where (x, y) are pixel locations.

LoG =
∂2

∂x2
Gσ(x, y) +

∂2

∂y2
Gσ(x, y). (13)

This algorithm reduces pixel noise, and enhances spots in
image, I(x, y), by convolving with a LoG filter. Then the
method proceeds to find spots using connected components
with a user-selected threshold.

IV. PERFORMANCE MEASURE

In order to test the performance of the four methods, we use
two common measures: True Positive Ratio (TPR) and False
Positive Ratio (FPR), as used in [10],

TPR =
NTP

NTP +NFN
, (14)

FPR =
NFP

NFP +NTN
. (15)

Because the number of true negatives (TN) is not known, the
modified FPR is given as,

FPR∗ =
NFP

NTP +NFN
, (16)

where NTP is the number of true positives, NFN is the the
number of false negatives and NFP is the number of false
positives. Best performance is indicated when TPR is high
and FPR∗ is low.

V. EXPERIMENTS

A. Experiments with synthetic data

We have created two types of synthetic images, Type A and
B with a known number of spots, as shown in Figure 2.

Type A images are of size 512 × 512 pixels containing
10 × 4 2D Gaussian spots with decreasing intensity across
the rows and decreasing radius across the columns, as
shown in Figure 2(a). Gaussian noise (σ ranging from 6 to
40) was added to each image resulting in a set of noisy images.

Type B images were obtained using an ImageJ (NIH, USA)
[16] plugin called Synthetic Data Generator [17]. Each image
contains 256 Gaussian spots with SNR ranging from 1 to 5.
These images show large background structures, leading to
non-uniform background, as shown in Figure 2(b).
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(a) (b)

Fig. 2. Examples of synthetic images used in the experiments. (a) Type A synthetic image, (b) Type B synthetic image

B. Experiments with real images

We also tested the performace of the four methods using
real fluorescence microscopy images, as shown in Figure 1.
Since the ground truth of these images was not available,
we compared the detection results with manual inspection, as
shown in Table III, and all the parameters of each method were
kept to the same values as in the experiments with synthetic
images.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

Tables I and II show the results of four detection methods
using synthetic images. The results from Table I indicate that
almost all methods perform best at σ = 6 except for FPD
with lowest true positive ratio of 0.875. However as noise
increases the to σ = 40, there are changes in performance.
The results show that the IUWT has the highest average TPR,
followed by LoG, FPD and H-Dome. However in terms of
average FPR*, the IUWT has the highest value as compared
to the other methods with LoG being the lowest. This shows
that the IUWT is slightly more sensitive to noise than the
other methods.

Noise immunity may be partly dependent on filter selection.
The IUWT method applies a one-dimensional filter to each
row and each column of the image whereas the FPD and
LoG methods each use a two-dimensional, Gaussian filter.
The additional filtering provided by the two-dimensional filter
may be one reason for better noise immunity. The H-Dome
method uses morphological processing and shows very good
noise immunity except at the highest noise levels.

Results from Table II show that at high SNR (= 5) almost
all algorithms perform well with TPR ≈ 1 except for the
FPD which has the lowest TPR(= 0.875). However as SNR
decreases, there is a slight change in performance of the
methods. The LoG method performed best with average TPR
of 0.78 as compared to the other methods.

The results from real images, Table III, indicate that all
methods perform well with TPR≈ 1. Figure 3 shows the

TABLE I
RESULTS OF SPOT DETECTION METHODS USING TYPE A SYNTHETIC

IMAGES

Dataset IUWT FPD LoG HDOME

1 (σ=6) TPR 1 0.875 1 0.9
FPR* 0 0 0 0

2 (σ=12) TPR 1 0.875 0.975 0.9
FPR* 0.05 0 0 0

3 (σ=18) TPR 0.975 0.875 0.975 0.875
FPR* 0.15 0 0.025 0.125

4 (σ=24) TPR 0.95 0.9 0.9 0.825
FPR* 0.4 0 0 0

5 (σ=34) TPR 0.925 0.9 0.875 0.8
FPR* 0.75 0.45 0 0.125

6 (σ=38) TPR 0.9 0.9 0.9 0.775
FPR* 0.65 0.75 0.075 0.625

7 (σ=40) TPR 0.9 0.9 0.8 0.775
FPR* 0.925 0.85 0.025 0.8

Average TPR 0.95 0.89 0.918 0.835
FPR* 0.42 0.29 0.018 0.24

TABLE II
RESULTS OF SPOT DETECTION METHODS USING TYPE B SYNTHETIC

IMAGES

Dataset IUWT FPD LoG HDOME

1 (SNR=5) TPR 1 0.875 1 1
FPR* 0 0 0 0

2 (SNR=4) TPR 1 0.84 1 0.97
FPR* 0 0 0 0.0039

3 (SNR=3) TPR 0.98 0.79 0.99 0.93
FPR* 0.0039 0 0.012 0.066

4 (SNR=2) TPR 0.44 0.75 0.81 0.84
FPR* 0 0.066 0.059 0.39

5 (SNR=1) TPR 0.0313 0.23 0.082 0.058
FPR* 0.0078 0.21 0 0.32

Average TPR 0.69 0.69 0.78 0.76
FPR* 0.00234 0.0552 0.0142 0.156

TABLE III
RESULTS FOR SPOT DETECTION METHODS USING REAL FLUORESCENCE

IMAGES

Manual IUWT FPD LoG HDOME
TPR 1 0.98 0.95 0.98 0.97
FPR* 0 0.057 0.17 0.07 0.09

detected spots for each method.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Results of applying the proposed methods to a real fluorescence image. Detected spots are showed in red circles.(a) Original fluorescence image -
with the box showing the zoom region. (b) Manual detection. (c) Detected spots using using FPD. (d) Detected spots with IUWT. (e) Detected spots with
LoG. (f) Detected spots using H-Dome

The LoG method applies a user-selected threshold whereas the
other methods are fully automatic. This is an advantage for
the LoG method in cases where a threshold for accurate spot
extraction does, in fact, exist. The LoG method has been used
successfully for spot detection in fluorescence microscopy
images [9] but it may not perform as well in images with
greater background nonuniformity.

VII. CONCLUSION

We compared the performance of four detection methods,
IUWT [4], FPD [7], H-Dome [8] and LoG [9]. Our study
included two types of synthetic images as well as a real
image obtained using fluorescence microscopy. The results
from experiments on the synthetic images indicated that some
of the proposed methods are vulnerable to noise as noise
increases, with the IUWT showing to be more sensitive on type
A images. However, the results from real images indicate that
the difference in performance of the methods is comparatively
small. The results show that the Laplacian of Gaussian method
performed best overall when true positives and false positives
are considered.
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Abstract—We approach the task of harmonizing chorales
through style imitation by probabilistically modelling the har-
mony of music pieces in the framework of weighted finite-state
transducers (WFSTs), which have been used successfully for
probabilistic models in speech and language processing. The
framework makes it possible to place domain-specific regular
constraints on generated sequences, and to integrate models
of different levels of complexity. We divide the harmonization
generation process into different steps, each performed by in-
ference through transducers. We present a method for four-part
harmonization that models vertical and horizontal structure in
the generated harmonizations. The weights in our transducers
are learned by maximum likelihood estimation from a corpus
of chorales. The predictive power of own model, as measured
through entropy, is competitive with that of existing approaches.

I. INTRODUCTION

Music is usually composed through a creative process.
However, all pieces of music have structure, and a com-
poser is usually constrained by the style of his composition.
Established rules and principles that give the music certain
aesthetically pleasing qualities should be followed. However,
the characteristics of a good music piece cannot be fully
described by such rules. The main reason for this is that a
music piece should exhibit acceptable structure at a local and
global level. There should be a fine balance between various
musical qualities in the piece.

The harmony of a music piece, i.e., the structure of notes
played simultaneously, is central to this musical structure. The
harmony, usually described by chords, can be seen either as an
observed variable of a piece with multiple voices, or as a latent
variable of a melody. In music pieces with multiple voices,
both the chords formed by the voices at each time-step (also
called the vertical structure, due to the way music is written)
and the melodic structure of each of the accompaniment voices
(called the horizontal structure) are important. In this paper we
will be concerned with the particular style of harmonization
in 17th-century 4-part chorales, exemplified by the chorales
of JS Bach. Chorale harmonization is an important task in
Western classical music, and is studied by all students of music
theory. The principles employed in chorale harmonization are
transfered to many other composition tasks which involve
harmony.

In this paper we present a probabilistic model to generate
harmonizations for given melodies, using machine learning
techniques. We focus on style imitation of chorales by JS

Bach, though our model can also be applied to other genres.
Bach chorales have been used extensively in music modelling
(see for example [1], [2], [3]), due to their abundance, sim-
plicity and good melodic and harmonic form. Our model is
predictive, assigning a non-zero probability to every possible
sequence over the given alphabet.

The harmonization procedure that we propose models the
different steps in the harmonization process, similar to those
followed by human composers, in a full probabilistic setting.
Each step is performed by inference through a weighted finite-
state transducer (WFST) cascade. Separate models are trained
for major and minor pieces, as there are significant differences
between their musical characteristics. Our model generates a
good approximation of the real harmonization, modelling both
vertical and horizontal constraints.

In the next section we give some musical background and
discuss related work. Section 3 defines weighted finite-state
transducers and related algorithms required for our approach.
Section 4 presents the harmonization model we propose, while
section 5 discusses the implementation of our model. We
discuss the evaluation of our system in section 6, and give
conclusions in section 7.

II. BACKGROUND AND RELATED WORK

A. Musical Notation

The fundamental units of a music piece are notes. A note is
a single sound, represented by pitch — how high or low the
sound is, and duration — how long the sound is held. In a
standard classical music piece, the pitch and duration of notes
are governed as follows:

Pitches are named by their pitch classes. There are 12
classes, namely C, C#, D, D#, E, F, F#, G, G#, A, A# and
B, each of which forms an equivalence class. An interval of
size 12 is referred to as an octave. A scale is a sequence of
pitch classes defined by the starting pitch class of the scale and
the intervals between pitches in the scale. The most common
scale types are the major and (natural) minor scales. The key
signature of a piece indicates the scale that forms the basis of
notes of the piece. However, a piece can also have accidentals,
notes that are not in the scale of the key signature.

The beats of a music piece are constant time intervals that
primarily govern the start of notes in the music. The tempo
indicates the length of those beats. The time signature indicates
the meter of the music, the basic grouping beats into bars. The
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rhythm of a sequence of notes describes the duration of each
note in the context of the time signature of the piece. Note
durations are expressed as fractions of a “whole note” of 4
beats. Typical durations are a half note, quarter note, eight
note and sixteenth note.

In general, a music piece consists of a number of voices,
each voice being a single time-dependant sequence of notes.
The melody of the music piece is the most significant voice,
usually the highest. The harmony of the music refers to the
way that different notes sound simultaneously. The harmony
can be described by chords, predefined combinations of notes
in the scale of the music piece that sound well together. A
chord usually consist of three pitch classes, though there are
also chords with more pitch classes. The most common chord
types, those that we will focus on, are the major and minor
chords.

B. Algorithmic Composition

Algorithmic composition, i.e., composition by formalizable
methods, has a long tradition, and numerous procedures have
been investigated [4]. The most common limitation that these
approaches have is the inability to generate longer pieces of
music that exhibits acceptable overall structure. One broad
approach to algorithmic composition is the application of rules
or algorithms chosen by the composer or programmer to create
new pieces of art [5]. However, composers seldom publish the
formalizable ideas that they use in their compositions [4]. The
other approach is to construct a generative theory to describe
music pieces in a given style [1]. This generative theory can
then be used to generate new pieces of music in the given style.
Just as in language modelling, one can distinguish between two
approaches to such generative theories. In the first approach,
knowledge engineering, rules and constraints are explicitly
encoded in some logic or grammar. In the second approach,
empirical induction, parameters of a statistical model are learnt
from existing compositions.

There are clear parallels between the development of gen-
erative models for language and for music. However, in com-
putational linguistics the focus is primarily on using models
for analysis, while in music modelling research focuses on
generation. Conklin [6] argues that the problem of music
generation can be made equivalent to that of sampling from a
statistical model; Models that are able to explain the structure
of music pieces will also be able to generate acceptable
original music pieces. A reason why this might be the case (it
is not so in language modelling) is that in music the semantics
(meaning) lies primarily in the structure of the music, while
in language words can have meaning that lies outside the
structure, by referring to objects or actions. However, more
research into this relationship, and its implication in evaluating
music generation systems, is needed.

Markov models have been used widely in musical style
imitation, since they are simple and efficient in training and
inference. To model melodies, higher order and variable order
Markov chains are usually used (see, for example [7], [1], [3],
[8]). The best results found are found by using a middle ground

between Markov chains of low order that do not constrain the
structure of generated music sufficiently, and Markov chains of
high order that reproduce large fragments of the music pieces
used for training.

C. Harmonization Models

Allan and Williams [2] applies hidden Markov models
(HMMs) to harmonize chorale melodies. An HMM takes
the melody notes as the observed sequence and the possible
harmonizations (chord configurations) as hidden states. The
best harmonization for a given melody is obtained from the
HMM. A second HMM is used to model ornamentation, i.e.,
to add notes with a duration other than that of the beat to
the generated harmonization voices. Ornamentation smooths
the movement between notes and adds some variation. The
MySong automatic accompaniment system [9] uses a similar
HMM approach to generate chords to accompany a melody
sung by the user.

A probabilistic graphical model approach to harmonization
is proposed in [10]. Domain knowledge can be included in
the model, and different levels of hidden variables are used
to model non-local dependencies in the chord progressions.
Specifically, it is found that a tree-structured graphical model
for modelling the roots of chords over a given melody has
more predictive power than an HMM model for the same task.
However, a similar advantage was not found when modelling
other voices in the harmony given the chord roots.

III. WEIGHTED TRANSDUCERS

Weighted finite-state transducers are automata that can be
be used for the probabilistic modelling of discrete sequences.
Important motivations for the use of WFSTs include the
uniform representation of models and the existence of efficient
inference algorithms that can be applied to them [11]. WFSTs
have been used successfully in speech and language processing
(see for example [12]). We now define transducers and the
operations that we need to use them as probabilistic models.
Then we show how Markov chains and hidden Markov models
can be represented as WFSTs.

A. Finite-state Transducers

A weighted finite-state acceptor (WFSA) is a finite-state
machine that accept a set of strings in the class of regular
languages, assigning weights to the accepted strings. It has
states and edges between states. Each edge is labeled with
a symbol in the alphabet of the language, and a weight. A
WFSA accepts a string if there is a path from a start state
to a final state such that the concatenation of the symbols
on the edges along the path yields the string. The symbol ε,
denoting the empty string, can also be used as an edge label.
The weight assigned to a path is the product of the weights on
the edges along that path. The weight of a string is the sum
of the weights of all the paths that yields that string.

A weighted finite-state transducer is a finite-state automaton
similar to a WFSA, where each edge has an input and an
output symbol. A WFST assigns weights to accepted pairs of
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input-output strings, and can also be considered as a device
which transforms a string in one regular language to a string
in another regular language. A string is a sequence of alphabet
symbols. Below we will refer to strings as sequences.

Formally (see [11]), a weighted finite-state transducer T
over a semiring K is a tuple (Σ,Ω, Q,E, I, F, λ, ρ) given by:
An input alphabet Σ; an output alphabet Ω; a finite set of
states Q; a finite set of weighted transitions E contained in
Q× (Σ ∪ ε)× (Ω ∪ ε)×K ×Q; a set of initial states I ⊆ Q;
a set of final states F ⊆ Q; an initial weight function λ; and
a final weight function ρ.

Semiring abstraction allows us to define automata rep-
resentations and algorithms over different weight sets and
algebraic operations. A semiring K consists of a set K with an
associative and commutative operation ⊕ and an associative
operation ⊗, with identities 0 and 1, respectively, such that
⊗ distributes over ⊕, and 0 ⊗ a = a ⊗ 0 = 0. Here we use
the probability semiring, where weights are probabilities and
the usual summation and multiplication operators are used.
When we construct a transducer the weights do not have to be
normalized; we just need to normalize them when we compute
probabilities or perform transducer operations dependent on
the value of the weights.

Transducers that represent different levels of representation
in a model are combined with the operation of composition.
The composite transducer T = T1 ◦ T2 accepts the sequence
pair (A : C) if and only if there exists a sequence B such that
T1 accepts the pair (A : B) and T2 accepts the pair (B : C).
The weight assigned to (A : C) is the sum, over all possible
values of sequence B, of the product of the weights given by
T1 and T2. Composition can also be extended to a cascade
of more than two transducers. Right projection is a unary
operation on a WFST that yields a WFSA that accepts exactly
the output sequences that the WFST can produce. The weight
of a sequence B in the acceptor is the sum of the weights of
all pairs (A : B) in the WFST. Similarly, the left projection
gives a WFSA over the input sequences of the transducer.

We will use WFSTs by the process of application, obtaining
the result of the transformation of some input by a transducer
or a cascade of transducers. The application can be forward,
when an input sequence to the transducer is given and we
want to find an output sequence, or backward, when the output
sequence of the transducer in the cascade is given, and we
want to find an input sequence that can be transformed to
that output sequence. To apply a sequence to a transducer, the
sequence is converted to an identity WFST that accepts only
that sequence, with weight 1. That WFST is then composed
with the given transducer, and the applicable projection of the
composite transducer is obtained (right projection for forward
application, and left projection for backward application). We
can then sample from, or find the most likely sequence of, the
resulting WFSA.

B. Markov Models

A Markov chain (MC) is a stochastic chain over a discrete
number of states. The probability of a state in an nth-order

Markov chain is dependent on the values of the previous n
states in the chain. A sequence of symbols generated by an MC
represents the states of the chain. Therefore, in the sequence
q1, q2, ..., qm the following assumption holds if t ≥ n:

P (qt+1|qt, ..., q1) = P (qt+1|qt, qt−1, ..., qt−n+1)

We can represent a Markov chain as a WFSA as follows:
The alphabet of the WFSA is the set of symbols representing
the state space of the MC. Each state of the WFSA encode the
history of the previous n states in the MC. A transition in the
WFSA is labeled with a symbol representing the next state of
an MC transition, and its weight represents the probability of
that transition. It follows from this representation that, when
we ignore probabilities, MCs generate a class of languages
(with the state names as alphabet symbols) that is a strict
subclass of the regular languages.

We can learn the weights of this WFSA by maximum
likelihood estimation, as for an MC. The (n+ 1)-gram counts
of the sequences in the training data being modeled are the
sufficient statistics. The probability of a transition between
states qt and qt+1, given the state history, is:

count(qt−n+1, ..., qt, qt+1)

count(qt−n+1, ..., qt)

To make the model predictive, we add smoothing to the
Markov chains we use in our models. We use Katz’s back-
off model [13], a smoothing method often used in language
models for speech recognition. In a higher-order MC, when
an n-gram does not occur, we recursively back off to the
highest-order MC for which the corresponding m-gram suffix
of the n-gram has a non-zero probability. This is an appropriate
smoothing technique for music sequences, due to its similarity
to the variable-order Markov chains that have been used
successfully for melodic modelling. For the models we use
here, it was sufficient to use a second-order Markov chain (a
trigram model). Counts of n-grams whose frequency is lower
than a threshold k (we use k = 5, the most common choice for
k) are lowered using Good-Turing re-estimation, and the freed
up fractional frequency counts are redistributed to assign back-
off probabilities to lower-order MCs. Let nr be the number of
n-grams that occur exactly r times in the training data. Then
the discount coefficient for n-grams, where 1 ≤ r ≤ k, is

dr =

(r+1)·nr+1

r·nr
− (k+1)nk+1

n1

1− (k+1)nk+1

n1

.
A hidden Markov model (HMM) [14] models the rela-

tionship between two sequences, a hidden sequence and an
observed sequence. A discrete HMM can be represented by a
cascade of two WFSTs. The first transducer is an MC for the
hidden symbol sequence. The second transducer models the
state emission probability distributions. This transducer has a
single state, takes as input the hidden sequence, and gives as
output the observed sequence. Every transition in this trans-
ducer has an input symbol from the hidden sequence alphabet,
an output symbol from the observed sequence alphabet, and a
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(c) Inner voices transducer

Fig. 1. Example transducers for harmonization generation

weight representing the probability of the observed symbol
given the hidden symbol. For a given observed sequence,
we can find a corresponding hidden sequence by backward
application to the transducer cascade. In our models, we
estimate the weights in the HMM by maximum likelihood
estimation (separately for the two transducers) on sequence
pairs in the training data, as both the observed and the hidden
sequences are known during training.

The framework of WFSTs makes it possible to place regular
constraints on sequences generated by Markov chains or Hid-
den Markov models. For example, we can constrain the length
of a sequence by constructing an acceptor of all sequences
of a specific length. We then compose that acceptor with the
Markov chain WFSA to get a state-machine that represents the
same MC, but only accepts sequences of the required length.
It is also possible to compose a Markov model with a non-
Markov model that represent some domain knowledge, and
which is representable as a WFST.

IV. HARMONIZATION

We present a model to harmonize given melodies in the style
of four-part chorale harmonization. Our harmonization proce-
dure has two steps. Firstly, we find the optimal chord sequence
for a given melody. Secondly, we generate three additional
voices (the bass voice and two inner voices) so that the implied
harmony corresponds to the generated chord sequence. In the
approach proposed in [2], the chord representation includes
the configuration of notes in the harmonization voices. The
advantage of our model is that we are able to model explicitly

the voice movement of the harmonization voices, which is
important for good harmonizations.

In our harmonization generation system we generate music
by performing inference through application to transducer
cascades. At each step, the Viterbi algorithm is used to
find the optimal sequence. Examples of the WFSTs used
in the cascades are given in Figure 1. We give a schematic
representation of the transducer cascades used, in Figure 2.
Each transducer’s input and output sequences are given. For
each of the transducer cascades we also give corresponding
probabilistic graphical model representations in Figure 3.

A. Chord Analysis

To model the harmony, we first analyze the chords in the
music piece (see [15] for an overview of procedures). We
use a template-based method to assign a chord to each beat
of the music piece. The template chords we use are the 12
major chords, the 12 minor chords, and the empty chord
(corresponding to no chord classification made).

For chord classification, the notes in a beat are represented
by a vector. Each element in the vector represents the duration
of notes in the beat corresponding to one of the 12 pitch
classes. We represent our template chords similarly: The three
pitch classes are each represented by the duration of a beat,
but the tonic of the chord is represented by twice that value,
due to its importance. We classify the notes in each beat to
the template chord for which the Euclidean distance between
the vector representation of the beat notes and the template
chord is a minimum.

B. Chord Generation

We use an HMM approach to find the optimal chord
sequence for a given melody. The chord sequence is seen as
the hidden sequence, modelled with a (higher order) Markov
chain, and the melody is seen as the observed sequence. The
relationship between the chord and melody notes in each beat
in the music is modeled.

The melody sequence symbols each represent the pitches
and rhythm of a beat in the music. The chord sequence
symbols are template chord names. We model chord gen-
eration with a WFST cascade, given in Figure 2a, where
the first transducer is a Markov chain for chords and the
second transducer is a single-state chord to melody transducer.
The corresponding graphical model is given in Figure 3a. To
do inference, we apply a melody symbol sequence to the
cascade, and find the optimal chord sequence with the Viterbi
algorithm.

C. Bass Voice Generation

To generate harmonization voices, we first generate a bass
voice, and then two inner voices. In the training data, we
identify the base voice as the voice that is, on average, the
lowest in a music piece. In the model for the bass voice we
work with a representative pitch sequence for the bass note
sequence. When there is more than one pitch in the same beat,
the longest or first pitch is chosen. We model the relationship
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(c) Inner voices generation model

Fig. 2. Transducer cascades for the harmonization model

between the bass voice and the chord sequence with a hidden
Markov model, in a similar way to the chord sequence and
melody. Now the chord sequence is the observed sequence and
the bass note sequence is the hidden sequence. Given a chord
sequence, we sample from the distribution of bass notes for
that chord sequence. The transducer cascade is given in Figure
2b and the graphical model in Figure 3b.

D. Inner Voices Generation

We generate two inner voices that, together with the melody
and bass voices, give the implied harmony of the chord at each
beat. To do this, we model the vertical constraints on, and the
horizontal probability distribution over the generated voices.
We use a smoothed Markov chain trained over all the inner
voices in the training data to model the horizontal structure.
There is usually an overlap in the ranges of the inner voices,
and in training a single model for the inner voices we do not
need to restrict the training data to exactly four voices.

Vertically, we model the pair of inner voice sequences so
that the four voices of the harmony will together represent the
chosen chords at each time-step. We restrict the range of the
voices such that none of the four voices may cross each other
(a lower voice may never have a higher pitch than a higher
voice in the same beat). The motivation for this constraint is to
remove spurious ambiguity from the model. We want to give
a strong preference to inner voice pairs at a beat such that
all three pitch classes of the chord should be contained in the
four notes at the beat. If there is no configuration satisfying
that preference, we give preference to assigning one note, in
a pitch class not yet represented by the melody or bass voice
of the beat, to both voices.

We want to model the two inner voice sequences given the
melody, chord and bass sequences. We represent the already-
known sequences with the sequence C+, where C+

i encodes
the melody note, bass note and chord at time-step i. The
graphical model representation of the joint distribution over
these variables is given in Figure 3c. The distribution factorizes
as follows:

P (I1, I2, C+) =P (I10 , ..., I
1
n, I

2
0 , ..., I

2
n, C

+
0 , ..., C

+
n )

=P (I10 )P (I20 )P (C+
0 |I10 , I20 )

•
n∏

i=1

P (I1i |I1i−1)P (I2i |I2i−1)P (C+
i |I1i−1, I2i−1)
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Fig. 3. Graphical models for the harmonization model

As we are working with the case where C+
1 , ...C

+
n is given,

the conditional distribution is:

P (I1, I2|C+) =P (I10 , ..., I
1
n, I

2
0 , ..., I

2
n|C+

0 , ..., C
+
n )

=P (I10 )P (I20 )
P (C+

0 |I10 , I20 )

P (C+
0 )

•
n∏

i=1

P (I1i |I1i−1)P (I2i |I2i−1)
P (C+

i |I1i−1, I2i−1)

P (C+
i )

We model this distribution with a transducer cascade as
follows: The first transducer is a Markov chain for the first
inner voice, the second transducer models the vertical structure
— the acceptability of inner voices at every time step (taking
the first inner voice as input and giving the second as output)
and the third transducer is a Markov chain for the second inner
voice. This transducer cascade is given in Figure 2c. From the
probability distribution factorization it follows that the weight
of a transition between time-steps i − 1 and i in the second
transducer should be P (C+

i
|I1i−1,I

2
i−1)

P (C+
i
)

.

Let α and β be weights that indicate our preference for pure
chords (all three pitch classes are represented) and impure
chords (any other note combination) respectively. Here we
choose α = 0.8, and let β = 1 − α. The reason for this
choice is that we want to give a strong preference to pure
chord representations.

Suppose P (C+
i ) = 1

m , where m is the number of possible
chord combinations. Let pi be the proportion of possible
inner voice combinations that represent pure chords, given the
bass and melody notes at time step i. The transition weight
is then α

α·pi+β·(1−pi) for pure inner voice combinations and
β

α·pi+β·(1−pi) for impure combinations.
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E. Ornamentation
In general, harmonization voices are not played in blocks, at

every beat in the music. Repeated notes may be combined into
one longer note, and extra notes can be inserted to improve
voice movement (the most common example is to insert a
middle note if there is an interval of a third between two
notes). This process is known as ornamentation. An HMM
model for ornamentation is proposed in [2]. We implement
a similar model. We first encode the pitches and rhythm
of a note sequence at each beat as a single symbol. The
ornamented note sequence is then modelled as the hidden
sequence of the HMM, and the representative note sequence as
the observed sequence. The ornamentation transducer cascade
can be applied to ornament the bass voice and the two inner
voices.

However, this ornamentation procedure is limited in its
ability to reproduce ornamentations of quality comparable to
the ornamentations in our training data. Another limitation is
the inability to model parallel or diverging movement in pairs
of voices, as the ornamentation of different voices is modeled
independently. Excessive or uncoordinated ornamentation may
decrease the quality of harmonizations. We therefore propose
that further work should be done on ornamentation, building
on the ability of our approach to model vertical and horizontal
structure in harmonizations. We do not include ornamentation
in our evaluation below.

V. IMPLEMENTATION

In this section we give a brief overview of the implemen-
tation of our chorale harmonization generation system. The
main steps in the system are:

1) Analyse a corpus of given music pieces.
2) Learn the parameters of a WFST-based model for har-

monization.
3) Generate new harmonizations for given melodies, using

the trained model.
In our implementation we use the finite-state transducer

package Carmel [16] for performing operations on the trans-
ducer models. Carmel can train and compose transducers, sam-
ple sequences or get sequence probabilities from transducers.

To represent music pieces our system uses MIDI, a standard
music file format that represents a music piece by event
messages about the music, rather that with an audio signal.
In our implementation we use the Java package JMusic [17]
to extract a symbolic representation corresponding to standard
music notation from a MIDI file. We extract a pitch sequence
and a rhythm sequence for each of the voices in a music piece.
A pitch value is represented as a MIDI pitch value, an integer
between 0 and 127 that represents the number of semi-tones
the note is higher than the note 5 octaves below middle C. For
our model, we transpose the pitches of all the training music
pieces to the key of C major or A minor, for pieces in a major
or minor key respectively. The rhythm sequence represents the
durations of notes and rests, as well as bar separators.

We represent rhythm (note duration) values with integers
directly proportional to the note duration, with 96 representing

TABLE I
AVERAGE ENTROPY OF HARMONIZATION MODELS ON TRAINING AND

TESTING SETS

Model Major Train Major Test Minor Train Minor Test
P (C) 2.503 2.796 2.748 3.171
P (C|M) 1.517 1.798 1.851 2.219
P (B) 4.259 4.144 4.382 4.407
P (B|C) 2.463 2.377 2.463 2.377
P (I1, I2) 3.727 3.957 3.859 4.182
P (I1, I2|M,C,B) 2.886 3.137 3.090 3.330
P (H|M) 6.866 7.312 7.364 7.949
P (H|M) in [2] 3.693 7.069 3.838 7.242

a whole note. However, as these note values are not always
represented precisely in the MIDI files, we had to approximate
imprecise values to the nearest discrete value in our represen-
tation. We also inferred the bar structure in the music pieces,
and used that to ensure the correct alignment of notes to beats.

In our implementation we store the transducers and note
sequences as text files in the format required by Carmel.
We then use Carmel to perform inference by application
to transducer cascades, using the models described above.
Finally, the generated sequences for the harmony (in text
format) is converted back to a MIDI file of the generated
harmonization.

VI. EVALUATION

The evaluation of our models is based on a publicly avail-
able corpus, in MIDI format, of chorales by JS Bach1. From
this corpus we used 350 chorales in four-part harmony, evenly
split between chorales in major and minor keys. We trained
separate models for chorales in major and minor keys. For both
models, the chorales were divided into a training set (60%) and
a testing set (40%). Our evaluation is based on an estimation
of entropy – the negative log likelihood per symbol that a
model gives to music pieces in the testing set. For a sequence
S = s1s2 . . . sN , the value − 1

N

∑N
i=1 log2P (si|s1, . . . si−1)

is used.
The average of this measurement is taken over all examples

in the testing set. This evaluation method has been used to
evaluate harmonization in [2]. It evaluates the predictive power
of a model by measuring the likelihood that is assigned by
our model to compositions that we are trying to imitate. The
lower the entropy, the higher the probability that our model
gives to the music pieces. We compute the entropy for different
components of our model separately, and then add them to find
the entropy of the model. Table I gives the average entropy
of our models. We include the entropy of the training and
testing sets. For each of the models, we compare the result
against a baseline Markov model that is not conditioned on
other sequences.

The predicted sequences are represented by the following
symbols: The melody, M , the chord sequence, C, and the
harmonization voices, H (representing the bass voice B and
inner voices I1 and I2). We include the results of Allan and

1http://www.jsbchorales.net/down/sets/jsb403.zip
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Williams [2] for comparison. Note that we convert their scores
from log base e to log base 2 to represent entropy.

In the evaluation of our models, we find that the entropy of
the training data is in each case smaller than that of the testing
data, as should be expected, but only by a small margin. This
shows that our smoothed models (using Katz’s back-off model)
are very robust in dealing with sparse data, and performs
almost equality well on seen and unseen data. In contrast,
the results of [2] show a large difference between the testing
and training training data. This gives some evidence that their
model overfits the training data.

The results show that for each of the models an improve-
ment is obtained over the baseline model, where the sequence
is independent of other sequences. This show that our model
is indeed modelling the dependencies between sequences.

The results we obtain from our model is competitive with
the results of [2]. One reason our model does not perform
better is that, with enough data, that model will also model
movement in individual harmonization voices, as all the notes
at a beat are encoded in a single symbol. However, our model
should be more scalable, as we explicitly model horizontal
movement in harmonization voices.

The evaluation approach we follow here allows us to evalu-
ate a model hypotheses quantitatively and to compare different
hypothesis. A limitation of this approach is that the model has
to be predictive. In practice, one might generate better quality
music by placing more hard constraints on the generated
harmonizations. Specifically, it might be beneficial to constrain
the inner voices to let only pure chord combinations be
generated.

An alternative way to evaluate our harmonization system
would be to let a music expert panel judge the quality of the
harmonizations and their conformity to standard harmoniza-
tion rules.

VII. CONCLUSION

In this paper, we proposed a model for the harmony of music
pieces, specifically chorales, using the framework of weighted
finite-state transducers. This framework is flexible and ex-
tendible, making it possible to construct models that encode
different sets of dependencies and restrictions. We showed how
WFSTs can model different steps in the harmonization process
in a probabilistic setting, while encoding algorithmic processes
that composers may be following when they compose pieces
of music. The results show that our procedure is successful in
modelling dependencies in the horizontal and vertical structure
of the music.

For future work, models for non-local structure in the chord
sequence generation model should be investigated. Specifi-
cally, tree-based approaches should be considered – a non-
probabilistic tree-based approach for music modelling has
been proposed in [18]. The restriction on chords types in our
model can also be relaxed.

Another avenue for further investigation is the effect of
removing some of the independence assumptions we made
by dividing the harmonization process into different steps.
Better models for non-local structure in the harmonization
should also be developed. The ornamentation procedure we
mentioned can be refined. Related to that, approaches to
modelling parallel and diverging movement between voices
in the harmonization should be investigated. The goal should
be to fully model the richly structured harmonizations of JS
Bach.
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[18] F. Drewes and J. Högberg, “An algebra for tree-based music generation,”
in Proceedings of the 2nd international conference on Algebraic infor-
matics, ser. Lecture Notes in Computer Science, vol. 4728. Springer,
2007, pp. 172–188.

101



Multilingual pronunciations of proper names in a
Southern African corpus

Jan W.F. Thirion, Marelie H. Davel and Etienne Barnard
North-West University, Potchefstroom, South Africa

E-mail: {thirionjwf,marelie.davel,etienne.barnard}@gmail.com

Abstract—We present our process for the development and
analysis of a multilingual names corpus, called Multipron-split.
It is derived from Multipron, a corpus collected in previous
work [1], where names and speakers were drawn from four
South African languages, namely Afrikaans, English, isiZulu
and Sesotho. The new corpus is more suited for multilingual
pronunciation modelling and research as the “words” consist of
either a name or surname, rather than a combination of the two.
This enables us to model pronunciations from a single language
of origin, which has previously been shown to be important
in pronunciation modelling for proper names. An algorithm is
presented through which the most common pronunciations of
names, also called reference pronunciations, can be automatically
extracted from the observed pronunciations. We show that the
most common pronunciation variants correlate well with the
different speaker languages, and that systematic phone substi-
tutions occur when speakers of one language pronounce names
from a different language. Also, reasonably accurate automatic
pronunciations can be generated with an automatic grapheme-to-
phoneme converter, especially when the speaker language agrees
with the name language.

I. INTRODUCTION

Various factors such as a speaker’s region of origin, mother
tongue, age and socio-economic background result in sys-
tematic pronunciation differences between speakers [2]. In
a multilingual environment, such as in South Africa, this
issue is particularly prominent, since most automated speech-
processing systems will be required to operate on speech from
speakers with a variety of linguistic backgrounds. In particular,
it is generally accepted that poor pronunciation modelling
can lead to deteriorated automatic speech-recognition (ASR)
performance [3]; this is especially true for multilingual proper
names as well as loan words, where native pronunciation rules
are often inaccurate [4]. For resource scarce environments,
such as in South Africa, dealing with this problem adequately
remains a challenge [5], [6], especially since resource-
scarce languages are currently less important economically
to the providers of commercial speech-recognition systems.
Speech recognition of proper names is particularly important
in applications such as voice search, directory assistance and
automated attendants [7], [8], [9].

It is impractical to create a dictionary by hand with all
possible pronunciations of all names in all languages (both
because of the time and cost involved, and because of the
inevitable inaccuracies that will result from such a process).
Hence, pronunciation rules are often employed to predict
pronunciations [3]. There is a need for a corpus on which

the pronunciation rules for South African languages can be
trained, where the linguistic origin of the name is taken into
account. Earlier work [1] resulted in a multilingual corpus,
called Multipron, for four South African languages, but these
combined name/surname pairs typically had mixed languages
of origin for the names and surnames, making pronunciation
modelling problematic.

In this paper we present our process of transforming the
Multipron corpus into a “split” corpus, Multipron-split, of
individual names and surnames, tagged by their associated
language of origin. We then automatically extract the typical
pronunciation as would be produced by a native speaker of
each name from the pronunciations in the corpus (observa-
tions). The Default&Refine algorithm [10] is then used as
G2P converter to predict these reference pronunciations. An
interpretation of the results gives insight into the structure of
the corpus and the variants contained therein.

II. BACKGROUND

It is well known that knowledge of the mother tongue
of the speaker, as well as the linguistic origin of the word,
can be beneficial to producing better pronunciation variants
[11]. The consistency of cross-lingual pronunciation of proper
names was recently studied for four South African languages,
namely Afrikaans, English, Setswana and isiZulu [4]. It was
confirmed that knowledge of the linguistic origin of each
word was an important factor in predicting how it would be
pronounced.

The Autonomata Spoken Names Corpus (ASNC) [12] was
recently used in state-of-the art work most related to our cur-
rent investigation [13], [14], [15], [16]. The database contains
3540 unique names of Dutch, French, English, Turkish and
Moroccan origin. The corpus contained only names of people
(personal names and surnames), street names and city names
in a single language (i.e no mixed language names).

In [17] a tandem G2P-P2P approach was used for the
G2P conversion of proper names, where an initial transcription
generated by the G2P converter is passed to a P2P converter,
along with the orthography of the word. The P2P converter
applies learned rules (in the form of decision trees or rule
networks, automatically learned from the data) that generate
alternative pronunciations. In [18] this method was shown to
work well for the G2P conversion of proper names, although
the linguistic origin of the word was not taken into account.
In [13] it was found that ASR accuracy for proper names
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increased when pronunciation variants were added to the
lexicon. This was true for native speakers speaking foreign
names, but not for foreign speakers. Here “native” refers to
the target language of the system (e.g. Dutch) and foreign, or
“non-native” include English, French and Moroccan.

A study on how mother tongue and the linguistic origin
of the word affect ASR performance, was reported in [14].
Language-specific G2P converters were used, both monolin-
gual as well as multilingual acoustic models, and language-
specific P2P converters. It was found that native speakers used
their own non-native G2P rules when pronouncing unfamiliar
words from the non-native language and not knowledge from
the G2P rules from their native language. Non-native speakers,
however, tended to employ their own non-native G2P rules
when pronouncing unfamiliar words from the native language,
resulting in substantial error increases. When the speaker’s
mother tongue was used as basis for selecting variants (from
that language) for the recognition of foreign names, per-
formance decreased. Also, names with linguistic origins of
languages different from that of the native/target language
of the system, were found to be easier to recognise due to
the names having less chance of being confused with the
pronunciations of the native language. An experiment was
also done to investigate whether ASR performance increases
if the correct transcription is always added to the lexicon. It
is encouraging that improved ASR accuracies were observed
for all native/non-native combinations. Better pronunciation
prediction algorithms may thus lead to even more improved
ASR accuracy as the lexicon will contain even better coverage
of the true transcriptions.

The work in [15], [16] can be considered as the current
state-of-the-art in the multilingual recognition of proper names
using knowledge of the speaker’s mother tongue and the
linguistic origin of the word. Here it was found that nativised
transcriptions [19] are appropriate as target transcriptions for
P2P learning. P2P transcriptions improved ASR accuracy of
non-native words by a native speaker, but not significantly
for native and non-native words by a non-native speaker.
Automatically generated P2P transcriptions compete well with
typical transcriptions from human experts. For non-native
words, speakers will attempt to use the non-native G2P rules
of that language; hence, knowledge of the speaker’s mother
tongue is important for accurate P2P converters. When a P2P
converter was trained on foreign names, it outperformed a P2P
converter trained exclusively on native words.

From the work above, many unanswered questions remain.
For example, it is unclear what benefit task-specific (trained on
the same type of data we are trying to predict, taking language
of origin into account), rather than language-specific G2P
converters would have. It is also important to see how well
the results obtained generalise to the South African languages.
However, in [1], the names and surnames form a word in
which the constituent parts could be of different language
origins, making pronunciation analysis difficult – hence the
need to create a “split” corpus in order to address these
questions.

III. APPROACH

A. The Multipron “split” corpus

In order to split the first name-surname pairs in Mul-
tipron, we started with grapheme-to-phoneme alignment of
the dictionary. Dynamic programming was used, with the
orthography as the reference string (with a special symbol
“=” used to join first names and surnames) and a manual
transcription as the observation. (These manual transcriptions
were created as an approximate starting point for further devel-
opment by a first-language Afrikaans speaker, after listening
to a few samples of each name.) An automatically trained
scoring matrix with no gap extension penalties, based on the
Needleman-Wunsch algorithm, was used for alignment [20].
Log-likelihood probabilities were used in the scoring matrix.
Next, the aligned sequences were split where “=” was aligned
to a gap. This resulted in a separate name and surname. In
a few cases, the alignment could not be done (e.g. due to
incorrect transcriptions), and these were inspected manually.
There were 3 such name-surname combinations, of which 3
individual words could not be used. Hence, from the 10130
entries in the dictionary we generated 20257 individual words.

Word boundary effects were subsequently manually checked
and corrected. All double graphemes at word boundaries
in the orthography (first name ends in the same grapheme
as the first grapheme in the surname) were marked to be
checked. All double phonemes in the transcriptions (at the first
name/surname boundary) were also marked, but none of these
required manual intervention. For all /r/ phonemes that were
dropped during the splitting process from the first names, no
changes were made. All /l/ phonemes split off from the first
name resulted in the phoneme being added to the transcription
of the first name (at the end). Finally, double-consonant effects
were corrected, as well as nasals. Table I shows a few of these
manually corrected examples.

Uncorrected Corrected
amber rennie { m b @ r\ E n i

{ m b @ { m b @
r\ E n i r\ E n i

donald day d Q n @ l d @i
d Q n @ l d Q n @ l d

d @i d @i
peaceful lottering p i s f @ l Q t r\ @ N

p i s f @ p i s f @ l
l Q t r\ @ N l Q t r\ @ N
hellen nzwakele h E l @ n z v a k E l E

h E l @ h E l @ n
n z v a k E l E n z v a k E l E

markus stoop m a r k @ s t u@ p
m a r k @ m a r k @ s
s t u@ p s t u@ p

jeanett taylor d Z @ n E t @i l @ r
d Z @ n E d Z @ n E t
t @i l @ r t @i l @ r

TABLE I
EXAMPLES OF MANUALLY CORRECTED “SPLIT” WORDS.

103



B. Reference extraction

For pronunciation variation analysis and evaluation, the
typical pronunciation of a word by a native speaker is needed,
called references here. These can either be obtained from
experts, or be extracted automatically. In the work presented
here, a semi-automatic process was employed.

In order to create reference pronunciations, the following
was done:

1) Extract references: References were extracted by first
counting the number of occurrences of every observa-
tion/transcription for every word (orthography) from a
given language origin, per speaker language. The obser-
vation (per speaker language) with the most occurrences
was taken as the starting reference. If a name was not
pronounced by a certain speaker language, then speaker
language was ignored and the observation with the max-
imum occurrence irrespective of speaker language taken
as the starting reference for that word-speaker language.
A scoring matrix was then trained [20] between the
transcriptions/observations and starting references. The
average dynamic programming (DP) score between all
observations of a word, per speaker language, was then
computed. Two methods of reference selection were
compared:

• OPTMAX: We take the reference to be the tran-
scription with the highest average DP score per
speaker language. If there are ties (unlikely) then
the transcription with the highest number of occur-
rences is taken. If there are still ties, then the first
transcription is taken.

• MAXOPT: We take the reference to be the tran-
scription with the highest number of occurrences
per speaker language. Ties are resolved by taking
the transcription with the highest average DP score
(to all observations) as the reference.

Names that were not pronounced in certain speaker lan-
guages were again treated in the appropriate language-
independent fashion for the respective reference selec-
tion method (i.e. the observation with the maximum
number of occurrences or maximum average DP score,
irrespective of speaker language was taken as the refer-
ence).
A total of 5176 unique “split” references were extracted
in this way. The reference for a name-surname combina-
tion is then the reference per speaker language for each
part (name or surname) of the entry independently.

2) Manual correction: The references where the speaker
language and name language were the same (“in-
language”) were checked and corrected by a human
expert. It is assumed here that speakers with the same
home language as that of the word origin would know
best how to pronounce it.

3) Create references: The “in-language” references were
used as the reference for every word. If a reference was
not available for a word in a specific language, then one

was selected from the other languages. Table II shows
the preferences given. No attempt was made in this work
to investigate how similar languages are.

Language
Choice A E Z S

1 E A S Z
2 Z Z E E
3 S S A A

TABLE II
SELECTION OF ALTERNATIVE “REFERENCES” FROM “IN-LANGUAGE”
REFERENCES FROM OTHER LANGUAGES WHEN AN “IN-LANGUAGE”

REFERENCE FOR A WORD DOES NOT EXIST.

If a reference could still not be found, an automatic
reference from step 1 (for the same speaker language and
name language as the word in question) could be used
as back-off; however, we did not encounter any such
cases. Name and surname references were combined to
give references for all entries in the original Multipron
dictionary. There were 261 Afrikaans, 517 English, 254
isiZulu and 262 Sesotho “in-language” references, for a
total of 1294.

C. Reference prediction

Default&Refine [10] is a rule-based algorithm that can be
used to perform grapheme-to-phoneme (G2P) conversion. In
our task here, it is used to extract rules from the pronunciation
dictionary and then predict the pronunciation of the references
from the orthography alone. We explore two cases:

• Generic G2P trained on a variety of texts is used to pre-
dict the pronunciations for the names. The G2P rules were
language-dependent, based on the Lwazi corpus [21].

• A task-specific G2P is developed, with rules trained on
the names corpus developed here, using 10-fold cross-
validation.

For both these cases, we compare the prediction results
against the references extracted from the MAXOPT, OPT-
MAX and manually verified references. We consider two cases
for each of these “target” reference sets:

• References dependent on speaker language only (we
temporarily ignore name language).

• References dependent on speaker language and name
language, where the speaker language and name language
are the same - the so-called “in-language” references.

D. Variant analysis

The variant analysis we present gives insight into the
reasons behind the variation between observed pronunciations
and reference pronunciations. We take the manually verified
reference pronunciations and extract simple P2P rules (no
context) using the observed pronunciations. The resultant rules
have the form
pr → po
where pr is the phoneme from the reference pronunciation

and po is the phoneme from the observed pronunciation.
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Fig. 1. Relationship between the number of entries (over all speaker and
name languages) and the number of variants for an entry.

Fig. 2. Relationship between the number of references for each of the “in-
language” references and the number of variants for such a reference.

IV. EXPERIMENTS AND RESULTS

A. Corpus analysis

Speaker language
Name language A E Z S

A 1069 1144 912 976
E 2105 2289 1872 2020
Z 961 1063 907 985
S 971 1094 895 994

TABLE III
NUMBER OF ENTRIES IN THE MULTIPRON-SPLIT CORPUS BASED ON

SPEAKER LANGUAGE (MOTHER TONGUE) AND NAME LANGUAGE
(LANGUAGE ORIGIN).

Table III shows the number of entries in the Multipron-split
corpus split according to speaker and name language. A total
of 20257 entries exist and these are fairly evenly distributed
over the speaker and name language pairs, except for English
words, which (by design of the Multipron corpus) were more
frequent than those from other languages.

Figure 1 shows how many entries exist in the corpus with
a given number of variants. The graph gives some insight into
the variedness of the pronunciations – we see that most words
in the corpus have around 3 to 5 pronunciation variants. This
correlates well with Figure 2, from which we deduce that most
variants consist of a single pronunciation in each of the speaker
language/name language pairs.

Figure 2 shows the relationship between the number of
references for each of the “in-language” references and the
number of variants for such a reference. Here it can be seen
that most of the “in-language” references (dependent on both
a speaker and name language) had only a single pronunciation
variant which we selected as reference . This is likely to be a

typical scenario for multilingual corpora, due to the scarcity
of data.

B. Reference extraction

To evaluate how well the reference extraction methods
worked, we compared references extracted with those from
a manually corrected version of the references. Dynamic
programming alignment (Needleman-Wunsch) was performed,
where a similarity score of 2 was given if the symbols were
identical, -2 for a gap and -1 if they differed. Accuracy (Acc)
was calculated as the average accuracy over all of the “in-
language” references. The accuracy (percentage) for a single
reference was calculated as:

Acc = 100 · Num− Ins−Del − Sub
Num

(See the Appendix for additional information on the difference
between accuracy and correctness, as well as other definitions
of terminology.) We also counted the number of references
that were perfectly predicted.

Lang Acc Perf/T Ins Del Sub Num
A 94.29 200/261 8 16 67 1564
E 94.84 411/517 23 23 93 2711
Z 94.29 178/254 5 22 72 1735
S 90.27 151/262 8 17 145 1816

TABLE IV
ACCURACY (Acc), PERFECTLY PREDICTED (Perf ) AND TOTAL (T )

REFERENCES, INSERTIONS (Ins), DELETIONS (Del), SUBSTITUTIONS
(Sub), AND NUMBER (Num) OF PHONEMES FOR THE MAXOPT

REFERENCE EXTRACTION METHOD.

Lang Acc Perf/T Ins Del Sub Num
A 91.69 172/261 4 27 98 1560
E 92.18 362/517 19 37 157 2707
Z 92.75 160/254 2 30 89 1732
S 88.69 132/262 6 35 161 1814

TABLE V
ACCURACY (Acc), PERFECTLY PREDICTED (Perf ) AND TOTAL (T )

REFERENCES, INSERTIONS (Ins), DELETIONS (Del), SUBSTITUTIONS
(Sub), AND NUMBER (Num) OF PHONEMES FOR THE OPTMAX

REFERENCE EXTRACTION METHOD.

Tables IV and V show the accuracy of the reference
extraction methods. Here it can be seen that the MAXOPT
method outperforms the OPTMAX method due to the most
typical variants occurring more frequently than others. When
data is particularly scarce, OPTMAX may still be useful to
choose the most “average” pronunciation variant as reference.
The percentage of references predicted with 100% accuracy
using this method ranges between somewhat less than 60% for
Sesotho to almost 80% for English. The relatively low accu-
racy for Sesotho results from inaccurate initial transcriptions.
This was confirmed in that many of the errors encountered
in the Multipron corpus, most of which were corrected by
hand, were of Sesotho origin. The manually corrected Sesotho
references were then quite different as a result.
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The result of this analysis shows that these automatically
extracted references may be very beneficial as a first-round
version of pronunciations. A human expert may then check
these transcriptions and do the manual corrections. Such semi-
automated processes can save a considerable amount of time
[6].

C. Reference prediction
In this section we evaluate how well the references can be

predicted from trained rules. The accuracy of the conditional
pronunciation rules are evaluated directly, in order to gain in-
sight into the predictability of pronunciations under the various
combinations of causal factors, using 10-fold cross-validation.
In addition, the accuracy of the conditional pronunciation rules
are evaluated against the references extracted from the data.
The aim is to understand how well the pronunciation rules are
able to produce a base reference from which variants can be
generated.

1) G2P per speaker language: Here we consider the accu-
racy with which we can predict the typical pronunciation, of
a person with a specific first language, of a name in any of
the four languages.

The experiment was performed as follows:
• The effect of name language is ignored temporarily.
• For each name pair, we obtain a reference pronunciation

per speaker language (4 references per name).
• Four different dictionaries are created from these refer-

ences, one per speaker language.
• Finally, we generate pronunciation rules in two different

ways:
– system A: Extract rules directly from the name data;

measure accuracy using 10-fold cross-validation.
Data is more closely matched, but the training set
is very small.

– system B: Extract rules from generic data, apply to
full data set and measure accuracy. Now data is less
closely matched, but the training sets are somewhat
larger (5,000 to 100,000 words per language).

Results when extracting rules from name data (system A)
and generic data (system B) are shown in Table VI. (In this
table, both correctness and accuracy are reported.) From the
results we see that when name language is not taken into
account, task-specific rules outperform generic rules. This may
be due to proper names having a less regular spelling system
than other more commonly used words in the same language.
The generic G2P rules are then insufficient to predict proper
name pronunciations accurately.

2) G2P per name language: In this section we consider the
accuracy with which we can predict the typical pronunciation
of a person with a specific first language of a name in his/her
own first language. This can then serve as the basis for adding
variants based on the phonemic substitution rules described in
Section IV-D.

Experimental setup:
• Only consider pronunciations where the name language

is similar to the speaker language.

Task-specific Generic
Lang Ref Corr Acc Corr Acc

A Manual 82.06 79.13 68.95 61.82
OPTMAX 79.50 75.92 67.48 59.75
MAXOPT 81.55 78.54 68.52 61.24

E Manual 80.11 77.57 72.30 67.61
OPTMAX 77.35 74.34 71.53 66.32
MAXOPT 80.22 77.47 71.85 67.03

Z Manual 82.27 78.87 79.94 69.62
OPTMAX 79.96 76.59 77.78 66.58
MAXOPT 81.50 78.09 79.39 68.83

S Manual 80.91 77.76 76.04 67.80
OPTMAX 78.91 75.30 74.90 65.52
MAXOPT 81.43 78.29 77.07 68.76

TABLE VI
RESULTS OF G2P PREDICTION (PER SPEAKER LANGUAGE) OF

REFERENCES WITH TASK-SPECIFIC AND GENERIC RULES.

• For each name, obtain a reference pronunciation per name
language (1 reference per name).

• Create 4 different dictionaries from these references, one
per name language.

• Generate pronunciation rules in two different ways:
– system A: Extract rules directly from the name data;

measure accuracy using 10-fold cross-validation.
Data is more closely matched, but the training set
is very small.

– system B: Extract rules from generic data, apply
to full data set and measure accuracy. Now data is
less closely matched, but the training sets are larger
(5,000 to 100,000 words per language).

Results when extracting rules from name data (system A)
and generic data (system B) are shown in Table VII. The
results show that when the name language and the speaker
language are the same, these “in-language” reference pronun-
ciations can be predicted more accurately than when name
language is ignored (Table VI). Furthermore, generic G2P
rules outperform the task-specific G2P rules. This is a direct
consequence of the limited data available for training. Of
interest is the lower accuracy observed for English, which is
to be expected, given its less regular spelling system.

Task-specific Generic
Lang Ref Corr Acc Corr Acc

A Manual 89.03 87.08 88.30 84.19
OPTMAX 83.04 80.01 84.41 78.93
MAXOPT 86.44 83.62 86.24 81.40

E Manual 82.44 79.32 90.36 87.13
OPTMAX 78.07 74.06 87.19 82.92
MAXOPT 80.72 76.77 89.10 85.49

Z Manual 96.79 96.27 97.17 96.36
OPTMAX 91.36 89.93 93.83 91.66
MAXOPT 93.41 92.31 94.92 93.11

S Manual 86.37 85.20 87.17 86.39
OPTMAX 86.38 84.29 88.76 86.62
MAXOPT 88.22 87.06 91.66 90.66

TABLE VII
RESULTS OF G2P PREDICTION (PER NAME LANGUAGE) OF REFERENCES

WITH TASK-SPECIFIC AND GENERIC RULES.
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D. Variant analysis

Name language
Speaker language A E Z S

A r → r\ r\ → r a → A: O → u
a → A: @ → a O → u u → O

r → z → s E → i a → A:
a → @ { → a i → @ i → E
i@ → i Q → O s → z E → @

E r → r\ r\ → r a → @ a → A:
a → @ @ → a a → A: u → O
a → A: { → a i → @ a → @
a → { @ → 3: O → @u O → @u
x → g E → { E → @ E → @

Z r → r\ → r A: → a O → u
@ → i @ → a a → A: a → A:
@ → E @ → i g → E → i
A: → a Q → O E → i u → O
@ → a { → a k → g i → E

S r → r\ → r A: → a O → u
@ → E @ → a z → s u → O
A: → a @ → i E → i E → i
r → r\ Q → O g → k a → A:
@ → i { → a a → A: A: → a

TABLE VIII
SOME OF THE TOP PHONE SUBSTITUTIONS MADE BETWEEN

PRONUNCIATIONS OBSERVED AND THE AUTOMATICALLY EXTRACTED
REFERENCES BASED ON THE MAXOPT METHOD FOR DIFFERENT

SPEAKER LANGUAGE AND NAME LANGUAGE COMBINATIONS. PHONES
ARE IN XSAMPA FORMAT, AND ARE SELECTED FROM THE LWAZI PHONE

SETS [5].

In Table VIII we see the top 5 substitutions or deletions
made by speakers with different mother tongue languages
pronouncing words from different language origins. The in-
sertions are not shown here as they require more context to
be meaningful. The results reveal a number of interesting
patterns: for example, the approximant /r\/ of English and
trilled /r/ of Afrikaans are prone to deletion or interchange
in all languages, the voiced/voicing feature in /z/ and /s/ is
not stable, etc. It is interesting to note that these “rules” are
not the same for the different language combinations, even
though some commonalities do exist. In the results here, the
automatic references were used to compare the pronunciations
from different languages. It is also interesting to observe that
when a first language speaker pronounces a name in his/her
language, the G2P rules of other languages are sometimes
employed, e.g. the “r → r\” mapping for Afrikaans speakers
on Afrikaans names. Clearly, determining the correct linguistic
origin of a word, is not an easy task and often ambiguous.

When the manual references are used, the results in Ta-
ble IX are obtained. Here we see that the rules extracted are
very similar to those from the automatic references. This is
encouraging as it means that the process of variant generation
may not be very sensitive to the accuracy of the references
extracted. Consequently, it is possible that good variants may
still be generated using the automatically extracted references.

V. CONCLUSION

It was shown that reference pronunciations can be extracted
in a semi-automatic process. Although a human expert was

Name language
Speaker language A E Z S

A r → r\ r\ → r a → A: u → O
a → @ @ → a O → u i → E
{ → E z → s g → k a → A:
h → d → E → i O → u
r → { → a i → @ E →

E r → r\ d → a → A: u → O
r → @ → a a → @ a → A:

a → @ r\ → r i → @ i → E
a → A: E → { g → k a → @
a → { → 3: E → @ O → @u

Z r → r\ → r a → A: u → O
@ → E @ → a g → i → E
@ → i @ → i g → k a → A:
j → Z Q → O E → i E → i

A: → a { → a K → tl > O → u
S r → r\ → r a → A: u → O

@ → E @ → a g → k i → E
r → r\ @ → i z → s a → A:
A: → a Q → O g → A: → a
@ → i { → a E → i h →

TABLE IX
SOME OF THE TOP PHONE SUBSTITUTIONS MADE BETWEEN

PRONUNCIATIONS OBSERVED AND THE MANUALLY CORRECTED
REFERENCES FOR DIFFERENT SPEAKER LANGUAGE AND NAME LANGUAGE

COMBINATIONS.

required to verify and correct some of the entries, the process
was relatively fast and efficient, and the benefit of this process
will be even more pronounced when larger dictionaries are
being developed.

One of our aims with this research was to determine which
is most predictable: cross-lingual reference pronunciations
directly, or “in-language” reference pronunciations combined
with a number of P2P rules to generate additional variants.
(For ASR systems it is not necessary to generate the single-
best pronunciation, as long as the most commonly occurring
variants can be predicted.) We found that there are numerous
P2P effects that occur systematically and that these can be
used to generate variants using the “in-language” reference
pronunciations, which can be predicted with high accuracy.

When the name language is not taken into account, we
found that the task-specific G2P rules outperformed the
generic rules, suggesting that proper names pronunciations
have a less regular spelling system than generic words. How-
ever, for “in-language” prediction the generic rules perform
very well, suggesting that “in-language” name pronunciations
are quite similar to the pronunciation of generic words. It may
be that with more data the task-specific G2P rules will still
outperform the generic rules. G2P systems for all languages
(name and speaker languages) achieve close to 80% phoneme
correctness. The only system that does not achieve this level of
accuracy is English, which is not surprising given the general
complexity of English G2P. If speaker language and name
language overlap, reference pronunciations can be predicted
with good accuracy.

Much interesting work remains to be done in order to
achieve our goal of accurate pronunciation modelling of South
African proper names. Most importantly, the accurate “in-
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language” results achieved with generic pronunciation rules
(see Table VII), along with the regularities in cross-language
pronunciations (Table IX) suggest that significantly improved
predictions can be obtained by combining these different
knowledge sources – perhaps by using a P2P-based approach
similar to that in [17]. Comparing the ASR accuracies that can
be achieved with these various approaches on the Multipron
corpus will also be of great practical interest.

From a linguistic perspective, it will be interesting to see
whether the process of cross-language transfer of pronunci-
ations can be characterized more generically. For example,
our four languages are from two different language families;
it is reasonable to expect that those family relationships
will reveal themselves in the cross-lingual pronunciations. A
detailed understanding of this process will be helpful in the
development of algorithms that can also be applied to all those
language pairs for which cross-lingual data is not available.
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TERMINOLOGY

Speaker language - This is the first language of a speaker,
also called the native language or mother tongue.

Name language - The language of the word’s origin is
referred to here as the name language or word language.

Correctness and accuracy - These are two closely related
measures that can be used to evaluate the performance of a pro-
nunciation prediction system. As the predicted pronunciation
and the reference pronunciation may be of different lengths,
these two pronunciations are first aligned on a phoneme-to-
phoneme basis. When the two pronunciations are aligned,
some of the phonemes will match (predicted correctly), others
will not (prediction errors). The number of phonemes that
match as a percentage of the total number of aligned phonemes
is referred to as “phoneme correctness”. “Phoneme accuracy”
is a stricter measure whereby the total number of incorrectly
inserted phonemes are subtracted from the total number of
correct phonemes before the percentage is calculated. We
use both measures to quantify our ability to predict different
reference pronunciations.

In-language reference pronunciation - This is defined
as the single pronunciation per name that is produced most
often by first language speakers from the language community
where the name originated. (For example, the way an isiZulu
speaker would produce an isiZulu name, or an Afrikaans
speaker an Afrikaans name.)

REFERENCES

[1] O. Giwa, M. H. Davel, and E. Barnard, “A Southern African corpus for
multilingual name pronunciation,” in 22nd Annual Symposium of the
Pattern Recognition Association of South Africa (PRASA 2011), Nov.
2011, pp. 49–53.

[2] H. Strik and C. Cucchiarini, “Modeling pronunciation variation for ASR:
A survey of the literature,” Speech Communication, vol. 29, no. 2-4, pp.
225–246, 1999.

[3] M. Adda-Decker and L. Lamel, “Multilingual Dictionaries,” in Multilin-
gual Speech Processing, T. Schultz and K. Kirchoff, Eds. Berlington,
MA, USA: Academic Press, 2006, ch. 5, pp. 123–166.

[4] M. Kgampe and M. H. Davel, “Consistency of cross-lingual pronun-
ciation of South African personal names,” in 21st Annual Symposium
of the Pattern Recognition Association of South Africa (PRASA 2010),
Nov. 2010, pp. 123–127.

[5] E. Barnard, M. H. Davel, and G. B. van Huyssteen, “Speech technology
for information access: a South African case study,” in Proceedings of
the AAAI Spring Symposium on Artificial Intelligence for Development
(AI-D), Mar. 2010, pp. 8–13.

[6] M. H. Davel and O. Martirosian, “Pronunciation dictionary development
in resource-scarce environments,” in Proceedings of the 10th Annual
Conference of the International Speech Communication Association
(Interspeech), Sep. 2009, pp. 2851–2854.

[7] B. Erol, J. Cohen, M. Etoh, H.-W. Hon, J. Luo, and J. Schalkwyk,
“Mobile media search,” in ICASSP ’09: Proceedings of the 2009 IEEE
International Conference on Acoustics, Speech and Signal Processing.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 4897–4900.

[8] F. Bechet, R. De Mori, and G. Subsol, “Very large vocabulary proper
name recognition for directory assistance,” in IEEE Workshop on Auto-
matic Speech Recognition and Understanding, Dec. 2001, pp. 222–225.

[9] F. Bechet, R. De Mori, and G. Subsol, “Dynamic generation of proper
name pronunciations for directory assistance,” in IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
vol. 1, May 2002, pp. I–745–I–748.

[10] M. H. Davel and E. Barnard, “Pronunciation prediction with De-
fault&Refine,” Computer Speech and Language, vol. 22, no. 4, pp. 374–
393, 2008.

[11] A. F. Llitjos and A. W. Black, “Knowledge of Language Origin Improves
Pronunciation Accuracy of Proper Names,” in Eurospeech, 2001, pp.
1919–1922.

[12] H. van den Heuvel, J.-P. Martens, K. D’hanens, and N. Konings, “The
Autonomata Spoken Names Corpus,” in Proceedings LREC, 2008, pp.
140–143.
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Abstract—The lossy image compression method described in 

this paper uses a graph-based approach to reduce the image 

size. The presented method is based on the assumption that 

any image may be decomposed into a structure and detailed 

components. The detail part is compressed with a frequency-

based scheme (transform coding used in JPEG and JPEG2000 

for example) while the structure component is processed with a 

grid smoothing assisted by a graph decimation technique. The 

performance of the compression method is demonstrated on 

few popular images. 

Keywords—Bilateral Mesh filtering, Grid smoothing, Mesh 

decimation 

I.  INTRODUCTION  

Digital images usually contain a large amount of data. 

The facility to save, transmit and retrieve digital images 

efficiently becomes more and more important in this cutting 

edge technology. In today's world, where exchange of 

images is part of our daily life, everyone has experienced the 

benefit of reducing the size of a file containing images. The 

existing image compression techniques reduce the number of 

bits representing the image by exploiting the redundancies in 

the original image while preserving the resolution and the 

visual quality of the reconstructed image as close to the 

original image as possible. The compression method can be 

either lossy or lossless. The well-known lossy compression 

methods make use of transform coding, vector quantization, 

image compression by linear splines over adaptive 

triangulation, fractals, or subband wavelet coding schemes 

for removing psychovisual and statistical image 

redundancies [5]. However, as the bit rate is decreased and 

the compression ratio increased, each compression technique 

introduces artifact, creating blocky, blurry, patchy or smudgy 

images [5]. Most of these methods operate on pixels values 

of the original image and only few methods operate on the 

graph of the image to reduce its size.  

The main idea of our compression technique is to capitalize 

on the advantages of the pixel-based and graph-based 

methods. The algorithm uses bilateral mesh filtering to split 

the input image into structure and detail components. The 

 

structure component is the resulting filtered image which 

contains the large scale features while the detailed 

component corresponds to the residual image obtained by 

subtracting the image structure from the input image. In 

figure 1, it is shown that the grid smoothing is applied on 

the filtered image SI in order to extract the non-uniform 

grid reflecting the image structure. The structure of an 

image I can be seen as a set of points in which the first two 

coordinates represent the row x and the column 

y determining the position  yx, of a pixel. The third 

coordinate corresponds to the pixel value  yxI , at the 

given position. The neighborhood of a pixel contains either 

four or eight pixels. Four pixels create four connectivity 

while eight pixels create eight connectivity.  The set of 

points and the connectivity associated to the image helps to 

associate an image with a graph. The image is seen as a 

collection of vertices or nodes where a vertex represents a 

pixel. The edges are represented by the connectivity of the 

neighborhood pixels. Uniformly distributed position 

coordinates  yx, leads to a uniform mesh or uniform grid. 

Meshes or graphs with non-uniformly distributed 

coordinates (x, y) will be named non-uniform grids or 

meshes. During the grid smoothing process, vertices are 

moved from small variances regions to large variance 

regions since the regions with small variance require fewer 

points than the regions with large variance [9]. The output 

of the grid smoothing contains a set of coordinates 

combined together to form the non-uniform grid. Delaunay 

triangulation is performed on the set of coordinate’s points 

to generate triangular faces. The resulting triangular mesh is 

decimated through mesh simplification process. The 

simplification lies in eliminating elements of the mesh such 

as vertices, edges and faces [4, 2]. The simplification 

exploited is the mesh decimation [11]. The decimation 

process removes vertices and faces from a mesh. Since we 

are working on a triangular mesh, the mesh decimation will 

reduce the number of triangles (faces) in the mesh without 

losing the overall structure. The number of vertices of the 

simplified mesh corresponds to number of pixels of the 

compressed image. The reconstruction process is based on 
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mapping the color values associated to the each vertex of 

the simplified mesh. In our case, we map the associated gray 

level of each vertex (pixel) by interpolation since we are 

working in gray scale. 

 

The lines below of this paper will give more details 

on the components used to implement our lossy image 

compression algorithm. Section 2 gives the notion of 

bilateral mesh filtering and grid smoothing in image 

processing. Section 3 describes the use of mesh 

simplification to reduce the size of an image. Section 4 

illustrates the proposed lossy image compression method. 

Section 5 shows the results. A conclusion is given in section 

6.   

 

Input Image Bilateral Mesh filtering

Image structure 

(Is)

Image details (Id)

Compression with 

grid smoothing

Compression with 

JPEG2000

Figure 1. Image Preprocessing 
 

II. BILATERAL MESH FILTERING AND GRID SMOOTHING 

A. Bilateral Mesh Filtering 

Bilateral mesh filtering corresponds to a bilateral filter 

implemented using graph-based approach. It imitates the 

behavior of the classical bilateral and mesh filtering; whilst 

presenting some properties of mesh smoothing [10]. The 

graph used in the bilateral mesh filtering process consists of 

a set of vertices that are correlated with the image pixels 

values. The link between vertices is identified as edges 

characterizing the relationship between pixels.  This new 

filtering is implemented via an energy function based on the 

mesh smoothing model of Hamam and Couprie. The cost 

function is developed as a graph and minimized. This 

function is expressed as a sum of data fidelity and 

smoothing terms based on the node-edge incidence [10]. 

The filter defines a weight based on the difference in 

grayscale of the extremities of the connection and makes use 

of an exponential law. It takes into account the luminance 

proximity and computes the distance between the luminance 

of two vertices iz  and jz  as in [10]:  
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jid ,  : represents the distance between the vertices 

i and j . 
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2ji zz  represents the 2L norm between the 

grey levels. 

-   represents the variance parameter of the 

Gaussian distribution. 

 

The objective function of the first order bilateral mesh filter 

is defined as: 
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The optimal solution of the first order is given by: 
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The optimal solution of the second order is given by 
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The diagonal square matrix  Lwwdiag ,...,1 of size 

LL (L: number of connections in the graph) has its 

lw diagonal elements defined by:
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Where i is the sending end of the connection l  and j is the 

receiving end. 
0

z represents the initial grey level of 

node . 

 

The model of the bilateral mesh filtering is defined from 

equation (1) to (5). From these expressions, it is understood 

that the performance of the new filter depends on the 

parameters   and   which corresponds to d and 

r respectively when compared the classical bilateral filter 

[12].  

 

 
Figure 2. Result of Bilateral Mesh filtering 

B. Grid Smoothing 

The grid smoothing is a new graph-based technique 

for image processing and analysis developed by Guillaume 

Noel, Karim Djouani, and Yskandar Hamam. This 

technique presents a general outline analogous to the mesh 

smoothing in which a cost function is defined and 

optimized. The method is interpreted as projection of the 

grey levels of the input image onto the sampling grid; and 

enhances the edges of the input image while preserving the 

number of nodes.  The Grid smoothing operates on the 

theory where regions with small variance necessitate fewer 

points than regions with a large variance. Points with small 

variance regions are moved to large variance regions. The 

grid smoothing method changes the coordinates of the 

points in the grid to match the entities in the image. This 

graph based technique is formulated as an optimization 

problem defined in [9] as: 

 

 

(a)Original Image (b)Image structure (c)Image details 
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Where  YXJ , represents the cost function of 

variables   KK RRYX , .  YX , represents the 

coordinates of nodes in the mesh, and K represents the 

number of pixels images.  
  

 

Figure 3. Grid smoothing of a portion of the image structure 

III. MESH SIMPLIFICATION TECHNIQUES 

         Mesh simplification consists of eliminating the 

elements of a mesh (vertices, edges or faces) while 

preserving the original shape and appearance [3]. Several 

mesh simplification algorithms have been developed [2]. 

Most algorithms reduce the complexity of the mesh by 

merging elements of the mesh, by resampling the vertices 

[1, 2]. Depending on the desired output mesh, some 

algorithms preserve the input mesh while others alter it 

illogically [4]. 

 

      One category of mesh simplification referred to as mesh 

decimation simplifies meshes by removing vertices and 

faces from a mesh [11]. The main idea is to reduce the 

number of faces in the mesh by iterative vertex decimation, 

edge collapse or contraction without losing the overall 

structure. . Most faces are triangles. The iteration process is 

terminated when the required percentage of reduction of the 

mesh is reached or when some decimation criteria are 

reached. Most mesh decimation approaches are based on 

iterative edge collapse or edge contraction   [8]. An edge 

collapse is an operation that reduces an edge into a single 

vertex. When this is done all edges and faces connected to 

the removed vertices has to be reconnected to the new 

vertex. Several theories   have been developed on how to 

efficiently collapse edges while preserving the original 

topology and a good approximation to the original 

geometry. Some techniques have been more complex than 

others. The essential difference between these techniques 

lies in how they choose an edge to contract.  

 

         One of the well-known techniques of mesh decimation 

is the Surface Simplification Using quadratic error metrics 

developed by Garland and Heckbert. The base operation of 

their technique is the edge collapse where an edge is 

reduced into a single vertex by merging the two vertices of 

the edge. The contraction of the pairs is performed by 

repositioning the two vertices to a new selected location. 

The change in vertices location results in deletion of 

vertices, while all the edges and faces connected to the 

removed vertices are reconnected to the new vertex. This 

process might degenerates few faces or edges which will be 

removed from the mesh. The approximation produced by 

the algorithm maintains high fidelity to the original mesh 

[6]. The algorithm of Surface simplification using 

quadratics error metrics of Garland and Heckbert is 

implemented based on the norm stating that the validity of 

the vertex pair  21,vv  chosen for contraction focus on 

either: 

  21,vv  is an edge or 

 tvv  21 , where t is a threshold parameter. 

The choice of the contraction is based on the cost function 

of contraction. The characteristic of the error at each vertex 

helps to define the contraction cost. Garland and Heckbert 

defined the error at a vertex  Tzyx vvvv 1  using 

the quadratic form:
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Where Q  is a symmetric 4x4 matrix associated with each 

vertex. A new matrix Q must be derived at each vertex pair 

contraction to approximate the error at new vertex v . The 

new matrix Q  is defined as:   

                                       21 QQQ                             (8) 

 

The contracted vertex pair  21,vv  is placed at either 1v , 

2v or   221 vv  depending on the lowest value of the 

error  v  produced by either of the selected location. The 

ideal location would the one that minimize  v . The 

minimum is found by solving for  v  (homogenous vector): 
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   The performance of decimation method developed by 

Garland and Heckbert is similar to a MATLAB function 

reducepatch. The operation of the function consists in 

reducing the number of faces of the triangular mesh while 

preserving the overall shape of the original mesh. For details 

on the reducepatch function see MathWorks.com.  
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(c)Decimated triangular Mesh  
 Figure 4. (a)Initial triangular mesh of an image structure;  (b)Mesh 

decimated to 50%; (c) Mesh decimated to 10%  

IV. PROPOSED COMPRESSION METHOD 

The proposed lossy compression scheme concentrates on 

the data reduction of the image structure using the grid 

smoothing to extract the image structure graph. The vertices 

of   resulting image graph are rearranged using Delaunay 

triangulation to create triangular faces. The resultant mesh 

with triangular faces is decimated using a triangulated mesh 

simplification technique. The resulting decimated mesh is 

used to retrieve the vertices coordinates’ and convert the set 

of coordinates to a matrix of pixels. The number of vertices 

equals the number of pixels in the image.  The 

reconstruction process is based on mapping the gray values 

associated to the vertices of the decimated mesh into a set of 

gray values associated to a uniform grid. Each vertex is 

associated with a gray level indicating the color of the 

vertex. The objective of the reconstruction is to allocate 

gray levels to the pixels. The approach used for the 

reconstruction is the triangle based interpolation of the gray 

levels and the resampling of the interpolated surface. 

V. RESULTS 

 

 

(c)Image structure (d)Compressed Image structure using Grid  

     smoothing by 50% of mesh decimation  

     PSNR = 29.6049 dB 

(e)Image structure (f)Compressed Image structure using  

    Grid smoothing by 20 % of mesh  

     decimation PSNR = 38.7868 dB 

(a)Image structure 
(b) Compressed Image structure        

with 40 % of the mesh decimated  
     (PSNR= 41.9303 dB) 
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Figure 5. Simulation results 

VI. CONCLUSION  

The lossy image compression scheme presented in this 

paper proposes a new graph-based approach to compress 

images. It shows the efficiency of graph-based approach in 

image compression. The reconstructed image displays a 

good visual quality with a good peak signal to noise ratio 

which makes this new technique an alternative lossy image 

compression scheme. The developed method is centered on 

image data reduction. A study has to be done on the 

encoding of the reduced image data.  
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Abstract — This paper describes the methods that were 

followed in the development and improvement of a statistical 

machine translation system for translation from English to 

Setswana. Setswana is regarded as a resource scarce language 

and therefore an adequate amount of parallel data is not freely 

available. The methods created attempt to improve the quality of 

a machine translation by manipulating the data during 

processing. The methods include the creation of sentence 

reordering, term deletion and term replacement rules. The rules 

were applied to training and testing data in the pre- and post-

processing stages of development. The systems were compared to 

one another to detect whether the quality of the machine 

translation improved. 

Keywords—statistical machine translation, pre-processing, post-

processing, sentence reordering, English, Setswana, term 

replacement, term deletion 

I. INTRODUCTION 

South Africa is a diverse, multi-lingual country and has 

eleven official languages [1]. According to the South African 

Bill of Rights [2], “everyone has the right to use the 

language…of their choice” as well as “the right of access to 

any information held by the state.”  

 

The South African government strives to provide 

information in all of the languages, but according to Prinsloo 

& De Schryver [3], corpora (and even more so parallel 

corpora) for all eleven official languages of South Africa is 

not always obtainable. Statistical machine translation (SMT) 

systems could serve as an additional tool for human translators 

to simplify, standardise, and expedite the translation process in 

the South African context.  

 

For this research, it was decided to develop a SMT system 

for the translation of English to Setswana. Setswana falls into 

the Southeastern Bantu language group [4] and this research 

will contribute to the advancement of other closely related 

languages. These languages include Sesotho and languages in 

the Nguni, Tsivenda, and Xitsonga groups.  

The development of the SMT system was done in two 

stages: first, a baseline system was developed. A text was 

translated and results were obtained. For the second stage, six 

adapted systems were developed. The adapted systems are an 

extended, a reordering, a replacement, a deletion, a deletion-

replacement, and a deletion-reordering system. During the 

development of the adapted systems, linguistically motived 

rules were written and applied to the data. A text for each 

system was translated and individual results were obtained. 

The results of all the systems were compared to establish if an 

improvement of the quality of the translation took place. 

 

The rest of this paper is organised as follows: Section 2 

describes related work and Section 3 describes the 

development of the rules as well as the training of the systems. 

Section 4 gives details on the development of the adapted 

systems as a whole. Section 5 explains the evaluation of the 

systems as well as how the quality of the output of the systems 

improved. The conclusion and an overview of future work can 

be found at the end of the paper in Section 6. 

 

II. RELATED WORK 

Truly automated machine translation of complex text 

cannot deliver output of the quality human translators would 

achieve. This project aims at improving the workflow and 

quality of language services in the government sector. 

Machine-aided human translation was therefore recognized as 

a means to achieve this aim. Machine-aided human translation 

can be explained as a draft translation initially done by a 

computer, but a human translator still remains responsible for 

correcting any errors. Such systems have already been 

developed for numerous international studies as well as for 

South African language pairs. 

 

A machine translation (MT) system employing a pre-

processing step is the English to Swahili, Swahili to English 

machine translation system [5]. The SAWA Corpus Project 

developed an English-Swahili parallel corpus and then built a 

SMT system for the application of the corpus. Swahili is a 
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strong agglutinative language and so words were first 

morphologically deconstructed to facilitate the connection 

between the morphemes and their corresponding English 

words. This improved the automatic word alignments drawn 

during the training phase. The very basic SMT system’s 

results were compared to those of the Google Translate [6] 

system’s results for Swahili. The results showed that the 

SAWA system disappointed in comparison to the Google 

Translate System for the translation from English to Swahili. 

The BLEU [7] and NIST [8] scores declined by 0.06 and 1.04 

respectively. However, for the Swahili to English system, the 

SAWA system fared much better and showed improvements 

in the BLEU and NIST scores, increasing by 0.06 and 0.38 

respectively.  

 

A recent high scale machine translation project for South 

African languages was undertaken in the Autshumato project 

[9]. Smaller (research) experiments were previously 

conducted for SA languages, but this was the first project to 

develop an integrated strategy for the government domain. 

The project concentrated on translation from English to 

Afrikaans, Sesotho sa Leboa and isiZulu and a pre-processing 

method of syntactic reordering of the source language was 

used to improve on the results of the baseline systems [10]. 

The experiments showed positive results, resulting in 

improvements of the BLEU and NIST scores. The English-

Afrikaans system’s NIST score improved by 0.0274, whereas 

the English-Sesotho sa Leboa system’s BLEU and NIST 

scores improved by 0.0406 and 0.5321, respectively. 

 

SMT systems require great amounts of data, but large 

English-Setswana parallel data does not exist, because 

Setswana is considered a low resource language
1
. Simply 

gathering more bilingual data is not a practical option when 

developing SMT systems and so other methods to improve the 

quality of machine translation output is essential. The 

Autshumato project set a benchmark for machine translation 

for South African languages. Accordingly, the purpose of this 

research is to serve as an extension of the Autshumato project. 

For the English to Setswana SMT system developed in this 

research, it was decided to attempt improving the translation 

quality of the baseline system by applying pre- and post-

processing steps. The steps include sentence reordering, as 

well as linguistically motivated deletion and replacement 

rules.  

 

III. RULE DEVELOPMENT  

The data sets used for the development of the linguistic rules 

consist of 200 randomly selected sentences of each language 

and was taken from the training data mentioned above. The 

English data set was first translated with the baseline system 

to identify areas suitable for potential improvement. By 

comparing the English and Setswana data sets, it was noted 

that certain words exist only in one language and not in the 

                                                           
1
 In 2005 the Pretoria Setswana Corpus consisted of 6 130 557 words,  

whereas the Pretoria English Corpus consisted of 12 799 623 words [3]. 

other. The word order of the sentences did not align either. 

The original English data was then annotated with part-of-

speech tags and by applying extensive linguistic knowledge 

[11], the rules were developed.  

 

The numbers of core technologies to draw from are limited 

for Setswana and therefore limit the amount of processing that 

we are able to perform on the target language. However, 

numerous core technologies exist for English and it was 

decided that merely a part-of-speech tagger for English would 

be adequate for this project. The Stanford Log-linear Part-of-

Speech Tagger (Stanford PoS Tagger) [12] was used to 

annotate the English training data and the development data 

set. This tagger was chosen because of the output data’s 

usable quality. All of the reordering, deletion and replacement 

of words was done based on these tags. The rules were created 

and implemented using Perl [13] regular expressions. 

 

The reordering and deletion rules are similar to those used 

by the Autshumato system for English-Sesotho sa Leboa. This 

is possible because both Setswana and Sesotho sa Leboa 

belong to the syntactically similar Sotho language family 

group [4]. However, a different approach was followed in the 

implementation thereof.  

 

For this project, the rules were implemented individually, 

as well as in groups of rule sets. The deletion, replacement and 

reordering rules were implemented each on their own and so 

formed three of the six systems. These three systems are the 

deletion, replacement, and reordering systems. The deletion 

and replacement rules were grouped together, forming the 

deletion-replacement system; and the deletion and reordering 

rules were grouped together to form the deletion-reordering 

system. All the rules were then grouped together to form the 

extended system. 

 

1. Deletion Rules 

The deletion rules remove English words for which no 

Setswana equivalent exists. There are only three deletion rules 

and all three rules affect specific determiners in English. The 

determiners affected are the, an and a. 

 

2. Replacement Rules 

The purpose of the replacement rules is to ensure that the 

English conjunction word is translated with the correct 

Setswana conjunction word. In Setswana, the conjunction of 

nouns and the conjunction of verbs differ. When nouns are 

joined, and is translated as le, but when verbs are joined, and 

is translated as mme. Other conjunctions that are translated 

with the correct Setswana word is or, but and because. They 

are respectively replaced with kgotsa, mme and ka gore. 

 

3. Reordering Rules 

The reordering rules address the differences in the word order 

between English and Setswana. In Setswana, nouns are written 

first, followed by adjectives, and/or pronouns, and/or cardinal 
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numbers, and/or specific determiners. The reordering rules 

change the order of the English words. 

 

When the replacement and reordering rules are 

implemented on their own, determiners must be taken into 

consideration and the rules must be able to detect determiners 

when they are not deleted by the deletion rule. The rules can 

be explained as follows: the sequences of certain words are 

written in square brackets. Possible: means that an adjective, 

an adverb, or a determiner will be detected, but it will not 

matter if no adjective, adverb or determiner is present. When a 

word in a rule is written in bold in square brackets (for 

example [or]), it means that the word must be present for the 

rule to be applied.  

 

The three basic rule groups were each applied separately 

and are set out below. An example sentence of the 

implementation of the rule is also given. The first sentence is 

the original sentence, as found in the baseline system, 

followed by the adapted sentence for that particular system. 

 

A. Deletion System 

 [determiner: the or an or a] → delete [determiner: the 

or an or a] 

Example: 

the status of a person as an only member of a state 

→ status of person as only member of state 

 

 

B. Replacement System 

 [noun] [and] [possible: the or an or a] [possible: 

adjective] [noun] → translate and with le  
 

 [verb] [and] [possible: the or an or a] [possible: adverb] 

[verb] → translate and with mme 
 

 [conjunction or] → translate or with kgotsa 
 

 [conjunction but] → translate but with mme 
 

 [conjunction because] → translate because with ka 

gore 

Example: 

we have limited opportunities because we have limited 

resources and help from volunteers 

→ we have limited opportunities ka gore we have limited 

resources le help from volunteers 

 

 

C. Reordering System 

 [specific determiner] [possible: the or an or a] 

[possible: adjective] [noun] → [possible: the or an or 

a] [possible: adjective] [noun] [specific determiner]  
 

 [cardinal number] [to] [cardinal number] [possible: 

adjective] [noun] → [possible: adjective] [noun] 

[cardinal number] [to] [cardinal number] 
 

 [cardinal number] [possible: adjective] [noun] → 

[possible: adjective] [noun] [cardinal number] 
 

 [pronoun] [possible: adjective] [noun] → [possible: 

adjective] [noun] [pronoun] 
 

 [adjective] [and] [adjective] [noun] → [noun] 

[adjective] [and] [adjective] 
 

 [adjective] [noun] → [noun] [adjective] 

Example: 

the unacceptable misapplication of government power  

→ the misapplication unacceptable of government power 

 

 

The basic rules were also combined in three different systems 

to optimize the rule ordering. The rules for the deletion-

replacement and deletion-reordering systems are similar to the 

separate rules explained above, but for these rules the 

determiners the, an and a do not need to be detected, since 

they are deleted before the next steps are reached. The 

combination of the rules and the changes affecting the rules 

are listed below: 

 

D. Deletion-Replacement System 

 [determiner: the or an or a] →delete [determiner: the 

or an or a] 
 

 [noun] [and] [possible: the or an or a] [possible: 

adjective] [noun] →translate and with le  
 

 [verb] [and] [possible: the or an or a] [possible: adverb] 

[verb] →translate and with mme 
 

 [conjunction or] →translate or with kgotsa 
 

 [conjunction but] →translate but with mme 
 

 [conjunction because] →translate because with ka 

gore 

Example: 

having to report and explain to a higher authority 

→ having to report mme explain to higher authority 

 

 

E. Deletion-Reordering System 

 [determiner: the or an or a] →delete [determiner: the 

or an or a] 
 

 [specific determiner] [possible: the or an or a] 

[possible: adjective] [noun] → [possible: the or an or 

a] [possible: adjective] [noun] [specific determiner]  
 

 [cardinal number] [to] [cardinal number] [possible: 

adjective] [noun] → [possible: adjective] [noun] 

[cardinal number] [to] [cardinal number] 
 

 [cardinal number] [possible: adjective] [noun] → 

[possible: adjective] [noun] [cardinal number] 
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 [pronoun] [possible: the or an or a] [possible: adjective] 

[noun] → [possible: the or an or a] [possible: 

adjective] [noun] [pronoun] 
 

 [adjective] [and] [adjective] [noun] → [noun] 

[adjective] [and] [adjective] 
 

 [adjective] [noun] → [noun] [adjective] 

Example: 

compulsory enlistment in the armed forces 

→ enlistment compulsory in forces armed 

 

 

F. Extended System 

All of the abovementioned rules were applied during the 

training of the extended system. The order of the rules is 

as follows: 

 Deletion rules 
 

 Replacement rules 
 

 Reordering rules 

Example: 

a branch or subdivision of the public service and the 

relationship between the state and its citizens 

→ branch kgotsa subdivision of service public mme 

relationship between state le citizens its 

 

IV. TRAINING OF THE SYSTEMS 

The training data used in this research project consist of a 

parallel corpus
2
 of English-Setswana sentence pairs and a 

monolingual Setswana corpus for language modelling. The 

corpora contain data from the South African government 

domain. The parallel corpus was automatically aligned with an 

algorithm developed by Robert Moore [14]. The open source 

statistical machine translation toolkit, Moses [15], was used 

for the training of both the baseline and adapted systems and 

the SRILM toolkit [16] was used to train the language model. 

Table 1 indicates the quantity of data used. 

 

TABLE I.  DATA QUANTITY 

Corpus Number of sentences / -pairs 

Parallel Corpus 34 321 English-Setswana sentence pairs 

Monolingual 

Corpus 
50 923 Setswana sentences 

 

 

 

 

                                                           
2
 For more information on these corpora, please contact CTexT® [12] 

V. THE DEVELOPMENT OF THE ADAPTED SYSTEMS 

The different systems were created to evaluate which 

linguistic rule – whether on its own or grouped together – 

provided the best translation quality of a translated text. An 

example of how the adapted systems were developed can be 

seen in Fig. 1. This example shows the development of the 

extended system, where all the rules are grouped together. For 

the other systems, the applied rules are adapted to suit each 

system. 

 

 
 

Fig. 1.  Development of an adapted system 
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All the linguistic rules were applied during pre-processing. 

However, post-processing of the the-deletion rule was 

necessary for the deletion, deletion-reordering, deletion-

replacement and extended systems. The reason for this is that 

the Setswana data contain English words and phrases. Since we 

have such a small amount of data and because we do not have 

the means to cleanse the data manually, we decided not to 

dispose of the sentences containing English words and phrases. 

 

The data containing English words poses a big problem, 

because when the language model is trained, the English words 

in the Setswana data are seen as Setswana words. They are 

therefore included in the Setswana language model and when 

an English text is then translated, an English word will be 

translated with a ‘Setswana’ word, when the word is in fact 

also an English word. 

 

When the testing data was translated, the the-determiner 

was detected in the translated text. Post-processing was the 

preferred method of choice because it is quick and effective in 

the removal of wrongly inserted/translated English words. The 

removal of these words could also have a positive impact on 

the word-level evaluations done later. 

 

VI. EVALUATION 

Testing data consisted of 500 manually aligned English-

Setswana sentence pairs. The alignments were done using the 

CTexT® Alignment Interface [9]. This data set is from the 

same domain as the training data; however, none of these 500 

sentence pairs appear in the training data. 

 

A baseline machine translation system was trained and the 

original testing data was translated. All six adapted systems 

received the same testing data set, but the manner in which the 

linguistic rules were applied differed, as explained in section 

V. The adapted testing data sets were translated and results 

were obtained. The results of all six adapted systems were 

compared to the results of the baseline system. 

 

The output quality of a machine translation system can be 

evaluated in two ways: human evaluation or automatic 

evaluation [17]. Only the automatic evaluation was used for 

this project, because it is a sufficient way of obtaining reliable 

results immediately. These results determine whether or not 

the quality of the translation generated by the SMT system 

improved. 

 

The BLEU and NIST scores were calculated for each 

machine translation system. A BLEU score measures the 

closeness between a machine translation and a reference 

translation. The quality of the machine translation is 

determined by how identically similar it is to the professional 

human translation. The BLEU evaluation is done according to 

a numerical metric, ranging from 0 to 1. When a score of 1 is 

reached, it means that the translated text is as identically 

similar to the reference translation as possible. 

The machine translation output and the reference 

translations are compared in terms of the statistics of short 

sequences of words, also known as word n-grams. The NIST 

score calculates how informative a particular n-gram is. The 

translation quality is judged to be at its best when a translation 

shares as many n-grams as possible with the reference 

translation. Table 1 indicates the BLEU and NIST scores for 

the baseline and extended machine translation systems. The 

BLEU scores are also represented as percentages, as well as 

the difference between the baseline system and the other 

systems indicated in brackets.  

 

For each of the adapted systems, the results showed gains in 

both the BLEU and NIST scores when compared to the results 

of the baseline system. The biggest gain was for the extended 

system, where both the BLEU and the NIST scores improved 

by 0.0136 (1.36%) and 0.0896 respectively. 

 

The system that showed the least improvement of both the 

BLEU and NIST scores is the replacement system. The reason 

is that no word reordering or replacement took place – one 

word is merely translated with another, which might be 

correctly translated by the system from the start. 

 

A translation is evaluated on different levels when evaluation 

takes place. They are: an overall scoring, an individual n-gram 

scoring, and a cumulative n-gram scoring level. The overall 

scoring level presents the BLEU and NIST scores used to 

determine if an improvement in a system’s translation quality 

took place. The individual n-gram level does comparisons of 

the translated and reference data on an isolated n-gram level. 

The levels range from 1-gram to 9-gram, meaning one word is 

compared to one word, two words to two words, and so forth 

until nine words are compared to nine words. The cumulative 

n-gram level does comparisons of groups of words that occur 

in the translated and reference data. These levels also range 

from 1-gram to 9-gram, but now the first word is compared to 

the first word of the translated text, the first two words of both 

texts are compared, and so it continues until a group of nine 

words are compared to a group of nine words of both texts. 

 

When the NIST scores are compared for the individual n-

gram scoring level, the Extended system fares the best of all 

the systems evaluated, showing improvements from 1-gram 

through to 8-gram. On the other hand, the replacement and 

deletion-replacement systems indicated the second and third 

highest improvements of the NIST scores of the individual n-

gram scoring level. Both their improvements range from 1-

gram through to 7-gram. It would therefore be safe to say that 

when results seem to be unimportant at first, there could be 

prospective improvements on a smaller scale. These small-

scale improvements might be equally as useful as the overall 

results. 
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TABLE II.  EVALUATION RESULTS 

System BLEU BLEU % NIST 

Baseline 0.2744 27.44% 6.0911 

Extended 0.2880 
28.80% 

(+1.36%) 
6.1807 

Reordering 0.2781 
27.81% 

(+0.37%) 
6.1155 

Replacement 0.2751 
27.51% 

(+0.07%) 
6.1049 

Deletion 0.2813 
28.13% 

(+0.69%) 
6.1488 

Deletion-Reordering 0.2861 
28.61% 

(+1.17%) 
6.1444 

Deletion-Replacement 0.2817 
28.17% 

(+0.73%) 
6.1495 

 

 

To determine whether the difference in the overall BLEU 

score results is statistically significant for the baseline and 

extended systems, a two-sample t-test between proportions 

was performed with a statistical calculator [19]. The following 

hypothesis was made: the null hypothesis states that the 

difference between the results of the baseline system and the 

extended system is statistically significant. For this 

hypothesis, the p-value calculated must be bigger than the 

significance level alpha (α), so that the null hypothesis is not 

rejected. The p-value and α-value were calculated as follows, 

using the test set of 500 sentences as the samples: 

 

p = 0.31625 

α = 0.05 

Thus: 

 

0.31625 > 0.05 

       p > α   (1) 

 

The p-value is bigger than the α-value, therefore the null 

hypothesis is not rejected, and the difference between the 

BLEU scores of the baseline and extended systems is 

statistically significant. 

 

VII. CONCLUSION AND FUTURE WORK  

Although the results showed marginal improvements, it 

indicates that there is potential for a machine translation 

system for English to Setswana using these pre- and post-

processing methods.  

 

This is an initial experiment and only one reference 

translation was used. However, for an automatic evaluation to 

be truly successful, a number of reference translations are 

needed. The need for these extra reference data is because two 

separate translations of the same text done by the same (or 

different) translator are seldom identical. Synonyms play a big 

part in translations and a SMT system does translations based 

on its language model, which might not always contain all 

possible synonyms of a target language. A machine translation 

system will only be an effective tool to human translators if 

the translator does not spend more time adjusting the output 

than doing a translation from scratch. A human evaluation will 

certainly give information as to how good the quality of the 

machine translation really is and how useful it would be in an 

everyday working environment. For future experiments, more 

reference translations and human evaluations will be used.  

 

Also included in future work, is the assessment of the 

linguistic rules in isolation. This will determine the 

effectiveness of the rules’ application. The rearrangement of 

the rules before implementation might have a positive effect 

on the success of other rules, by ensuring that one rule doesn’t 

overwrite another in the processing stage. The rules can also 

be extended to include the correct translation of the time forms 

of the verbs as well as the direct relative verb construction.  

 

As the results obtained indicate, SMT systems with these 

particular pre- and post-processing methods show that by 

developing SMT systems for a resource scarce language like 

Setswana, improvements in the translation quality can be 

achieved. However, because the development of machine 

translation systems is never-ending and because there is still 

room for improvement of the system as a whole, continuous 

effort will be made to achieve the highest translation quality 

possible.  
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Abstract—This article presents initial results on a supervised 
machine learning approach to determine the semantics of noun 
compounds in Dutch and Afrikaans. After a discussion of 
previous research on the topic, we present our annotation 
methods used to provide a training set of compounds with the 
appropriate semantic class. The support vector machine method 
used for this classification experiment utilizes a distributional 
lexical semantics representation of the compound’s constituents 
to make its classification decision. The collection of words that 
occur in the near context of the constituent are considered an 
implicit representation of the semantics of this constituent. F-
scores were reached of 47.8% for Dutch and 51.1% for 
Afrikaans.   

Keywords—compound semantics; Afrikaans; Dutch; machine 
learning; distributional methods 

I.  INTRODUCTION 
Computational language understanding can be seen as one 

of the major goals of research in computational linguistics and 
natural language processing (NLP). However, many issues 
need to be resolved before we can even approximate human 
level language understanding. A notable obstacle, for example, 
is the productivity that a language exhibits in creating new 
words. An important and very productive word formation 
process, in at least Germanic languages, is compounding 
[1:141]. Since these new words are not available in a 
computational dictionary and their meanings are hence not 
explicated, a computational system will have trouble 
interpreting the meaning of these words. Existing NLP 
applications, such as question answering, information 
extraction and machine translation systems, will benefit from 
better compound understanding. This paper presents initial 
results on first-generation semantic analyzers for Dutch and 
Afrikaans noun-noun compounds. 

This research builds to a great extent on techniques 
previously used and discussed by Ó Séaghdha [2] for English 
and Verhoeven [3] for Dutch. Some results of the latter are 
revisited in this article. 

The structure of this paper will be as follows. First, a 
summary of related research on the topic will be presented. 
This summary will focus on the techniques used in our own 
research. We then describe our annotation scheme and process 
for the Dutch and Afrikaans noun-noun compounds. The 

classification experiments are then discussed, after which we 
present our results and propose some directions for further 
research. 

II. RELATED RESEARCH 
Past research on semantic analysis of noun-noun 

compounds has focused almost exclusively on English. The 
problem of semantically analyzing these compounds was 
mostly considered a supervised machine learning problem. 
Different approaches were proposed considering two main 
characteristics of the research: the scheme of categories being 
used for the semantic classification of the compounds, and the 
features that the machine learning algorithm uses to classify the 
compounds. 

A. Classification Schemes 
Several attempts have been made in the past to come up 

with appropriate classification schemes for noun-noun 
compound semantics. These schemes are mainly inventory-
based in that they present a limited list of predefined possible 
classes of semantic relations a compound can have. Early work 
in computational research is due to Warren [4], Finin [5] and 
Lauer [6].  

In some cases, proposed classes are abstractly represented 
by a paraphrasing preposition as in [6], [7] and [8]. For 
example, all compounds that can be paraphrased by putting the 
preposition ‘of’ between the constituents belong to the class 
OF, e.g. a ‘car door’ is the ‘door of a car’. Another possibility 
is using predicate-based classes where the relations between 
the constituents are not merely described by a preposition but 
by definitions or paraphrasing predicates for each class. The 
class AGENT would contain compounds that could be 
paraphrased as ‘X is performed by Y’ [9], e.g. enemy activity 
can be paraphrased as ‘activity is performed by the enemy’. 
Different schemes vary from 9 to 43 classes with kappa scores 
for inter-annotator agreement ranging from 52% to 62% 
[2][4][7] [10][11][12][13][14]. 

B. Features 
With regard to the information used by the classifier to 

assign the classes to the compounds, two main roads are 
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available, viz. taxonomy-based methods, or corpus-based 
methods. 

Taxonomy-based methods (also called semantic network 
similarity [15]) base their features on a word’s location in a 
taxonomy or hierarchy of terms. Most of the taxonomy-based 
techniques use WordNet [16] for these purposes; especially the 
hyponym information in the hierarchy is used. A bag of words 
is created of all hyponyms and the instance vector contains 
binary values for each feature (the feature being whether the 
considered word from the bag of words is a hyponym of the 
constituent or not). Kim and Baldwin reached an accuracy of 
53.3% using only WordNet [9]. Other research was based on 
Wikipedia as a semantic network [17] or the MeSH hierarchy 
of medical terms [18]. 

Corpus-based methods use co-occurrence information of 
the constituents of the selected compounds in a corpus. The 
underlying idea – the distributional hypothesis – is that the set 
of contexts in which a word occurs, is an implicit 
representation of the semantics of this word [17]. This 
information can be used in different ways. Ó Séaghdha [2] 
describes measures of lexical similarity and relational 
similarity.  

The lexical similarity measure assumes that compounds are 
semantically similar when their respective constituents are 
semantically similar. The co-occurrences of both constituents 
will be combined to calculate a measure of similarity for the 
entire compound. Accuracies1 of 54.98% [12][17] and 61% 
have been reached [2][20]. 

The relational similarity measure assumes two pairs of 
constituents “to be similar if the contexts in which the members 
of one pair co-occur are similar to the contexts in which the 
members of the other pair co-occur” [2:118]. Ó Séaghdha and 
Copestake [17] report an initial accuracy of 42.34%. This result 
was improved to 52.6% in [2]. Lapata and Keller [8] report an 
accuracy of 55.71% with web-based relational similarity. Their 
corpus-based similarity’s accuracy was only 27.85%. 

Nastase et al. [21] extract grammatical collocations of the 
constituents from a corpus and use it as features for the 
classifier. This collocation includes words that appear with the 
target word in a grammatical relation, e.g. subject, object, etc. 

Corpus-based and taxonomy-based methods have also been 
combined by several researchers. Accuracies of 58.35% [19], 
79.3% [12] and even 82.47% [21] were reported. 

III. ANNOTATION 
In order to perform a supervised machine learning 

experiment, we need semantic information of compounds that 
machine learning algorithms can learn from. There is thus a 
need for examples with an explicit description of the 
compound semantics, as is created through manually 
annotating data.  

                                                             
1 The accuracies presented in the related research section are mentioned as an 

indication of those systems’ performance. Comparison with our own results is 

not in order due to the use of different data, methods, etc. 

The compounds considered for manual annotation are only 
those noun-noun compounds that do not occur in a dictionary – 
otherwise a semantic classification is both unnecessary and 
unwanted: unnecessary because there is already a gloss for the 
compound present (the meaning is thus already known), and 
unwanted because we want to train our classifier on the 
systematics that will be found in the semantics of newly 
produced compounds. However, the constituents of these 
compounds are required to appear in a dictionary. If the 
constituents would not be present in a dictionary, their 
individual meanings would not be known to us and 
semantically relating an unknown word to some other word 
seems pointless. Hence, compounds with proper nouns (e.g. 
Beneluxland ‘Benelux country’) will be excluded from our 
dataset.  

A. Scheme and Guidelines 
For our research, we adopted the annotation scheme and 

guidelines created by Ó Séaghdha [2], which were by and large 
based on Levi’s set of categories from 1987 [2]. The guidelines 
were developed for semantic annotation of English noun-noun 
compounds, so some adaptations were in order. These 
adaptations mainly existed of supplementing the guidelines 
with Dutch and Afrikaans examples. More details on other 
changes can be found in [3].  

The annotation tag of each compound consists of three 
parts: the category, the annotation rule by which the category is 
determined, and the direction in which the rule applies. The 
annotation scheme will be summarized here; the complete 
guidelines can be found on the project website2. 

Ó Séaghdha [2] describes eleven classes of compounds; six 
of these classes are semantically specific. These classes 
include: 

• BE: The compound can be rewritten as ‘N2 which is 
(like) (a) N1’ with N1 and N2 being the two 
constituents nouns. Example: woman doctor 

• HAVE: The compound denotes some sort of 
possession. Part-whole compounds, typical one-to-
many possession, compounds expressing conditions or 
properties and meronymic compounds belong here. 
Example: car door 

• IN: The compound denotes a location in time or place. 
Example: garden party 

• ACTOR: The compound denotes a characteristic event 
or situation and one of the constituents is a salient 
entity. Example: enemy activity 

• INST: The compound denotes a characteristic event 
and there is no salient entity present. Example: cheese 
knife 

• ABOUT: The compound describes a topical relation 
between its constituents. Example: film character 

                                                             
2 http://tinyurl.com/aucopro 
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The other five categories are less specific. The MISTAG 
and NONCOMPOUND categories serve to classify compounds 
that do not belong in the dataset. MISTAG refers to the fact 
that one or both of the constituents is not a common noun (e.g. 
London Town, where N1 is a proper noun). 
NONCOMPOUNDs are not two-noun compounds (e.g. ‘a salt 
and pepper beard’). The REL class describes compounds with 
a clear meaning that does not belong to any of the other classes, 
but of which the relation between the constituents seems 
productive (e.g. sodium chloride). The LEX category is almost 
the same as REL, but the relation does not seem to be 
productive (e.g. monkey business). The UNKNOWN category 
is for correct noun-noun compounds of which the meaning is 
not clear enough to annotate. 

B. Dutch 
The Dutch noun-noun compounds were taken from a 

compound list that was extracted from the e-Lex Dutch 
lexicon3. This compound list was already split into constituents 
and the POS tags of the constituents were available. The WNT 
(Woordenlijst Nederlandse Taal) lexicon [22] was used to 
check the occurrence of the compounds and constituents in a 
dictionary. The eventual compound list contained 1802 Dutch 
noun-noun compounds.  

The Dutch compound set was annotated by a student in 
linguistics that played no role in the development of the 
annotation guidelines. One of the authors of this paper 
annotated a subset of 500 compounds to be able to calculate an 
inter-annotator agreement (IAA). Both annotators are native 
speakers of Dutch. The reported IAA was 60.2% (Kappa = 
0.60) [3]. 

C. Afrikaans 
The Afrikaans noun-noun compounds were taken from the 

CKarma list of splitted compounds [23]. Since there were no 
POS tags available, these compounds were manually selected 
from the list. These compounds and their constituents were not 
crosschecked with a dictionary; this will be the case in future 
research. The compound list contained 1500 Afrikaans noun-
noun compounds.  

The complete Afrikaans compound set was annotated by 
three bachelor students in language, all native speakers of 
Afrikaans. The pair-wise average IAA was 53.4% (Kappa = 
0.53). This IAA is a bit lower than our IAA for Dutch, possibly 
due to the fact that lexicalized compounds were not removed 
from the annotation list. They might be harder to annotate 
because their lexicalized meaning is not always a logical 
semantic relation between their constituents and may not fit 
into one of our categories then. Take the Afrikaans 
naaldenkoker as example; this compound has ‘needle case’ as 
literal meaning, but it also has a lexicalized meaning:  
‘dragonfly’. It is clear that lexicalized compounds may cause 
annotation difficulties. 

                                                             
3 This compound list was created by Lieve Macken of the LT3 research group 

at University College Ghent. 

IV. EXPERIMENT 
The conducted experiments were based on those conducted 

by Ó Séaghdha [2]. We will provide a description of our own 
experimental setup here. An in-depth discussion of the 
methodology and more extensive experimentation on the Dutch 
data can be found in [3].  

Our classification experiment is based on a combination of 
the distributional hypothesis (as proposed above) with the idea 
of analogical reasoning. It is assumed that the semantic 
category of a compound can be predicted by comparing 
compounds with similar meanings [2].  

A. Lexical Similarity 
The lexical similarity measure is a corpus-based method of 

feature selection. As described above, this measure will 
compare the semantic similarities of the constituents of the 
considered compounds. The modifiers of the compounds 
(normally the left-hand members of the compound) will be 
compared with each other and the compound heads (normally 
the right-hand members of the compound) will be compared 
with each other. Two compounds, for example ‘flour can ’ and 
‘corn bag’ will be considered similar if they have similar 
modifying constituents (‘flour’ and ‘corn’) and similar head 
constituents (‘can’ and ‘bag’). In this example, the similarity 
would be rather high because the compounds both denote a 
container with its content. 

B. Vector Creation 
In order to perform a classification experiment, one needs 

the information for each instance (in this case: each compound) 
to be stored in a vector. This section will describe the creation 
of these vectors. 

1) Bag of words (BOW) 
For every compound constituent, the co-occurrence context 

was calculated. For this purpose, for each instance of the 
constituents in the corpus, the surrounding n words (that belong 
to the 10,000 most frequent words of the corpus) were held in 
memory. The number of context words was 3 or 5 to both the 
left and right hand side of the constituent in the two variants of 
the experiment. The relative frequencies of these context words 
(the number of times the word appeared in the context of the 
constituent, divided by the frequency of the constituent in the 
corpus) for each constituent were stored. 

For Dutch, the Twente News Corpus [24] was used. This is 
a 340 million word corpus of newspaper articles. For 
Afrikaans, we used the Taalkommissie corpus [25], a 60 
million word corpus that consists of a variety of text genres. 

A concatenation of the constituent data is used to create the 
instance vector features. Each instance vector contains the 
compound it represents, its category, direction and annotation 
rule, and the relative frequencies for the 1000 most frequent 
words for each constituent (hence 2000 per compound). 
However, for purposes of training data in our experiment, the 
vectors are stripped from their compound, direction and rule, 
leaving only the category and the features. Compounds of 
which one or both of the constituents did not appear in the 
corpus were excluded from the data.  
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The classification experiment dealt with those compounds 
that are annotated with a semantically specific category. This 
means that only compounds with the category tags BE, HAVE, 
IN, INST, ACTOR and ABOUT were used for the 
experiments. The final vector set for Afrikaans contains 1439 
compounds, while the final vector set for Dutch has 1447 
compounds. The class distributions for Dutch and Afrikaans 
are presented in Table 1. 

TABLE I.  CLASS DISTRIBUTIONS FOR DUTCH AND AFRIKAANS 

 Dutch Afrikaans 
BE 105 7.3% 359 25.0% 
HAVE 233 16.1% 140 9.7% 
IN 428 29.5% 299 20.8% 
ACTOR 62 4.3% 126 8.8% 
INST 235 16.2% 108 7.5% 
ABOUT 384 26.6% 407 28.2% 
Total 1447  1439  

 

2) Principal Component Analysis 
The BOW approach that was described so far takes the 

occurrence of each word as one attribute in the vector. Our 
vectors thus have 2000 attributes and one class (the category) 
each. This makes our experimentation computationally rather 
expensive. Principal component analysis (PCA) was used to 
reduce the dimensionality of our vectors to improve the 
performance of our system.  

Performing PCA on a matrix or vector of data transforms 
this data by mathematically optimizing the variance between 
the instances. The vectors will reduce in size because 
correlated attributes will be fused into new attributes that are 
called principal components (PCs) [3:42]. 

The ‘PCA Module for Python’, as implemented by Risvik 
[26] was used to perform these mathematical transformations 
on our data. Apart from our BOW vectors, we now also have a 
PCA vector for both context variants. 

C. Machine Learning 
For the actual machine learning experiments on the four 

sets of vectors (BOW and PCA, each with 3 or 5 context 
words), we used the SMO algorithm, which is WEKA’s [27] 
support vector machines (SVM) implementation. Automatic 
optimization of the parameters was performed by the 
CVParameterSelection function.  

We used 10-fold cross-validation; the classifier was trained 
and tested ten times on a different train and test set. The ten 
folds cover the whole data set maximally. The average results 
and standard variation of these ten runs are a representation of 
the performance of this classifier. 

V. RESULTS 
Since this is the first research on both Dutch and Afrikaans, 

we will assume the most frequent class probability in the 
datasets as baselines for these classifiers. This baseline is 
calculated by dividing the count of the most frequent class by 
the total number of compounds in the dataset. This number 

represents the accuracy that can be obtained by always 
guessing this most frequent class as the output class. For 
Dutch, this baseline is 29.5% (428 instances of class IN on a 
total of 1447 compounds) [3]. For Afrikaans, this baseline is 
28.2% (407 instances of class ABOUT on a total of 1439 
instances). 

TABLE II.  RESULTS OF SMO CLASSIFIER ON DUTCH COMPOUND 
SEMANTICS 

 Precision Recall F-Score 
BOW 3 47.6 48.0 47.8 
PCA   3 41.7 46.2 41.7 
BOW 5 47.7 48.0 47.8 
PCA   5 43.0 47.6 43.6 
 

All results in Table 2 of the classification experiment with 
Dutch compounds show a significant improvement over the 
most frequent class baseline (29.5%). The BOW approach 
seems to do better than the PCA results with an F-score of 
47.8% for both the 3 and 5 word variant. The results for the 
PCA approach (41.7% and 43.6%) are somewhat lower, but 
still significantly higher than the baseline. 

TABLE III.  RESULTS OF SMO CLASSIFIER ON AFRIKAANS COMPOUND 
SEMANTICS 

 Precision Recall F-Score 
BOW 3 50.8 51.6 51.1 
PCA   3 47.7 50.5 47.5 
BOW 5 50.3 50.8 50.5 
PCA   5 49.3 51.3 48.5 

 

Table 3 shows that the classification experiment with 
Afrikaans compounds also performs significantly better than its 
most frequent class baseline of 28.2%. The highest F-score 
reached was 51.1% for the BOW approach with 3 context 
words. These results are even slightly better than our results for 
Dutch. 

This 3% improvement of the Afrikaans over the Dutch 
performance may be ascribed to the final annotation list for 
Afrikaans being a combination of the semantic annotations of 
three persons. In taking the most agreed upon class for each 
compound, we may have reached a better approximation of the 
actual compound semantics than when using the annotation list 
of just one person, as we did for Dutch. However, this 
hypothesis remains a subject for further research. 

VI. CONCLUSION AND FURTHER WORK 
This paper presented, for the first time, exploratory research 

on the semantic classification of noun-noun compounds in 
Dutch and Afrikaans. The results show that a first approach, 
based on corpus-based semantic representations, already 
provides promising results for both Afrikaans (highest F-score 
of 51.1%) and Dutch (highest F-score of 47.8%). Although a 
full comparison with earlier systems for English is not 
appropriate, we can note that the results of our initial classifiers 
already compare favorably to previous results for English; for 
example, Ó Séaghdha reaching an F-score of 58.8% (accuracy 
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of 61%) also using only lexical similarity with a training set of 
1443 compounds [2]. 

The performance of the classifiers significantly outperforms 
the most frequent class baselines. The BOW approach turns out 
to provide better results than the PCA approach, because it 
seems that some of the information in the vectors is lost during 
PCA calculation. It is nevertheless our intention to further 
explore the PCA approach and variants in future research, 
because the computational performance of the approach is 
important in practical applications. We will also investigate 
alternative methods for constructing corpus-based lexical 
semantic representations, explore the use of lexical databases (a 
lexical semantic network such as WordNet is also available for 
Dutch, while a small-scale WordNet of Afrikaans is also 
available), and experiment with context-based representations. 

 We will try and test other machine learning algorithms, 
such as memory-based learning. An attempt will be made to 
improve the IAA’s as well.  

The semantics of other compounds than noun-noun 
compounds, such as verb-noun and adjective-noun compounds, 
will be investigated from a linguistic perspective, in order to 
determine the viability to model such semantic relations 
computationally. 
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Abstract—Support Vector Machines (SVM) have proven to
be highly accurate in classifying handwritten mathematical
symbols - especially when a diverse range of features is
used. This paper investigates the classification of handwritten
mathematical symbols using an SVM method and an ensemble
of three different feature sets in order to minimise the number
of training samples required and achieve accurate classification
rates. The architecture of the system consists of pre-processing,
symbol segmentation and classification. Three SVMs are used,
each operating on different feature sets: sample point co-
ordinates (SVM 1) turning angles and their derivatives (SVM
2) and global features (SVM 3). The symbol classifications are
combined using various decision fusing techniques. The system
was tested using a small set of 252 samples consisting of 41
classes or 6 samples per class. The results yielded a 97.20%
correct classification rate using feature set 1 while a rate of
only 90.91% was obtained using a single high-dimensional SVM
combining the three feature sets. The ensemble configuration
further improved the classification rate to 98.601% using a
simple average-based decision fusion scheme. As such, the pro-
posed SVM ensemble considerably increases the classification
accuracy when only a few training samples are available.

NOMENCLATURE

Ω Set of all symbol classes.
hi Possible symbol classes (ie. the elements of

Ω)
pji Confidence that the input of the j’th classifier

belongs to class i.
mk(hi) Proposition that the sample belongs to class

i. In this paper it is assumed to be identical
to the confidence output pji.

P (hj) Probability that the j’th classifier labels a
sample with the class proposition hj .

P (h|ck) Likelihood of the propositions given input
class ck.

P (ck|h) Posterior probability of the class label given
the propositions h.

xi Feature vector belonging to the ith sample.
pj Vector representing the soft-decision output of

an SVM.
L Total number of classifiers.
c Total number of symbol classes.
pi Coordinate vector of sample point i.
φ(x) Map to higher-dimensional feature space.

K(x,xi) Kernel function defining the inner-product
space.

w Normal vector defining the optimal hyper-
plane.

b Offset defining the optimal hyperplane.
αi A Lagrange multiplier.
ε Error term used in finding the SVM decision

boundary.

I. INTRODUCTION

Handwriting recognition is the process of converting charac-
ters drawn as a series of graphical marks into their symbolic
representation which can be further processed by a computer
system. This process may be carried out in an online or offline
manner. In the online case (which is considered in this paper)
recognition is performed at the same time as the writing
process which means that information related to the writing
dynamics and stroke ordering are available. The complete
symbol recognition process involves three steps:

1) Pre-pocessing (de-skewing, de-hooking, conversion to
equidistant samples, smoothing etc.)

2) Segmentation to isolate symbols
3) Classification of symbols

The classification of symbols can be done using either a
parametric or non-parametric classifier. Parametric classifiers
operate on a number of specially-selected features that have
been extracted from the symbol to perform classification
while non-parametric classifiers simply operate on the entire
input data set. Parametric classifiers often achieve better
recognition rates and classification times compared to non-
parametric classifiers and are therefore the preferred method
in many systems [1].

As such, this paper describes a parametric character recog-
nition process which involves two primary steps: feature
extraction and classification [2]. Most modern systems make
use of either Support Vector Machines (SVM’s) or Artificial
Neural Networks (ANNs) as these techniques have proven
very effective for online symbol recognition [3]–[5]. SVMs
have been successfully used in face detection, handwritten
digit recognition and data mining [6].
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The accuracy of the SVM can be improved in two ways: by
increasing the number of features or increasing the number
of samples used for training. The training process, however,
is very computationally-expensive which leads to a tradeoff
between the desired accuracy and acceptable training time.
Furthermore, this problem is exacerbated by the fact that the
number of samples required to achieved a certain classifica-
tion accuracy as well as the training time per sample increases
with the dimensionality of the feature vectors. This can render
the use of even a moderately-sized training set unfeasible.

Numerous studies have investigated the idea of combining
multiple SVMs to improve classification accuracy through
techniques such as boosting and bagging. For example, Kim
et al. obtained an improvement in performance of 1.81%
using a boosted combination of 10 multi-class SVMs to
achieve a classification accuracy of 97.83% [6]. Even so, a
relatively large number of samples was still needed to achieve
this accuracy with a training set of 3828 and a test set of 1797
symbols.

This paper proposes the use of an ensemble of three SVMs,
each operating on a unique low-dimensional feature set with
the goal of minimising the number of training samples
required while maximising the classification accuracy. The
recognition of handwritten mathematical symbols to illustrate
the performance gains achieved by the proposed ensemble of
classifiers.

The paper is structured as follows. In Section II and III,
a brief background is given of the SVM classifier and
techniques for combining the output of multiple classifiers. In
Section IV the pre-processing and symbol segmentation tech-
niques are explored and the feature extraction is described.
Lastly, in Section VI and Section VIII, the classification rates
for the individual SVMs, a single optimised SVM as well as
the ensemble configuration are analysed and discussed and
relevant conclusions are drawn.

II. SUPPORT VECTOR MACHINES

SVMs work by finding a boundary in the feature space which
maximises the distance between feature vectors belonging
to two distinct input classes [7]. The decision boundary
usually takes the form of a linear function which separates
the two classes. In linearly inseparable problems, a non-linear
decision surface is created by lifting the feature space into
a higher dimensional space which allows a linear separating
hyperplane to be found [8]. This hyperplane corresponds to
a non-linear decision surface in the original feature space.
The mapping is denoted by φ(x) which represents the map
to the higher dimensional space where the data are linearly
separable.

By using the kernel function K(x,xi) = φ(xi)
Tφ(x), the

decision function of the SVM can be represented by:

f(x) =
n∑

i=1

αiyiK(x,xi) + b (1)

where f(x) is the decision output, yi is the label of the
training symbol xi and x is the symbol to be classified.

The parameters αi and b are found during training which is
performed by solving the following optimisation problem:

min
w,b

1

2
||w||2 + C

n∑

i=1

εi (2)

subject to yi(wTφ(xi) + b) ≥ 1− εi

Many kernel functions exist but a well-performing kernel,
used in many optical character recognition (OCR) systems,
is the radial basis function (RBF):

K(x,xi) = exp(−γ||x− xi||2), γ > 0 (3)

The constant C in Equation 2 is the penalty parameter
of the error term and the constant γ in Equation 3 is a
kernel parameter. Both of these parameters have a significant
effect on the accuracy of the trained system and need to be
carefully set prior to the training process. The method used
for selecting these parameters is mentioned in Section VI.

Although SVMs are binary classifiers, multi-class classifi-
cation is easily achieved by combining SVMs in a one-
against-others or one-against-one scheme [9]. Although SVM
training time is proportional to the square of the number of
samples and thus relatively slow, actual classification is very
fast and can be performed in real-time [9].

A. Parameter Selection

As described in Section II, there are two parameters that need
to be set when using an RBF kernel: C and γ which need to
be carefully selected prior to the training process.

The selection of these parameters can be automated by using
the grid-search method described in [7]. This method selects
the combination of parameters which give the best cross-
validation accuracy during training by carrying out a brute
force search of all the possible parameter combinations. This
optimisation process only needs to be carried out once for a
particular training set.

III. COMBINING CLASSIFIERS

Throughout this paper it is assumed that the output of the j’th
SVM classifier is a vector of scores pj = [pj0pj1...pjn] which
approximate the posterior probabilities of the input sample
belonging to a certain symbol class ci given the observed
feature vector, ie. pji = P (ci|x). A decision rule is thus
needed to determine the final symbol class based on these
probability values.
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A. Dempster’s Rule of Combination

Dempster’s rule considers a number of mutually exclusive
and exhaustive propositions hi, i = {1...n} which form part
of a universal set Ω. Each classifier indicates its opinion by
producing a mass of belief function mk(hi) over Ω which
is an independent indication of the classifiers belief that the
proposition is correct.

The combined masses of belief can then be found using
Dempster’s rule of combination:

m12(A) =
1

1−K
∑

B∩C=H

m1(B)m2(C) (4)

K =
∑

B∩C=φ

m1(B)m2(C)

The output quantity m12(A) represents a third mass function
which combines pieces of evidence from the individual
classifiers to produce stronger support for the most likely
propositions.

The quantity 1 − K in Equation 4 is a normalisation co-
efficient which gives a measure of the conflict between the
sources. If this quantity is near zero, the classifiers are in
total disagreement and the Dempster rule is no longer valid.

B. Naive Bayes

The Bayes scheme also assumes that the individual classifiers
produce independent predictions for each class type. If P (hj)
denotes the probability that the j’th classifier labels a sample
x (of class ck) with the class proposition hj , the likelihoods
of the proposed classes can be calculated as follows [10]:

P (h|ck) = P (h1, h2, ..., hL|ck) =

L∏

i=1

P (hi|ck) (5)

The posterior probabilities are then obtained by calculating
[10]:

P (ck|h) =
P (ck)P (h|ck)

P (h)
=
P (ck)

∏L
i=1 P (si|ck)

P (h)
(6)

which can be used to classify the input x. As the quantity
P (s) does not depend on the class type, the decision can be
made using the quantity [10]:

µk(x) ∝ P (ck)
L∏

i=1

P (si|ck) (7)

C. Majority Vote

The majority vote ensemble technique chooses as the final
decision the class that appears most often in the selections
made by the component classifiers. By denoting the decision
of j’th classifier as dj,k ∈ {0, 1}, j = 1, ..., L and m =
1, ..., c where L is the number of classifiers and c is the
number of symbol classes, the decision output will be class
k if [11]:

L∑

j=1

dj,k =
c

max
m=1

L∑

j=1

dj,m (8)

If any “ties” result, the output of the classifier with the highest
measure is taken as the final decision.

D. Average

The average method simply finds the average of the con-
fidence outputs of the individual classifiers and assigns the
class label with the highest average confidence.

E. Product

In this scheme, the maximum of the product of the classifier
outputs for each class is used as the class label.

IV. SYSTEM ARCHITECTURE

The system uses a modular architecture. The input module
captures strokes as an ordered series of (xi, yi) data point
coordinates. These data points are preprocessed to reduce
noise and decrease the number of points per stroke. The
symbol segmentor then groups strokes based on a simple
distance threshold to form symbols.

The classifier module operates on these symbols by extracting
chosen features and sending the resulting feature vectors to
the appropriate SVM for classification as illustrated in Figure
1.

Feature Extractor

Feature Set 1     Feature Set 2     Feature Set 3 

SVM 1 SVM 2 SVM 3

Decision Fuser

Classification

Figure 1. Ensemble SVM classifier
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A. Pre-processing

The pre-processing stage involves filtering and re-sampling
of the data points. Filtering is carried out by replacing the raw
coordinates by a weighted sum of the neighbouring points.
As in [12], three coefficient values are used:

p∗i = 0.25pi−1 + 0.5pi + 0.25pi+1 (9)

This smoothing technique is computationally inexpensive and
has proven to be very effective [12]–[14]. After the stroke
has been smoothed, new samples are obtained by generating
points that are equidistant with respect to arc length.

B. Symbol Segmentation

Individual strokes are grouped into symbols using a method
similar to that of Ernesto [12]. In order to determine whether
two strokes belong to the same symbol, the minimum
distance between the sample points of the two strokes is
compared to a threshold value dth. The threshold value is
dynamically adjusted according to the height of the second
stroke to accomodate for symbols of various sizes (for exam-
ple superscripts and subscripts). The threshold is determined
as follows:

dth =
1

10
max(width, height) (10)

If the distance between the end points of the strokes is lower
than the threshold value, the strokes are concatenated to form
a single continuous stroke.

C. Classification

Many methods exist for creating an ensemble of classifiers,
however, the most important consideration is to ensure that
the classification performance of the individual SVMs are
independent and differ as much as possible from each other
[15]. This is usually done by using different training sets for
different SVMs which are obtained using techniques such as
bagging, boosting or randomisation [6].

In this system, instead of varying the training sets, each SVM
is trained using a unique set of features. That is, each vector
contains different information about the symbol and not a
different training set.

D. Feature Extraction

The features used for classification are similar to those
proposed in [12]. The first two feature sets (FS) are derived
from the local features of the stroke (s) of points (p1, . . . , pn)
and the third FS is obtained by including the total number
of points. The points are used in the order in which they

Figure 2. Normalizing and Sampling of a Symbol for FS 1.

are written, making them sensitive to writing direction. The
feature sets have been chosen to capture the greatest variation
and are as follows:

• FS 1

– 20 co-ordinate points: (xi, yi) of pi

• FS 2

– 19 turning angles: θi
2π where the turning angle is

θi = 6 ¯pi−1pipi+1

– 18 derivatives of the turning angle: (θi+1−θi)
2π and

(θi−1−θi)
2π

• FS 3

– Center of gravity: xg =
∑n
i=1 xi/n and yg =∑n

i=1 yi/n
– Total length: l
– Accumulated angle: θa =

∑n
i=1 θi/2π

FS 1 is chosen for its simplicity and direct approach of co-
ordinate comparisons to be performed by the SVM. It takes
the x and y co-ordinates of the strokes, with the origin at the
top left corner, scales and normalizes the values, depending
on the size of the written symbol, and stores these points as
its feature vector or FS 1. The normalisation of the symbol
correctly factors the symbol size in order to match to the
training set provided. This feature can be seen in Figure 2
where a written symbol is sampled, preprocessed (smoothed)
and then normalised before re-sampling.

FS 2 calculates the turning angles by comparing to a point to
the one before and after it. The turning angle is obtained by
the cosine rule and thus calculates the interior angle. The
derivative of the angle is then calculated with respect to
the neighbouring points. This FS is aimed at differentiating
between symbols with similar structural characteristics in
terms of point co-ordinates but which differ in angular
integrity, such as sharp corners as opposed to gradual changes
in direction. The process of determining the angle between
three points in a stroke is shown in Figure 3.
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Figure 3. Calculation of Angle at a point for FS 2.

FS 3 consists of the center of gravity, the total length and
the sum of all the angles of each stroke in a symbol. The
centre of mass is found by summing all the x and y co-
ordinates and dividing by the total number of points. The
total length of the strokes is taken as the length from point
to point after the symbol has been smoothed and the total
angle is the summation of the constituent angles. FS 3 easily
distinguishes between symbols with similar structure but with
points clustered in a certain region. The total length and
accumulated angles of the symbols are global properties to
further strengthen this feature for SVM classification.

V. TESTING PROCEDURE

The system was trained on a small set of 252 samples
consisting of the following 41 classes:

• Digits: 0-9
• Symbols: infinity (∞)
• Letters: a-d, i, m, k, s, x-z
• Greek letters: α, β, θ, ∂, ε, µ, σ, ω and π
• Operators: addition (+), subtraction (-), division (/),

parenthesis, square root (√), summation (
∑

), and in-
tegral (

∫
)

• Relations: equality (=), less than (<), greater than (>)

The samples for both the testing and training data sets were
written by the same user on a Wacom Intuous3 6× 8 tablet.
The symbols were chosen randomly from the Aster database
of mathematical expressions [16].

An SVM with an RBF kernel was used as it achieved
better cross-validation rates during training compared to the
linear, Gaussian and polynomial kernels. The classifiers were
implemented and trained using the libSVM software library
[17] which provides excellent tools for tuning the kernel and
training parameters. The grid-search method was used to find
the optimal SVM parameters. The output of the grid-search
is shown in Figure 4 where it can be seen that the the optimal
values of C and γ were 210 and 2−5, respectively.

VI. RESULTS AND DISCUSSION

A complete set of correctly recognised symbols, extracted
from the testing results, is shown in Figure 5.
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Figure 4. Output of the grid-search used for tuning the SVM parameters.
A maximum cross validation accuracy of 96.8% is obtained when C = 210

and γ = 2−5.

Figure 5. A set of correctly recognised symbols obtained during testing. The
symbols were sourced from the Aster database of mathematical expressions.
The symbols shown in this image are representative of the raw input to the
system, ie. the results of the preprocessing stage are not shown. The typeset
symbols have been rendered using LATEX.

The aim of using an SVM ensemble is to extend the set
of correctly recognised symbols beyond that of a single FS
while still keeping the required number of training samples
as low as possible. The different features enable the system
to distinguish key characteristics in certain symbols that the
other feature may not. A pertinent example is the digit ‘2’ and
the letter ‘z’. Considering only the co-ordinate features, it can
easily mistake the letter for the digit or vice verse. However,
when considering the turning angle and the derivative, the top
right corner of the letter ‘z’ will create a vast difference for
the SVM classifier compared to the co-ordinate vector. This
result is confirmed by the confusion matrices in Figure 6
which shows the probability outputs obtained from the SVM
for each testing sample. The confidence level for the digit “2”
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Figure 6. Confusion matrix of FS1 (a) and FS2 (b) for a subset of 20
testing symbols obtained from the probability output of the SVM.

is twice as high (≈ 0.22) for FS2 as it is for FS1 (≈ 0.11).

Table I
CLASSIFICATION RATES ACHIEVED BY COMBINING 3 SVMS WITH

DIFFERENT FEATURE SETS USING A TRAINING SET AND TESTING SET
EACH CONTAINING 252 SYMBOLS.

Decision Fuser Correct Classification Rate (%)
FS1 97.203
FS2 70.63
FS3 88.11

Single SVM 90.91
Product 97.902
Average 98.601
Bayes 96.5

Dempster 97.202
Majority Vote 84.61

The recognition rates for the different feature sets are shown
in Table I. The first four rows report the rates achieved by
using the different feature sets independently and as a single
classifier using all the features. The remaining rows show the
result of using the three SVMs in an ensemble configuration
with different decision-fusing schemes.

Table I shows that the classification rate achieved using only
FS1 is higher than that of the single optimised SVM. This is

most probably due to the severely limited size of the set of
symbols used during training which leads to poor generaliza-
tion performance for the high-dimensional classifier. As FS1
has significantly less features (40 compared to 79) it requires
fewer training samples to achieve the same (and even better)
classification accuracy which is a key advantage of using an
ensemble of SVMs operating on small feature sets.

Out of the five decision fusion methods evaluated in this
paper, the majority vote clearly performs the worst with a
classification accuracy of only 84.61%. This is similar to the
result achieved by Gorgevik et al., who attribute the poor
performance of voting cooperation schemes to the limited
information that is used about the member classifiers as
no consideration is given to confidence outputs or second
choices [6].

In this case, the “simple” average and product coopera-
tion schemes outperform the more complicated naive Bayes
method and Dempster rule. This is contrary to the result
obtained in [6] where the simple cooperation schemes only
achieve average recognition rates. Again, this is mainly due
to the small training set size which limits the accuracy of the
prior probabilities used in the Bayes scheme as well as the the
output posterior probabilities generated by the SVM which
are used by both the Dempster rule and the Bayes scheme.
For example, Gorgevik et al. use a minimum training set size
of 10000 samples to derive these values [2].

VII. FUTURE WORK

An important factor affecting the performance of the en-
semble technique is the independence of the features and
feature sets used by the classifiers. The independence of
the features was, however, not verified in this paper as an
adequate method for quantifying the independence could
not be found. Three techniques that could possibly be used
include principal component analysis, factor analysis and
linear discriminant analysis which are commonly used for
dimensionality reduction.

Furthermore, an intelligently-weighted sum ensemble could
improve on the accuracy achieved by the average ensemble
technique. In this case the output of the ensemble would
be w1×FS1 + w2×FS2 + w3×FS3 with w1 +w2 +w3 = 1.
Optimal values for w1, w2 and w3 could then be found on the
training set, possibly giving better results than the average.

VIII. CONCLUSION

Although SVMs have been shown to achieve high classifi-
cation rates for handwritten symbols, they generally require
a large number of training samples to achieve satisfactory
performance. Because of the writer dependent nature of
online handwritten symbol recognition, these samples need
to be generated by the end user of the system which can be
a time-consuming and tedious process.
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In this paper, the use of an ensemble of SVM classifiers
is investigated as the symbol recognition component of a
handwritten mathematical expression recognition system. A
number of decision fusion methods are considered to com-
bine the outputs of the individual classifiers.

The results show that, for a small training set, a classifier
using a feature vector with fewer components can increase the
classification accuracy. This accuracy can be further enhanced
by combining the output of multiple SVMs, each performing
classification on a different set of features extracted from
the same symbol. In this case, the optimal performance is
achieved by a product-based combination of the individual
SVM outputs.
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Abstract— Resource-scarcity is a topic that is continually 
researched by the HLT community, especially for the South-
African context. We explore the possibility of leveraging existing 
resources to help facilitate the development of new resources for 
under-resourced languages by using cross-lingual classification 
methods. We investigate the application of an Afrikaans genre 
classification system on Dutch texts and see encouraging results 
of 63.1% when classifying raw Dutch texts. We attempt to 
optimise the performance by employing a machine translation 
pre-processing step, boosting performance of the Afrikaans 
system on Dutch data to 67.2%. Further investigation is required 
as we conclude that the robustness of the Afrikaans genre 
classification system needs improvement. 

Keywords – cross-lingual; genre classification; resource scarce 
languages; closely related languages; Afrikaans; Dutch 

I.  INTRODUCTION 

When working with the indigenous South-African 
languages, one is always faced with resource scarcity. In [4] we 
describe the automatic classification of genre in a resource 
scarce environment, where experiments were done for six of 
the indigenous South-African languages. We concluded that 
the sparseness of available training data, data due to the 
resource scarceness of the languages in question, causes erratic 
results (due to overfitting) when using machine learning 
techniques to classify the genre of a text and that techniques to 
alleviate these symptoms should be investigated [4]. Therefore, 
this article investigates the application of technology recycling 
for the use in genre classification systems. 

By adapting existing technologies for closely related 
languages, the development of resources for resource-scarce 
languages can be fast-tracked. This process is known as 
technology recycling [1]. Given a technology, created for a 
well sourced language L1, which is needed in another language 
L2 which is resource-scarce, it would be faster and cheaper to 
adapt the L1 technology for L2 than to redevelop the L2 
technology from the ground up [1].  

We investigate the effect of the language differences on 
genre classification and investigate methods by which existing 
technologies for a well resourced language could be leveraged 
for a resource-scarce language. We evaluate a genre 
classification system when classifying a strange language and 
then implement approaches to enhance its performance. Dutch 
and Afrikaans have been used successfully in technology 

recycling experiments because these two languages are similar 
enough [1][5] and as a result  thereof, Dutch and Afrikaans will 
be used as the languages in question for this article. 

We first give an overview of related research pertaining to 
cross-lingual genre classification in Section 2, after which we 
describe the experimental setup in Section 3 and the results of 
the experiments are shown and discussed in Section 4. We 
conclude this article in Section 5 and we give view to future 
work.  

II. RELATED WORK 

Relatively little research is available for the evaluation of a 
genre classification system that is based on one language, on 
data that is written in another language. The first research on 
actual “Cross-Lingual Genre Classification” was made 
available by Petrenz [2] although cross-lingual methods have 
been explored for other text classification tasks (other than 
genre, that is) as will be described later on. Petrenz [2] states 
that a lot of research aims to develop language independent 
approaches to text classification rather than cross-lingual 
approaches, but are seldom able to give definitive empirical 
proof that these approaches are actually viable. As an example, 
Petrenz [2] recalls one of the few research reports on genre 
classification on more than one language (English and Russian) 
done by Sharoff [3],[3] which suggests that encoding part of 
speech (POS) data and combining that with variation of 
common words as feature sets, will be a viable language 
independent approach. According to Petrenz [2], the claim of 
this approach being a language independent one is false as the 
construction of these features are based on the language they 
are constructed for, although constructed in the same manner 
for each language. Language neutrality of said approaches can 
thus be described as a “holy grail”-type pursuit as language 
specific information will always be implicitly included when 
constructing these kinds of feature sets. The experiments are 
also conducted on a per language basis, i.e. the English genre 
classification system is only evaluated on unseen English data 
and the Russian system on Russian data so “real” language 
independent performance is not evaluated. Petrenz [2] chooses 
to call these features, “stable” features for cross-lingual 
experiments as they are easily extracted for any language 
without any prior language knowledge or expertise and do not 
rely on existing technologies like POS-taggers. How can cross 
lingual genre classification then be done, if capable language 
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independent approaches for direct cross-lingual classification 
do not exist? 

To bridge the gap between languages, cross-lingual 
methods often rely on target language adaptation [2]. Target 
language adaptation can be achieved by making use of 
techniques like syntactic reordering [1], morphological 
adaptations [1], lexical transfer [1] and full- or partial 
translation [6] to name but a few. Translation is the method 
which is favoured by Bel et al. [6] and by being one of the 
earliest reports on cross-lingual text classification (for English 
and Spanish), has set the tone for subsequent research to follow 
and has had a great influence on the direction that cross-lingual 
text classification experiments have taken [2], i.e. using 
machine translation as a pre-processing step when classifying 
another language. Bel et al. [6] state that, when attempting to 
classify an L2 text with a L1 classifier, the discrepancy between 
the source and target language vocabularies causes 
incompatibility between the classifier model and the test cases, 
resulting in very low classifier performance. This discrepancy 
can be (at least partially) solved with translation by using one 
of the following translation strategies [6]: 

 Terminology translation: Terminology lists are 
compiled in the classifier language on a per class basis 
and only the terms which are deemed relevant (by 
some or other measure, e.g. information gain) to the 
classification of the specific class are translated in the 
target language (L1). 

 Profile based translation: Only the words that occur in 
the training data for the classifier are translated in the 
target language (L1). 

 Full text translation: The entire text is translated in the 
target language.  

Bel et al. [6] however criticise the full text translation 
approach due to the high financial costs and time consuming 
nature of translation and the questionable translations rendered 
by machine translation. Petrenz [2] however reports good 
results on full text evaluations with machine translation 
systems, as the target language only has to be adapted and does 
not need to be translated in its entirety. This also compares to 
the findings of Pilon et al. [1] where simple lexical conversion 
is used in the same manner for POS-tagging experiments with 
Afrikaans and Dutch, yielding good results. Machine 
translation should therefore be more than sufficient to bridge 
the gap in vocabularies for the purpose of this research.  

A prerequisite for cross-lingual genre classification using 
machine translation is that there is a certain set of minimum 
resources that have to be available for both L1 and L2: 

 An L1 text classification system (i.e. a classifier 
model trained with genre-specific information); 

 A compatible L2 test corpus (i.e. a corpus that is 
annotated with the same genre specific information as 
the L1 classifier model, or which has genre 
annotations which can be adapted to match L1); and 

 A machine translation or similar system for target 
language adaptation. 

The next section describes the experimental setup for 
testing the abovementioned combination of resources for cross-
lingual genre classification. 

III. EXPERIMENTAL SETUP 

A. Genre classification system 

For the purposes of this article we will use the Afrikaans 
genre classification system based on the Multinomial Naive 
Bayes (MNB) algorithm as described in [4] to classify 
previously unseen Dutch texts according to their genre.  The 
roles of the two languages for traditional technology recycling 
experiments are reversed in such a way that Afrikaans acts as 
the well resourced language and Dutch acts as the resource 
scarce counterpart. This is because a Dutch genre classification 
system that matches the scope of the Afrikaans classifier could 
not be found to be used experimentally. A genre classification 
system with competitive results is already readily available and 
because Dutch corpora are generally genre annotated in some 
way and it would be easier to map the genre annotations to the 
Afrikaans classifier. Petrenz [2] shows the results for cross-
lingual genre classification experiments for Spanish and 
English. From the results reported for these two languages, it 
can be seen that the directionality of such experiments do not 
affect the outcome thereof as the reported results for both 
directions are quite similar. 

WEKA [10] is a suite of machine learning algorithms 
offered as an experimental environment. It holds the benefit of 
providing access to pre-processing scripts for text to vector 
conversion with a range of feature extraction options. The 
Dutch data pre-processing will be done in WEKA as well as 
the evaluation of the Afrikaans genre classification system, 
classifying Dutch data. 

B. Data 

The Afrikaans genre classifier is based on texts that have 
been extracted from public domain government websites as 
described in [4]. The classes for the genre classification 
system mentioned in [4] have been compacted to three classes 
in order to deal with the sparseness of class representations 
due to resource scarcity discussed in [4]. Afrikaans showed a 
good coverage of all the previous classes but for compatibility 
with the other indigenous languages in planned future work, 
the shift to a three class genre classification scheme will be 
used with Afrikaans already.  

 
 

Class name # Training instances 
Expressive 229 
Appellative 439 
Informative 536 
Total 1204 

Table 1. Genre classes and instances per class: Afrikaans 
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These three classes have been adopted from Wachsmuth 
and Bujna [8] which identify the three classes as follows: 

 
 Personal (expressive). Text that aims to express the 

personal attitude of an individual towards a product 
of interest. 

 Commercial (appellative). Text that follows 
commercial purposes with respect to a product of 
interest. 

 Informational (informative). Text that reports on a 
product of interest in an objective and journalistic 
manner. 

 
The resulting Afrikaans training data is composed as 

shown in Table 1. The number of available training instances 
for each class differs, but the best results for the Afrikaans 
genre classifier are seen when using all of the available data, 
when compared to balancing the classes. The best results 
noted for the Afrikaans genre classifier, based on cross 
validation experiments, are a precision of  0.931, a recall of 
0.930 and  a resulting f-score of 0.929. 

For the Dutch test corpus an excerpt from the original 
LASSY corpus [7] is used. An official extract from the corpus 
which is known as LASSY Small is a million word corpus, 
annotated with syntactic information, as well as POS-tags and 
lemmas. Genre annotations are also present, but are a little 
harder to come by. The genre annotations are not explicitly 
mentioned in the corpus or corpus meta data, but there is 
mention of the genres in LASSY in the project 
documentation 1 .  The genre classes can be identified by 
matching the classes mentioned in the documentation to the 
file names of the corpus’ .xml files. The corresponding files 
are then mapped to the abovementioned genre classes. The 
initial composition for the Dutch testing corpus is shown in 
Table 2. There are some of the LASSY corpus files for which 
a genre could not be identified from the corpus documentation 
and these files were therefore excluded when compiling the 
Dutch test instances. 

 
Class name # Training instances 
Expressive 75 
Appellative 546 
Informative 107 
Total 728 

Table 2. Genre classes and instances per class: Dutch 

The abovementioned datasets will be encoded in standard 
binary word occurrence vectors, also known as a bag of words 
approach (BOW). BOW is one of the stable features for cross-
lingual genre classification as described by Petrenz [2]. 

C. Machine Translation System 

For the machine translation component the "Dutch to 
Afrikaans Converter" (D2AC) by Van Huyssteen and Pilon [5] 
will be used. D2AC is a rule-based machine translation system 
based on the orthographic, morphosyntactic and lexical 
differences between Afrikaans and Dutch. D2AC is not a 
complete machine translation system as it only applies lexical 

                                                           
1 http://www.let.rug.nl/~vannoord/Lassy/deliverable1-1.pdf 

transfer because it was developed with technology recycling as 
motivation. They report a precision of 71% for word-level 
evaluation and a BLEU score of 0.2519 for D2AC [5]. The 
experiments will be repeated with the Dutch-Afrikaans Google 
Translate (GT) as machine translation system to verify the 
results obtained for D2AC 

D. Evaluation 

The evaluation method used is n-fold cross validation 
(n=10), with 90% of the data used for training and 10% of the 
data used for testing.  The standard information retrieval 
measures, Precision, Recall and F-measure are used to evaluate 
the effectiveness of classification for the system [9].  

 

Class Ci 
Actual Class 

Yes No 
Classifier 
class 

Yes TP FP 
No FN TN 
Table 3. Standard information retrieval methods[9] 

 
The formulas for Recall, Precision, and F-Measure of Ci 

(see Table 3) are shown in the following three equations 
(1)(2)(3), Where TP = True Positive, TN = True Negative, FN 
= False Negative and FP = False Positive classifications. 

R (Recall) = TPi / TPi + FNi,   (1)  
P (Precision) = TPi / TPi + FPi,   (2) 
f1 (f-Measure) = 2(R*P) / (R+P)  (3) 

E. Baseline System 

As a baseline for the experiments a random class baseline 
(representing a one out of three chance of guessing the correct 
class) is used. This would result in a 33.33% chance of 
choosing the correct class. This does, however, not reflect the 
class distributions. When taking into account the difference in 
the training instances available to each class, the random 
baseline can be adjusted to 36.7%. A most frequent class 
baseline of 44.52% (obtained by dividing the number of 
instances for the most frequent class by the total number of 
instances. i.e. always selecting the “Informative” class) is also 
used.  

In the next section the results for the following set of 
experiments will be discussed: 

 Classifying unseen Dutch instances with an Afrikaans 
genre classifier; 

 Translating the Dutch instances to Afrikaans with 
D2AC and GT and reclassifying the now Afrikaans(-
like) instances; and 

 Compare the results of these two experiments with 
each other and with the baselines set above. 
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IV. RESULTS 

A. Classifying Dutch instances with an Afrikaans genre 
classifier 

When classifying the unseen Dutch test instances (where 
the genre annotations extracted from the LASSY project 
documentation) with the Afrikaans genre classification system, 
we see some rather disappointing results where the 
classification precision of 42.3% (Table 4) exceeds  the random 
baseline of 36.7%, but doesn’t exceed the most frequent class 
baseline of 44.52%. But, Bel et al. [6] states a precision of 
10.75% when evaluating English and Spanish in a pure cross-
lingual text classification situation, which puts the performance 
of pure cross lingual systems in some perspective. They 
attribute the overlap in the two languages causing the 10.75% 
precision, to proper nouns and acronyms which are shared 
between the training and test sets. One would, however, expect 
a much larger overlap between languages which are said to be 
closely related, and would therefore expect a somewhat higher 
score, taking into account we already see an improvement of 
28.45% over the English-Spanish results. When translating the 
Dutch to Afrikaans (as in the next section) only a 3.1% 
increase in precision was noted. This however didn’t hold to 
Bel et al.’s [6] findings of accuracies ranging from 53.8% to 
84.5% for translated cross-lingual classifications. These 
discrepancies prompted a review of all the variables which 
have an impact on the results. 

Language Precision Recall f-Measure 

Dutch 0.392 0.281 0.277 

Table 4. Initial results for Afrikaans classifier and Dutch data 

 
When taking a closer look at the Dutch texts, it was noted 

that some of the texts which were annotated with the extracted 
genre classes, weren’t supposed to be annotated as such. It 
was noted that the classes were very noisy and it would need 
to be remapped to ensure the class representations were indeed 
representative of the said class. When the genre classes were 
extracted from the LASSY documentation, there was no 
indication of how the classes in LASSY were defined, seeing 
as the genre annotations for LASSY aren’t an explicit part of 
the corpus, it wouldn’t be needed to include this kind of 
descriptions. It is suspected that the interpretation of what a 
specific genre class constituted differed from what the class in 
LASSY actually constituted. The Dutch training set was 
therefore reclassified by hand, making sure the instances were 
attributed to the correct class. The reclassified test set is 
presented in Table 5 

 
Class name # Training instances 
Expressive 321 
Appellative 391 
Informative 16 
Total 728 

Table 5. Genre classes and instances per class: Dutch reclassified 

 
The cross-lingual Dutch-Afrikaans experiment was 

repeated, this time with encouraging results (see Table 6). We 

now see a precision of 63.1%, which exceeds both the random 
baseline of 36.7% as well as the most frequent class baseline 
of 44.52% and also satisfies Bel et al.’s [6] findings for 
translated cross-lingual classification, even without being 
translated yet. In the following section, the results for the 
translated cross-lingual classification are presented.  

 
Language Precision Recall f-Measure 

Dutch 0.631 0.284 0.318 

Table 6. Results for Afrikaans classifier and reclassified Dutch data 

 

B. Classifying translated Dutch instances with an Afrikaans 
genre classifier 

When translating the data with both D2AC and GT we see 
an increase in the performance, which is above the baselines 
that were set and even further approximates the highest result 
of 84.5% as reported by Bel et al.’s [6] for translated cross-
lingual experiments. The results are shown in Table 7.  

Language Precision Recall f-Measure 

D2AC: Dutch 0.660 0.385 0.438 

GT: Dutch 0. 672 0. 429 0. 485 

Table 7. Results for Afrikaans classifier and translated Dutch data 

 
Table 8 shows the confusion matrix for the best results 

seen in Table 7, i.e. the Dutch test set, translated with GT and 
classifier with the Afrikaans genre classification system. The 
classes seem to be confused across the board with the highest 
confusion noted between Expressive texts being classified as 
Appellative and Informative texts being classified as 
Expressive texts. This could be due to erroneous translations 
or the choice of words for a translation which could be non-
prototypical of the class representation of the classifier, which 
could lead to a misclassification.  

Classified class 

a b c 

A
ct

ua
l 

cl
as

s 

a = Appellative 
324 45 22 

b = Expressive 
173 50 98 

c = Informative 
4 8 4 

Table 8.Confusion matrix for GT: Dutch and Afrikaans classifier 

 
The gain in precision which is seen from translating the 

text is still substantially lower than the gain seen by Bel et al. 
[6]. The results obtained for D2AC and GT seem to be 
consistent, with only a small variation in the performance 
being noted. One possible explanation for this occurrence 
could once again be found in the differences and similarities 
of the vocabularies of the Afrikaans training data and the 
Dutch test instances. Using WEKA [10] the words were 
analysed to ascertain their contribution to classification or in 
other words, how informative each word is with respect to the 
classification task. This was done by ranking the words 
according to their information gain (IG). The top 10 Dutch 
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words with the highest IG are listed in Table 9. These words 
all have counterparts in Afrikaans which effectively means 
that these words do not have to be translated because they 
exist in both vocabularies. The translation of the text therefore 
only improves the vocabulary compatibility on words which 
do not contribute very much to the classification and because 
of that, the gain seen when translating the text before 
classification is minimal.  

 
Dutch IG 

nog 0.302910 

is 0.295780 

maar 0.291490 

dit 0.283370 

die 0.280110 

van 0.244970 

al 0.239600 

dat 0.239070 

was 0.235000 

wat 0.228150 

Table 9. Information gain of Dutch words 

V. CONCLUSION AND FUTURE WORK 

In this article we investigated the application of an 
Afrikaans genre classification system on Dutch data. We 
reported on a precision of 63.1% on the aforementioned. We 
then experimented with machine translations of the Dutch data 
as a pre-processing step, by using a Dutch to Afrikaans lexical 
convertor (D2AC) and the Dutch-Afrikaans Google translate, 
obtaining accuracies of 66% and 67.2% respectively. This kind 
of technology recycling could be used to help in bootstrapping 
training data for an under-resourced language, but to be used as 
a core technology in real world systems, further development is 
needed to improve the performance. Machine translation 
systems for some of the indigenous languages have already 
been developed in the Autsumato project [11] and further 
development is taking place to further the development for 
more of the indigenous languages. As these resources become 
available, the approach described in this research could be 
tested for these languages. We note however that there are a 
range of problems that arose from applying cross-lingual genre 
classification between Afrikaans and Dutch. The compatibility 
of the training set in the well resourced language and the test 
set in the underrepresented language is of cardinal importance. 
By ensuring compatibility for the Afrikaans and Dutch data 
sets, we noted an increase in performance of 26.8%. The Dutch 
data was classified by hand which translates to a time 
consuming, as well as costly process. We therefore propose 
further research in the compatibility of genre classified corpora, 
with special regard to automatic methods. 

We noted only a small improvement of the performance 
when using machine translation as a pre-processing step which 
seems to be contrary to the findings of Bel et al. [6] and 
Petrenz [2]. The reason why only a small increase in 
performance was seen was noted to be due to an overlap in the 
vocabularies of Dutch and Afrikaans. This however should 

intuitively mean a better compatibility but seems to hamper the 
possibility for growth, rather than improve it. This brings the 
robustness of the genre classification system into question. 
Most of the words that overlap are function words that do not 
necessarily contribute to knowledge about a specific class and 
is falsely deemed informative. We would like to investigate the 
use of stop word lists (i.e. lists of words to exclude from 
training data) and other approaches in an attempt to improve 
the robustness of the system and eliminated the system’s 
reliance on falsely informative features. Experiments with 
other machine learning approaches (like support vector 
machines) could also be performed to determine the suitability 
of MNB for this task. Initial experiments could also be 
performed for indigenous language pairs, implementing human 
translations (where machine translation is not yet available) 
and one of the less intensive translation strategies as mentioned 
in Section II. 
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Abstract—We present progress towards automated Lecture
Transcription (LT) in resource scarce environments. Our devel-
opment has focused on the transcription of lectures in Afrikaans
from two faculties at North-West University. A bootstrapping
procedure is followed to filter and select well-aligned segments
of speech. These segments are then used to train acoustic
models. Initial work towards language modeling for LT in a
resource-scarce environment is also presented; manual lecture
transcriptions are combined with text mined from other sources
such as study guides to train language models. Interpolation
results indicate that study guides are a useful resource for
language modeling, whereas general text (obtained from a pub-
lisher of Afrikaans books) is less useful in this context. Our
findings are confirmed by the reduced word error rates (WERs)
obtained from our off-line speech-recognition system for Lecture
Transcription.

Index Terms—Lecture Transcription, Afrikaans, Kaldi, Dy-
namic Programming, Language Model, Resource-scarce.

I. I NTRODUCTION

The availability of lecture transcriptions is understood to
be very rewarding – most obviously for students with hearing
disabilities, but also for the larger student population. Students
with hearing disabilities use these transcriptions as a support-
ive learning medium, while students without such disabilities
use them to better understand the lecturer or to supplement
their class notes [1]. The multilingual environment of countries
such as South Africa offers additional motivation for the
development of lecture transcriptions, since students often
attend lectures in languages other than their first language,
and can therefore obtain significant benefit from transcriptions
(either in real-time or off-line).

Hence, Kawahara et al. [2] report that some universities use
student volunteers to create notes of classes, since professional
stenographers are too costly. However, real-time transcription
of lectures is infeasible for humans, and it was found that with
2 volunteers only 20-30% of the spoken lecture utterances
could be transcribed in real-time. Another drawback is that
these volunteers have to be familiar with the field of the lecture
to be able to recognize domain-specific technical words. As a
consequence, automated systems for lecture transcription, even
with limited accuracy and topic coverage, hold great promise
in multilingual universities.

Previous work on lecture transcription for Afrikaans [3]
focused on different approaches to alignment, in order to

harvest enough data from approximately transcribed lectures
to retrain acoustic models using both a well trained target-
language (Afrikaans) acoustic model as well as an acoustic
model from another language. It was found that the target-
language acoustic model performs significantly better for this
task.

Given these results, as well as the availability of audio data
collection applications such as Woefzela [4] and smart phones,
we do not consider obtaining sufficient target-language audio
for acoustic modeling as big an obstacle as it was in the recent
past,1 although the optimal approach to combining general
and speaker-specific audio data in this context remains an
interesting topic for investigation.

The current main challenge therefore with lecture transcrip-
tion systems in resource-scarce environments is language mod-
eling: lecturers tend to use domain specific words, spontaneous
speech containing many false starts, hesitations, filled pauses,
non-lexical artifacts such as coughs and laughs, and many
other phenomena present in daily human communication [1],
[5]. All these affect the accuracy of the speech recognition
system. This is even more challenging in resource-scarce
environments where very little text data is typically available
for accurately modeling these artifacts with language models.

In this paper, we present results from our Afrikaans Lec-
ture Transcription system. Our acoustic modeling approach
is described in Section III-C2, and is similar to the ap-
proach described in [3], relying heavily on the Dynamic
Programming-based audio harvesting procedure described in
[6]. We employ a significantly expanded Afrikaans Lecture
Transcription (ALT) corpus compared to that in [3], however,
enabling us to work with a larger corpus, experiment more
thoroughly with speaker-adaptive training, language modeling
and also perform actual lecture transcription.

In Section III-F2, we present initial promising results when
interpolating language models trained on text resources one
can typically expect to exist even in resource-scarce environ-
ments: a small amount of transcribed lecture text and a much
larger collection of text obtained from study guides. The effect

1Woefzela is a freely available Android application and can be used as
a medium for collecting data in typical developing-world environments. It
provides the user with a reliable and cost effective way of collecting target-
language data even in remote locations.
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of speaker adaptive training is investigated in Section III-E.

II. BACKGROUND

Various lecture transcription systems, such as the MIT Spo-
ken Lecture Processing project [5], have been implemented in
well-resourced environments. For that system, the developers
had collected over 500 hours of recordings, of which over
200 hours had been transcribed. For the purposes of speaker
adaptation, that corpus contained between 1 to 30 hours of
speech per speaker, and the language models were trained on
more than 6 million English words.

According to Munteanu et al. [7], current lecture transcrip-
tion systems obtain word error rates (WER) between 40%
and 45% whilst a minimum WER of 25% is acceptable by
users. Even though recognition accuracies as high as 98% have
been reported in certain Automatic Speech Recognition (ASR)
systems, such high accuracies invariably require extremely
favorable conditions, such as reading selected materials (from
a limited context) aloud [1].

Glass et al. [5] found a greater improvement in WER from
acoustic modeling than language modeling. However, they
found that performing acoustic modeling on four 50 minute
lectures from a single lecturer, while also performing language
model adaptation using two related textbooks and 40 related
lectures, still resulted in a high WER (30.7%). Using 29 hours
of previous lectures for acoustic modeling decreased the WER
noticeably(17%). Similar results where found by Trancoso et
al. [8].

Unsupervised training is currently also receiving significant
attention. Here, term discovery algorithms are used to identify
words or phrases of different speakers and genders by identify-
ing repetitions in the data. Jansen and Church [9] demonstrated
that unsupervised training of acoustic models is possible with
strong speaker independent properties.

III. A PPROACH

Throughout our experiments we made use of two speech
corpora: the NCHLT corpus [4] and the Afrikaans Lecture
Transcription corpus, which was developed to support the
current research.

A. NCHLT corpus

The NCHLT corpus consists of speech from 206 Afrikaans
speakers (approximately equal numbers of males and females),
with approximately 500 3-5 word utterances of read speech per
speaker, recorded in a controlled environment. This amounts
to approximately 100 hours of speech data. The vocabulary
of this corpus consists of 9375 distinct words, drawn from a
variety of subjects, as would be appropriate (for example) for
a Web-search application.

B. Afrikaans Lecture Transcription corpus

The Afrikaans Lecture Transcription (ALT) Corpus consists
of 20 hours of Afrikaans lecture data from two broad subject
areas; law and science/chemistry. Male lecturers account for
14 hours of speaker data and females 6 hours. All audio data

has been manually segmented into 5 minute segments, mainly
to increase the speed of the alignment and decoding [3].

A single first-language Afrikaans speaker produced ortho-
graphic transcriptions of the ALT corpus; the transcriber was
given the following instructions:

• Transcribe exactly what was said (do not correct for
grammar, hesitations, etc)

• Use punctuation (,.?!) only to indicate sentence structure
(no quotation marks or brackets)

• Write out numbers in words instead of using digits 0-9
• Mark foreign words with #
All speakers are listed in Table I with their associated

subjects, gender and amount of training and testing data in
minutes. The test set consists of one lecture from each of
those lecturers who has multiple lectures in the ALT corpus.

TABLE I
ALT SPEAKER INFORMATION WITH TRAINING AND TESTING DATA IN

M INUTES

SPKR ID Gender Subject Train Test Total

m001 male sci 17 0 17
m002 male sci 42 37 79
m003 male sci 84 37.5 121.5
m004 male sci 31 0 31
m005 male sci 44 0 44
m006 male sci 46 37 83
m007 male sci 43 0 43
m008 male sci 37 0 37
m009 male law 26 23 49
m010 male law 36 0 36
m011 male law 35 35.5 70.5
m012 male law 62.5 37.5 100
m013 male law 57.5 0 57.5
m014 male law 47 0 47
m015 male law 27 0 27
f001 female sci 39.5 23 62.5
f002 female sci 46.5 43 89.5
f003 female sci 25 0 25
f004 female law 32.5 30.5 63
f005 female law 61.5 36 97.5
f006 female law 40.5 0 40.5

C. Baseline systems for alignment

Four baseline systems were created for the purposes of
alignment and subsequent harvesting of well-transcribed por-
tions of the ALT corpus. This was done by employing the
iterative DP scoring and filtering technique described in [6].
Before we describe the four systems in more detail, we will
first elaborate on the experimental setup followed for the
alignment systems.

1) Pronunciation modeling: Pronunciation dictionaries
were created for all systems by (1) using a dictionary lookup
for known Afrikaans words (443 words), (2) identifying En-
glish words with a dictionary lookup (840 words) and (3) using
the Default & Refine [10] algorithm to automatically generate
pronunciations for the remaining 6735 words.

English words occur fairly frequently in the ALT corpus;
they were automatically identified by a dictionary lookup and
the pronunciation mapped to similar Afrikaans phones was the
same as in [3]. These mappings are shown in II. All names and
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foreign words (which were marked with # by the transcriber)
were then manually verified.

TABLE II
ENGLISH TO AFRIKAANS PHONE MAPPINGS

Eng Afr Eng Afr
3: @ Q O

e@ E r\ r
ai a i tS t S
au a u u: u

d 0Z d Z U u
i: i T f
O: O D v
Oi O i

2) Acoustic modeling:The acoustic models for alignment
were trained on 39 dimensional Mel frequency cepstral co-
efficients (13 static, 13 deltas and 13 double deltas). Off-
line cepstral mean and variance normalization was applied per
speaker (that is, the same normalization constants were applied
to all the speech from one speaker, and these constants were
computed so that all speakers have the same cepstral means
and variances after normalization). The hidden Markov models
(HMMs), trained with HTK [11], were standard 3-state left to
right tied-state triphone models, with 8 mixtures per stateand
semi-tied transforms. A garbage model [6] was then trained
and combined with the initial model.

The following acoustic models were trained:

• NCHLT baseline. An acoustic model was trained on the
NCHLT corpus described in Section III-A. This model
was trained without a garbage model.

• ALT (5-minute segments). We trained acoustic mod-
els using the entire manually segmented ALT corpus.
Segments were approximately 5 minutes in duration.
This acoustic model resulted in a phone accuracy of
45.14%. Based on our earlier experience with this corpus,
this was good starting accuracy for a baseline system;
we nevertheless decided to make use of DP scoring to
automatically further segment the ALT data into smaller
– but more reliable – segments, that could be used for
further training.

• DP filtered ALT . The ALT corpus was automatically
segmented into 10 second or smaller chunks as done
by [5]. Our process employed the dynamic-programming
phone string alignment procedure used by [3] with a
flat phone matrix. As described in [3], this approach
compares the result of a forced alignment with that of
a free decode using a variable cost matrix, identifies the
accurately transcribed sections of audio and use these
results to segment the audio as well as the transcriptions.
Using this technique we segmented the 5 minute ALT
data into small chunks of accurately transcribed data
using the NCHLT model. These well-aligned portions
were then used to train a new improved ALT model.

• NCHLT MAP . The NCHLT model was then also
MAP adapted using the entire ALT training set and
used to automatically segment the ALT data into small

chunks of accurately transcribed data using the dynamic-
programming technique.

D. Alignment results

The phone accuracies of these 4 baseline systems, tested on
the same ALT data are shown in Table III. Here the reference
phone strings were generated by using the pronunciations
as described in Section III-C1 since it was infeasible to
obtain manual phone transcripts. The improvements in various
measures of alignment accuracy (see [6] for motivations) after
model refinement are shown in Table IV2.

TABLE III
PHONE-RECOGNITION ACCURACIES OF BASELINE SYSTEMS TESTED ON

ALT

NCHLT LT(5 min) LT(DP scoring) NCHLT(MAP all)

19.28% 45.14% 49.70% 16.50%

As seen in Table III, domain-specific training data is very
beneficial for the development of a baseline system. A further
significant increase in phone accuracy (nearly 5%) is achieved
by segmenting the ALT(5min) training data using the dynamic-
programming technique.

TABLE IV
MEASURES OF ALIGNMENT ACCURACY ACHIEVED AFTER MODEL

REFINEMENT ON THE TEST SET

Model Avg DP Score Log P Time

NCHLT -0.176 -52.10 4:05/5:39
NCHLT-MAP/all (ALT) -0.217 -50.82 3:53/5:39

NCHLT MAP/spk -0.202 -51.03 3:35/5:39
ALT 0.114 -45.60 3:14/5:39

E. Speaker Adaptation

Speaker adaptation was performed on multiple speakers
for which we had data from more than one lecture. One or
more lectures were used for speaker adaptation (Train column,
Table I), and one lecture was held out for testing purposes
(Test column, Table I). The NCHLT corpus acoustic model
was also adapted to these speakers to see how important the
use of speaker-specific data is to the overall system used
for alignment. Table V summarizes the phone accuracies for
different speakers on ALT without MAP adaptation, ALT
with MAP adaptation, NCHLT without MAP adaptation and
the NCHLT model with MAP adaptation. These results were
obtained using the same techniques as in [8] where 3 iterations
of speaker adaptation is performed using the same adaptation
data.

We see that some speakers achieve only small gains in
phone accuracy, and reduced accuracies after adaptation are
even seen in many cases. These disappointing results are
probably a consequence of the small amount of adaptation data

2It would have been preferable to make these measurements on a held out
development set, but because of data scarcity and since thesemeasures do not
influence our decision on which model to use for the final data segmentation,
we measured the model refinement on the test set
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TABLE V
PHONE ACCURACY PER SPEAKER WITH AND WITHOUTMAP

ADAPTATION , USING DIFFERENT BASELINE ACOUSTIC MODELS

SPKR ID ALT ALT + MAP NCHLT NCHLT + MAP

m002 59.69 62.12 27.48 29.01
m003 66.82 67.42 33.95 38.03
m006 48.84 49.59 12.38 12.20
m009 50.73 52.21 19.48 18.66
m011 59.39 61.92 19.97 18.72
m012 55.29 49.02 18.60 15.94
f001 39.24 39.43 16.99 15.45
f002 39.91 39.04 13.53 13.77
f004 40.93 34.97 17.84 15.68
f005 28.14 28.14 12.29 8.50
Avg 48.9 48.39 19.25 18.6

available to us – thus, the risk of overtraining is significant, and
MAP adaptation is not able to compensate for the differences
in recording conditions between the two corpora.

F. Baseline systems for lecture transcription

The process described in Section III-C is useful in a
resource-scarce environment where only a few hours of lec-
ture transcription data is available. The resulting well-aligned
portions of our ALT corpus were used to train state of the art
acoustic models for offline lecture transcription.

1) Acoustic modeling:The Kaldi toolkit [12] was used to
train our best acoustic models which were used for transcribing
lectures. Standard MFCCs with cepstral mean normalization
were again used, with LDA, MLLT, speaker adaptive training
(MLLR) and boosted mmi.

2) Language modeling:The most basic language model
for this task is a simple word trigram model, built from the
transcribed lectures. The transcriptions were separated into the
two groups (law and natural sciences), and each sub-corpus
was used for a specialized language model (in addition to
the basic language model covering both topics). Because of
the small corpus size of these transcriptions, we wanted to
investigate whether recognition accuracy could be improved
by using larger language models from a more general source of
Afrikaans text. The Puk-Protea-Boekhuis corpus was used for
this purpose. It contains Afrikaans text from published works
and contains substantial quantities of proofread materialon
various topics. (In addition to prose and instruction documents,
it also includes poetry.) In an effort to improve on the
anticipated out-of-vocabulary words in the university lectures,
a general set of study guides of the North West University was
obtained. Since the available lectures chosen to be transcribed
were from two different faculties, law and natural sciences,
the study guides of these two faculties were used as corpus
for the experiments to be described here.

The following three groups of corpora were therefore used:
1) Transcriptions of lectures, 2) University study guides,3)
General text. The details of these corpora are as follows:

• Transcriptions of lectures in law (1A-tr-law) and natural
sciences (1B-tr-sci).Only the transcriptions of the train-
ing data was used so that the test data for measuring the

recognition performance would not be in the language
models. These were the smallest corpora 60K and 55K
words respectively.

• Study guides for subjects in law (2A-sg-law) and natural
sciences (2B-sg-sci).Only the Afrikaans versions of the
study guides were used. For some subjects the study
guides were bilingual combining Afrikaans and English
in the same document, but these were not used. After
text normalisation, these corpora were 1.4 million and 2
million words respectively.

• The Puk-Protea-Boekhuis (protea) corpuswas used as
a source for general proof-read text. After normalisation
described below this corpus consisted of 6 million words.

Several steps were taken when pre-processing these text
corpora for building language models. These issues are ad-
dressed in the discussion on text normalisation below. Initial
experiments with 2-, 3-, 4-, 5-, and 6-grams showed lowest
perplexity in most cases with 3-grams. In a few cases 4-grams
were marginally better, but the benefits were never sufficiently
large to justify the cost of the larger language models. All
language models reported below are therefore trigram word
models, which were built using the Modified Kneser-Ney
smoothing algorithm [13]. In all models, the markers for
beginning and end of sentences are included as tokens.

To get a basic measure of perplexity and out-of-vocabulary
rate for each language model, the text from the lecture tran-
scription test data was used for testing. The test set was also
divided intolaw andnatural sciencestranscriptions; language-
modeling results when testing on these two sub-corpora are
reported in Table VI.

TABLE VI
PPL (PERPLEXITY) AND OOV (OUT-OF-VOCABULARY ) RATE FOR

BASELINE LANGUAGE MODELS.

Corpus #2-grams #3-grams Test set PPL OOV rate

1A-tr-law 28725 5524 law 171.94 7.92%
1B-tr-sci 25285 5169 law 160.08 16.21%
2A-sg-law 255162 117280 law 404.96 7.01%
2B-sg-sci 421448 231741 law 647.88 9.33%
protea 1261554 446814 law 443.23 6.20%
1A-tr-law 28725 5524 sci 174.36 15.39%
1B-tr-sci 25285 5169 sci 151.53 7.54%
2A-sg-law 255162 117280 sci 664.32 15.22%
2B-sg-sci 421448 231741 sci 673.49 6.84%
protea 1261554 446814 sci 498.24 8.86%

As expected, the in-domain transcriptions provide the best
match for the respective test sets, with relatively low perplex-
ities and OOV rates. Interestingly, the cross-domain perplex-
ities are comparable to the in-domain perplexities, withtr-
sci actually achieving a somewhat lower perplexity on the
law test set (although at a substantially higher OOV rate).
Also, the OOV rates from the study guides andProteacorpus
are encouragingly low, suggesting that corpus combination
may be a profitable strategy. However, the disparate sizes
of the corpora indicates that combination through weighted
interpolation (rather than pooled resources) should be the
strategy of choice; we therefore investigated the characteristics
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of various interpolated language models involving these five
sub-corpora.

3) Interpolated language models:To investigate the po-
tential benefits of language-model interpolation, we created
test sets from each of the five sub-corpora mentioned above.
Modified Kneser-Ney smoothing was employed to estimate
language models based on the training sets extracted from
the same corpora, and the SRILM toolkit [14] was then used
to find the optimal interpolation weights for combining these
language models.

Because these various corpora have widely different charac-
teristics, it is not meaningful to compare the perplexitiesand
OOV rates across different test sets. We therefore focus on the
interpolation weights that yield the lowest perplexity foreach
test set, as shown in Table VII.

TABLE VII
INTERPOLATION WEIGHTS THAT MINIMIZE THE PERPLEXITIES ON FIVE

SUB-CORPORA.

Test Weight: Weight: Weight: Weight: Weight:
Corpus 1A-tr-law 1B-tr-sci 2A-sg-law 2B-sg-sci Protea
1A-tr-law 0.415 0.137 0.266 0.016 0.165
1B-tr-sci 0.074 0.606 0.004 0.170 0.145
2A-sg-law 0.001 0.000 0.933 0.042 0.024
2B-sg-sci 0.000 0.000 0.024 0.960 0.015
Protea 0.003 0.002 0.008 0.007 0.979

As expected, the diagonal entries in Table VII dominate;
that is, the training set of each corpus makes the largest
contribution to the lowest-perplexity language models of the
corresponding test set. However, for the two LT test sets (the
first two rows of the table), the other corpora also contribute
substantially to the optimal language models. Interestingly, it
is the study guide from the same domain as the test set which
makes the largest contribution in each case; this is evidence
that the non-transcription corpora are contributing to these
language models in a predictable way.

4) Recognition results with interpolated corpora:Based
on the analysis in Section III-F2 and Section III-F3, it was
decided to use the transcriptions of lectures (LT) and Uni-
versity study guides (SG) to train language models to be
used for off-line lecture transcription. Our goal here is to
investigate whether improved recognition performance canbe
achieved with language-model interpolation, and to simplify
the presentation we focus on the within-topic interpolation of
the study guides and transcriptions. That is, we build two sets
of language models, one for thelaw domain and the other for
the sciencesdomain. In each set, we investigate the effect
of ranging the interpolation weight between 0.0 (at which
value the study guides dominate) to 1.0 (where the model is
dominated by the transcriptions). For consistency, we report all
results at a LM weight of 14, which is a reasonable value for
our configuration, but not optimized for a particular language
model.

As Figures 1, 2 and 3 show, we find in all cases, and for
both thelaw andsciencestest sets, that optimal performance
is achieved at an interpolation value somewhere between
the extremes, thus showing that language-model interpolation
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Fig. 1. WER for off-line lecture transcription when trained on sci and law
sources respectively and evaluated on the combinedsci and law LT test set.
The dotted lines correspond to language models trained only on the LT training
data, and the solid lines represent interpolated results, with the interpolation
weight on the horizontal axis.

indeed is beneficial in all cases. As could be expected, the in-
domain language models perform best on both test sets; these
differences in word error rates are quite large, confirming the
importance of language modeling for this task.

Note that our approach to interpolation requires a fixed
vocabulary for all settings of the interpolation weight. There-
fore, all words from both training sets are included in all
interpolated models, albeit with only the unigram back-off
probabilities in some cases. In Figures 1, 2 and 3 we can
see that even these unigrams make a useful contribution to
recognition accuracy, since the WERs with only the lecture-
transcription language models (dotted lines in Figs.1, 2 and 3)
are notably higher than the corresponding interpolated models
(right-most points of the solid lines).

IV. CONCLUSION

Whereas the use of target-language acoustic data has pre-
viously shown to be beneficial [3], we have additionally
demonstrated that domain-specific training data significantly
contributes to the accuracy of lecture transcription systems.
This is true even if the amount of available in-domain data
is severely limited. However, under these constraints, the
additional value of speaker adaptation is minimal.

We have also shown that additional target-language text,
such as study guides, can lead to a substantial reduction in
word error rates. Since such sources are likely to be available
in the type of educational environment which is expected to
represent the most important use case of this technology, this
is a practically important result.

The error rates that we have achieved are still some-
what higher than those that are considered usable in lecture-
transcription applications [7]; hence, the need for further
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Fig. 2. WER for off-line lecture transcription when trained on sci and law
sources respectively and evaluated on thesci LT test set. The dotted lines
correspond to language models trained only on the LT trainingdata, and the
solid lines represent interpolated results, with the interpolation weight on the
horizontal axis.
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Fig. 3. WER for off-line lecture transcription when trained on sci and law
sources respectively and evaluated on thelaw LT test set. The dotted lines
correspond to language models trained only on the LT trainingdata, and the
solid lines represent interpolated results, with the interpolation weight on the
horizontal axis.

improvement is clear. The most likely sources of such im-
provement are methods that use the limited acoustic and
textual information more efficiently; we therefore believethat
the development of such methods should be a priority for

further research.
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Abstract—This paper compares the recognition accuracy of a phoneme-
based automatic speech recognition system with that of a grapheme-based
system, using Afrikaans as case study. The first system is developed using
a conventional pronunciation dictionary, while the latter system uses the
letters of each word directly as the acoustic units to be modelled. We
ensure that the pronunciation dictionary we use is highly accurate and
then investigate the extent to which ASR performance degrades when the
dictionary is removed. We analyse this effect at different data set sizes and
classify the causes of performance degradation. With grapheme-based
ASR outperforming phoneme-based ASR in certain word categories, we
find that relative error rates are highly dependent on word category,
which points towards strategies for compensating for grapheme-based
inaccuracies.

I. I NTRODUCTION

In an automatic speech recognition (ASR) system, words are tradi-
tionally represented as a sequence of acoustic sub-word units such as
phonemes [1]. The mapping from these sub-word units to words are
usually contained in some sort of lexicon, that is, a pronunciation
dictionary. The overall performance of ASR systems is strongly
dependent on the accuracy of the pronunciation dictionary and best
results are usually obtained with hand-crafted dictionaries, which
often requires expert knowledge. Development of these dictionaries
is a time-consuming, costly and labour-intensive process. If expert
knowledge is either unavailable or too costly, manually developed or
statistical grapheme-to-phoneme (g2p) rules can be used to generalise
from small data sets [1]. However, these methods typically produce
less accurate results.

Earlier work in grapheme-based systems has shown that for regular
languages – languages that exhibit a close relationship between
graphemes and phonemes – phone-based dictionary development may
be unnecessary [1], [2], [3]. Using grapheme-based sub-wordunits
eliminates the need for expert knowledge and saves time and cost.
Other advantages include simplified lexicon definition and relatively
noise-free pronunciation models [4].

The regularity of a language can be measured based on g2p
consistency: using the average accuracy that is obtained at a specific
dictionary size when extracting g2p rules. According to this measure,
languages vary considerably, from highly irregular languages such as
English, to highly regular languages such as Flemish, with Afrikaans
being somewhere in between [5].

Some of the earliest work done on grapheme-based speech recog-
nition proposes using polygraphs i.e. letter based units constructed
from the orthographic word form with arbitrary length left and
right contexts as sub-word units [3]. More recent work include
context-dependent grapheme-based recognisers [1] as well as using

a decision tree based on graphemic acoustic sub-word units together
with phonetic questions [2].

For this paper we developed a grapheme-based ASR system
alongside a phoneme-based ASR system using the same standardised
approach in both, in the one case using tied-state triphones and the
other, tied-state trigrams. With the only variable between the systems
being their respective pronunciation dictionaries, this allows for a
fairly direct comparison of strengths and weaknesses.

The remainder of this paper is structured as follows: Section II
describes the approach followed, both to construct the gold standard
phonemic dictionary and to compare grapheme-based and phoneme-
based performance. The data used is presented in section III. The
various experiments are described and results presented in section IV.
Finally, the paper is ended by a summary of our main observations
in section V.

II. A PPROACH

We develop comparable grapheme-based and phoneme-based ASR
systems for different training data sizes ranging from 5 to 40 hours,
and compare word error rate (WER) using independent test sets and
4-fold cross validation. For the comparison to be fair, we need to
ensure the pronunciation dictionary is as accurate as possible. The
most comprehensive Afrikaans dictionary currently available is the
Resources for Closely Related Languages Afrikaans pronunciation
dictionary (rcrl apd) [6]. This dictionary however does not include
all the words in the data set we are modelling. The process to develop
and verify a more comprehensive dictionary is of interest and results
relating to this process are included in this paper.

A. Pronunciation Dictionaries

We develop 3 different pronunciation dictionaries. Firstly, we
develop a manually verified pronunciation dictionary which serves
as a gold standard. It should be noted that this dictionary contains
pronunciation variants where appropriate. The total effort in verifying
all the sub-word units is lessened by utilising methods such as:

• known word extraction: accepting known pronunciations from
existing dictionaries;

• decompounding unknown words and matching these to known
components in existing dictionaries;

• short word extraction: analysing short words – which are often
non-standard words such as abbreviations or acronyms – sepa-
rately; and

• the classification of word types to be pre-processed by appro-
priate g2p methods.

144



All automated methods used to produce pronunciations were manu-
ally verified, which allow us to report on the success rates of each of
the automated methods. Since Afrikaans contains many compound
words, we focused our effort on identifying known compounds from
existing dictionaries, using both a form of longest string matching
(LSM) and automated morphological decomposition to achieve this
aim.

Secondly, the best possible rule set available to date – rules
extracted from thercrl apd pronunciation dictionary [6] – was used
to create an automated (state-of-the-art g2p) pronunciation dictionary.
Finally, a minimal effort grapheme-based dictionary was developed
by simply splitting the orthographical form of words into space-
separated single letters.

Given the gold standard dictionary, the relative accuracy of the
g2p dictionary is calculated by measuring the difference between
pronunciations. Calculating the accuracy of the grapheme-based dic-
tionary is done by converting every grapheme to its default phoneme
based on g2p rules and measuring pronunciation similarity relative
to the gold standard dictionary. The relationship between differences
in dictionaries and resulting WER is investigated.

B. ASR accuracy

ASR systems are analysed and compared in terms of WER. All test
sets are recognised using the same flat language model containing all
the words in the entire data set. While better recognition accuracy
can be obtained using a statistical language model, we specifically
want to evaluate the effect of the acoustic models without recognition
being guided by a language model. This means that the systems are
evaluated and compared in terms of WER with the only difference
between systems being their pronunciation dictionaries. (For the later
category-based analysis, it is particularly important that categories are
not influenced by the language model used.)

C. Error classification

ASR recognition errors are classified according to word type and
compared across systems. Word types include (1) abbreviations, (2)
acronyms, (3) foreign words, (4) generic Afrikaans words, (5) partial
words, (6) proper names, (7) concatenated words, (8) spelling errors,
(9) spelled out words, (10) single spelled out characters and (11)
unknown words. Word type categories were determined during the
development of the manually verified pronunciation dictionary. Words
that belong to more than one category (due to pronunciation variants
or context) are classified as multi-category words. Pronunciation
variation caused all but one abbreviation to be classified as multi-
category words.

III. D ATA SELECTION

Afrikaans was selected as the experimental language due to its g2p
regularity (fairly regular without being fully regular) and the authors’
inherent familiarity with the language. The dataset used is a subset
of the NCHLT corpus [7] and has a total length of approximately
64 and a 1/2 hours, consisting of 75 150 utterances from 167
speakers with a male to female ratio of 48.5/51.5. Every utterance
in this dataset passed basic quality control checks namely: clipping
detection, volume detection and speech cutting detection [8]. Also, to
ensure a well balanced dataset every speaker contributes exactly 450
utterances. From this dataset a development set of approximately 2
hours and 45 minutes was held out. The remaining utterances were
split into 4 folds with 4 mutually exclusive test sets. Each fold’s train
set is roughly 46 hours long and contains 54 000 utterances from
120 different gender balanced speakers. All 4 the training sets were

then individually subdivided into 46 total random, non-sequential
incremental segments. In effect each segment contains approximately
one hour more data than the previous one. Finally, to study the effect
of phone-based and grapheme-based ASR on varying sizes of training
data, segments 5, 10, 20 and 40 were selected for training.

F # utt trn # hr trn # spkr trn # utt tst # hr tst # spkr tst
1 54000 46:18:56 120 18000 15:25:9 40
2 54000 46:51:34 120 18000 14:52:31 40
3 54000 45:51:57 120 18000 15:52:8 40
4 54000 46:9:50 120 18000 15:34:15 40

TABLE I
Data selection: Number of utterances (utt), hours (hr) of audio data and

number of speakers (spkr) in train (trn) and test (tst) sets across folds (F)

F seg 5 seg 10 seg 20 seg 40
1 05:05:24 10:05:53 20:07:59 40:14:12
2 05:06:05 10:11:15 20:24:25 40:45:14
3 05:02:28 10:00:23 19:55:38 39:53:24
4 05:02:50 10:03:34 20:05:03 40:07:01

# utt 5870 11740 23479 46957

TABLE II
Training segments: Hours of audio data and number of utterances per

segment (seg) across folds (F)

IV. EXPERIMENTS AND RESULTS

Experiments relating to the development of the gold standard
pronunciation dictionary are described in sections IV-A to IV-C,
while sections IV-D and IV-E compare the ASR results obtained
using the three different dictionaries (the gold standard phoneme-
based dictionary, the g2p-predicted dictionary and the grapheme-
based dictionary).

A. Identifying known constituents in compounds

As discussed in section II, we experimented with two different
approaches to decompounding. Note that the primary purpose was
to lessen the total effort in creating a pronunciation dictionary:
not to find linguistic compounds as such, but only to find known
constituents from existing dictionaries (i.e. where pronunciations are
known.) Since Afrikaans contains many compounds, many words in
a word list would be flagged as unknown when measured against
existing dictionaries, while the constituents are actually known and
pronounced in an identical manner.

In the remainder of this section we describe the two approaches
used (variants of Morfessor-based decompounding and Longest
String Matching), the post-processing that is required (which is
similar for both approaches), and the results achieved.

1) Morfessor:Morphological decomposition was performed using
a modified version of Morfessor 1.0 [9], a popular language indepen-
dent tool for performing unsupervised morphological decomposition.
We changed the tool to only use existing words as ‘morphemes’ and
not to create smaller linguistic components, in effect changing it into
a decompounding tool. All other settings were left at their default
values.

Given as input is a combination of unique words from an existing
dictionary and all words with unknown pronunciations, Morfessor
then suggests segmentations for all words, based on identified seg-
ments that exist as individual words in an existing dictionary. Words
that can be segmented are flagged as candidate compounds, new
pronunciations are generated based on the pronunciations of the
individual words and prepared for review.

145



2) LSM: An imperfect version of Longest String Matching algo-
rithm similar to that of [10] was used. The difference being that
the longest left hand match is performed at the same time as the
longest right hand match, possibly causing overlap and missing some
compounds. A limited valence morpheme list is used containing only
two valance morphemes, namelys anden. Using a lexicon of known
words as a reference, the largest left- and right hand matching strings
of each candidate compound is determined. Words are then flagged
as possible compounds if: (a) after subtraction of the left and right
match, there is no remainder and the length of the compound is equal
to the combined length of the largest left and right match, or (b) the
remainder of the compound is either a valid word from the lexicon,
or (c) the remainder is a valid valence morph from the limited list.

3) Post-processing:After each decompounding method the pro-
nunciations of compound constituents are extracted from existing
dictionaries, residual consonant doubling caused by constituent con-
catenation is removed, and finally, flagged compounds and their
accompanying phone strings are manually verified.

4) Results: After verification, we found 1 492 compounds in
the data set (containing 3 225 unique words) of which 1 416 had
correct pronunciations. A breakdown of our results are shown in
Table III. Morfessor decomposition was applied first, then LSM-
based decomposition. Note that LSM-based decomposition was only
performed on words that Morfessor was not able to decompound,
resulting in 179 additional compounds. Since we are not interested
in finding linguistically accurate compound boundaries some of the
words identified are not actual compounds, yet they still produce cor-
rect phone strings. Table IV summarises the effect of decomposition
on pronunciation. Most pronunciation errors relate to a few small
morphemes (‘ver’, ‘end’, ‘bes’) that were incorrectly predicted as /E/
rather than /@/ (using SAMPA notation).

Total flagged Correctly Incorrectly
identified identified

LSM 203 179 24
Morfessor 1419 1313 106

TABLE III
Breakdown of LSM and Morfessor based decomposition showingthe
number of correctly identified and incorrectly identified compounds

Pronunciation
correct error % correct

Correctly decomposed 1 416 76 94.6
Incorrectly decomposed 130 119 8.5

TABLE IV
Effect of decomposition on pronunciations

B. Developing a gold standard dictionary

As described earlier (in section II-A), in order to lessen the
total effort of classifying, predicting pronunciations for and verify-
ing 9 375 unique words, we employed various strategies. Initially,
all known words from existing dictionaries were extracted: this
comprised nearly two thirds of the dictionary. Remaining words
were then checked against known word lists and classified as either
valid Afrikaans words, valid English words or unknowns words.
All valid English words were then removed, their pronunciations
predicted with English g2p rules and these were manually verified.
The remaining words were then processed concurrently by the two
different decompounding methods described in section IV-A1.

Short word extraction was then performed on the remaining words
by extracting all words with a length of 1-4 characters. The vast
majority of these words fell into the category of spelled out Afrikaans
words. High numbers of partials, abbreviations and acronyms were
also present. Words were then categorised and pronunciations were
generated with appropriate g2p methods after which all words were
reviewed manually. A hand made list was crafted for all spelled
out single characters. For the remaining 1 351 words pronunciations
were predicted and manually verified. All manual verification was
performed by two verifiers.

Results for each step in this process is given in Table V.

Process Words identified Valid categories Valid pron

extr known Afr words 5 925 5 925 5 925
g2p valid Eng 225 189 163

id comps (morfessor) 1 419 1 313 1 265
extract short words 253 196 -
id comps (LSM) 203 179 151
review remaining 1 351 - -

TABLE V
Per step of the dictionary development process: the number of words

correctly identified and the number of valid pronunciationsprior to manual
correction

C. Dictionary analysis

Using the gold standard dictionary as a reference the phoneme
accuracy of the g2p dictionary measured 96.31% with 85.33% of
words being identical. This indicates that there is a strong similarity
between the two dictionaries. A relative phoneme accuracy of 63.27%
was obtained by comparing the grapheme dictionary to the gold
standard dictionary. The categorisation of specific differences still
requires further investigation. Our findings are presented in Table
VI.

Total Total Words Phone
Dictionary words phones correct accuracy

phone 9 374 78 621 - -
graph 9 374 86 883 6.37% 63.27%
g2p 9 374 78 063 85.33% 96.31%

TABLE VI
Relative phoneme accuracy and percentage of correct words for the g2p

dictionary and grapheme dictionary using the gold standarddictionary as
reference

D. Effect of dictionary on WER

To evaluate the effect of the dictionaries, we develop three different
ASR systems using a relatively standard approach. We use the hidden
Markov model toolkit (HTK) [11] and develop context-dependant
tied-state acoustic models. Feature extraction on the speech audio
data realised 13 Mel Frequency Cepstral Coefficients (MFCCs) with
their first and second order derivatives as 39 dimensional feature
vectors. MFCC window size was set at 25ms with a frame rate of
10ms. Cepstral mean normalisation was applied at speaker level. With
regard to modelling structure, each triphone or trigraph has three
emitting states with eight Gaussian mixtures per state and a diagonal
covariance matrix. Where parameters are optimised, the development
set is used.

Figure 1 shows the effect of different dictionaries on WER at four
different training sizes of 5, 10, 20 and 40 hours. At the smallest
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data set size (5 hours) the gold standard dictionary outperforms the
other approaches, with the g2p-based system also outperforming the
grapheme-based system. At the largest data set size (40 hours) the
grapheme-based system had a WER of 41.13%, the g2p-based system
a WER of 39.82% and the phoneme-based system a WER of 38.03%.
As is evident in the convergence of WER between the phoneme-based
and grapheme-based ASR systems, the more training data that is
available the less the degradation in performance is of the grapheme-
based ASR system.

Figure 2 shows the difference in relative percentage of WER
between (1) grapheme-based and g2p-based ASR, (2) grapheme-
based and phoneme-based ASR and (3) g2p-based and phoneme-
based ASR. The highest inter-system difference measured 8.25%
between grapheme-based and phoneme-based ASR at 5 hours of
training. As then expected, the highest total gain in performance
of 5.15% is also measured between grapheme-based and phoneme-
based ASR. As training hours increase, g2p-based ASR consistently
performs approximately 1.93% worse than phoneme-based ASR. This
indicates that even with an increase in training size g2p-based ASR is
unlikely to outperform phoneme-based ASR. The lowest inter-system
difference measured a very promising 1.31% between g2p-based ASR
and grapheme-based ASR.

Fig. 1. Average WER ofgrapheme-based, g2p-basedand phoneme-based
ASR for training sizes of 5, 10, 20 and 40 hours across 4 folds

Fig. 2. Average difference in relative percentage of WER betweengrapheme-
basedand g2p-basedASR, grapheme-basedand phoneme-basedASR, and
g2p-basedand phoneme-basedASR for training sizes of 5, 10, 20 and 40
hours across 4 folds

E. Error analysis

With the difference in WER being the most pronounced at 5
hours, we analyse the errors made according to word category. As

mentioned in section II-C, the abbreviation category contains only
one word namelymej, and since it doesn’t occur in every fold’s
test set the abbreviation category is ignored during error analysis,
leaving a total of 11 categories. Also, it has to be pointed out that
words in the spelling error category can only be correctly recognised
in their erroneous form. The data set has a fairly low saturation
of spelling errors but their effect on recognition accuracy requires
further investigation. Ideally (if data containing spelling errors are
not to be discarded), spelling errors should either be corrected prior
to system development, or the correct and incorrect spellings should
be considered the same word during scoring. Both these approaches
require that the word actually produced by the speaker should be
identified. As this information was not available for the current
analysis, spelling errors were handled as if they were standard words.

Table VII gives a detailed view of our findings. Scores are given
as a percentage of how many times words from a specific category
are miss-recognised as other words out of the total number of words
from that category in all 4 test sets. Each cell is coloured green,
yellow or red to indicate whether the relevant system performed
best, second-best or worst. Not surprisingly grapheme-based ASR
performed worse than phoneme-based ASR in 10 of the 11 categories
It did however outperform g2p-based ASR in 5 categories namely
spelled out words, proper names, spelling errors, partial words and
multi-category words. The high WER of spelled out characters can be
attributed to the language model used: with a flat language model the
insertion penalty (the cost of adding an extra word during decoding)
must be very high in order to produce sensible results. This causes
short words to be miss-recognised very frequently.

Category g-based WER g2p WER gold-dict WER
Spelled out char 73.73% 68.31% 63.65%
Multi-category 38.53% 40.54% 29.36%

Acronyms 32.03% 28.91% 26.95%
Unknown words 28.65% 25.15% 28.65%
Spelled out word 27.96% 30.53% 15.27%

Foreign 16.04% 14.92% 13.84%
Proper names 10.44% 11.00% 9.48%
Spelling errors 10.40% 11.42% 9.68%
Concatenation 7.48% 5.79% 5.67%
Partial words 6.62% 7.31% 6.13%

Generic Afr words 2.81% 2.49% 2.68%

TABLE VII
Word categories of errors observed at 5 hours of training data

Similarly, with the difference in WER being least at 40 hours, we
again split errors based on word categories. Our findings are presented
in Table VIII. Comparative to the error analysis of the smallest data
set size (5 hours), grapheme-based ASR now outperforms g2p-based
ASR in 4 out of the 11 categories, tying for an additional 2 categories.
With increased training data, grapheme-based ASR managed to out-
perform phoneme-based ASR in 5 of the 11 categories. Interestingly,
one of the categories includes generic Afrikaans words: the largest
category of words in the test set. This might be attributed to noise-free
pronunciation models or increased language regularity but this also
requires further investigation. The biggest disparity in performance
occurs in the spelled out words category between g2p-based and
phoneme-based ASR, with g2p-based ASR miss-recognising twice
as many words as phoneme-based ASR.

V. CONCLUSION

In this paper, the recognition accuracy of phoneme-based ASR and
grapheme-based ASR was compared, using Afrikaans ASR as a case
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Category g-based WER g2p WER gold-dict WER
Spelled out char 62.65% 66.90% 63.89%
Multi-category 37.57% 35.87% 27.52%

Acronyms 31.50% 20.47% 25.98%
Unknown words 25.07% 25.07% 25.66%
Spelled out word 23.24% 28.47% 10.89%

Foreign 13.61% 12.81% 10.00%
Proper names 10.26% 11.83% 9.65%
Spelling errors 10.37% 11.38% 9.22%
Concatenation 5.24% 5.12% 6.33%
Partial words 6.20% 6.20% 8.27%

Generic Afr words 1.85% 1.76% 2.15%

TABLE VIII
Word categories of errors observed at 40 hours of training data

study. It was shown that at a context-level of three (using triphones or
trigrams), a minimal effort grapheme-based ASR performs nearly on
par with g2p-based ASR and converges quickly to the performance
of manually verified phoneme-based ASR as the training set size
increases.

Grapheme-based systems do not reach the same level of per-
formance as that of a system developed using a manually veri-
fied dictionary, but this degradation in word accuracy is primarily
caused by very specific word types, namely: spelled out words,
acronyms, proper names and foreign words. All these categories
(except for acronyms) tend to have highly irregular relationships
between graphemes and phonemes confusing both the g2p-based and
grapheme-based systems.

Spelled out words, acronyms and foreign words are typically easy
to identify: spelled out words and acronyms tend to be short (and
generic short words – which are not acronyms or spelled out words
– tend to be known), and foreign words can mostly be identified
using known word lists in relevant languages. Proper names tend
to be more difficult to identify from text (unless capital letters are
accurately retained during pre-processing). Luckily, once identified,
these categories tend to be small in comparison with the total number
of words to be modelled.

In future work, we will investigate an approach whereby the
problematic categories are identified automatically and ‘ideal pro-
nunciations’ are created for these. We propose that these ideal
pronunciations then be converted to grapheme strings (by training
phoneme-to-grapheme rules) in order for the pronunciations to be
incorporated in a grapheme-based system. Given sufficient data, it

may even be possible to train grapheme-to-grapheme rules: transliter-
ating the original orthography of idiosyncratic words to an ’idealised’
orthography, more amenable to incorporation in a grapheme-based
system. This could possibly combine the best of both worlds: the
ability of a dictionary to capture idiosyncratic pronunciations, the
minimal effort associated with the development of a grapheme-based
system, and the ability of a grapheme-based system to remain ‘noise-
free’, modelling almost all pronunciation variation at the acoustic
level. However, in such a process, care should be taken that the
additional variability improves the system, and does not introduce the
same dictionary inconsistencies found in phoneme-based systems.
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Abstract—We present a method for extracting regions of
interest from grayscale images by the use of the Iterated
Conditional Modes clustering algorithm, in conjunction with the
Discrete Pulse Transform of image features. We then illustrate the
improvement by comparison; using the luminosity, eccentricity,
orientation and convexity as features of the regions of interest.

I. INTRODUCTION

Image segmentation plays an integral part within the field
of computer vision and image analysis, since the identification
of regions of interest is usually the first step in extracting
useful information from an image. To this end, we introduce
a new segmentation algorithm in which the Iterated Condi-
tional Modes clustering algorithm is applied to feature vectors
calculated from the Discrete Pulse Transform of an image.
Possible applications of this and other image segmentation
techniques include: medical imaging [1], image compression
[2], biometrics, such as facial or retinal recognition [3], [4],
scene classification [5], and handwriting recognition [6]. A
good overview of possible applications of computer vision
(and hence image segmentation) can be found in [6].

The article structure proceeds as follows. Section II provides
some initial preliminaries and notation and Section III provides
the necessary background theory for the Discrete Pulse Trans-
form. Section IV introduces the iterated conditional modes
algorithm and Section V describes the feature measurements
used, and lastly Section VI presents some applications.

II. PRELIMINARIES AND NOTATION

We introduce some basics before proceedings with the
details. Discussions on the representation of images can be
found in many books and articles on image analysis such
as [6]. We will represent the luminosity of a pixel in the
image matrix as I(x) where x = (i, j) with i = 1, 2, ..., n;
j = 1, 2, ...,m. For example, in a grayscale image, I(x) will
be a single value indicating the luminosity of pixel x; while
in an RGB image, I(x) will be a three-dimensional vector of
luminosity values for pixels x, in the three different colour
bands.

In general, we can represent a collection of different pixel
feature measurements as a d-dimensional vector f(x). These

Thanks to the Department of Statistics and Statomet at the University of
Pretoria for support and funding.

are the values for a certain pixel across the different layers
in a three dimensional matrix image, where each entry in the
vector corresponds to a feature value of the pixel, which could
simply be it’s luminosity I(x).

A neighbourhood of a given pixel is a subset of the image
matrix which surrounds the pixel, which may or may not
contain the pixel itself. Such a neighbourhood for a pixel x
can be described as

N(x) = {x = (s, t) : (i, j) , (i± 1, j) , (i, j ± 1) ,
(i± 1, j ± 1) , (i± 1, j ∓ 1) ;
s ∈ [0, n] ; t ∈ [0,m]}.

This neighbourhood defines a 8-connectivity of x since it
contains the 8 pixels which neighbour x. We may also define
a 4-connectivity by excluding the 4 pixels on the diagonals.

Image segmentation generally focuses on the method of
thresholding, where a threshold value T is selected such that
all luminosities I(x) above (below) this value is classified as
foreground (background) and represented by a black (white)
pixel with luminosity 0 (1). This can be achieved through
iterative selection where T is selected iteratively as the average
of the average luminosities in the foreground and background;
Otsu’s method which minimises the within-segment variation;
or the balanced histogram method which uses a weighted
mid-point of the pixel luminosities as the threshold. More
sophisticated methods, such as the fitting of Gaussian Mixtures
to the luminosities and adaptive thresholding aim to improve
on these segmentations. An overview of these, and other,
methods can be found in [7].

III. DISCRETE PULSE TRANSFORM

The discrete pulse transform (DPT) is based on the frame-
work of LULU operators. An important overview is presented
in [8], whereas [9] extend the results to multidimensional
arrays, with applications in image analysis. We present a
summary of the definitions and results presented in the latter,
as this work has been extensively published in detail in the
references mentioned. First we define a connection, needed
as a preliminary for the definition of the LULU operators in
Definition 2.

Definition 1. If B is any non-empty set, then a family C of
subsets of B is called a connection on B if

1) ∅ ∈ C ,
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2) {x} ∈ C ∀ x ∈ B, and
3) {Ci : i ∈ I} ⊆ C ,

⋂
i∈I Ci 6= ∅ =⇒ ⋃

i∈I Ci ∈ C .
A set C is called connected if it belongs to some connection
C of B.

Definition 2. For I a function defined on a vector lattice
A
(
Zd
)

of real functions defined on Zd, and n ∈ N; then
for all x ∈ Zd, we define the LULU operators as

Ln (I)(x) = max
V ∈Nn(x)

min
y∈V

I(y)

and
Un(I)(x) = min

V ∈Nn(x)
max
y∈V

I(y) ,

where Nn(x) = {V ∈ C : x ∈ V , card(V ) = n+ 1}.
The recursive application of the operators Ln and Un for

n = 1, 2, .., N , where N is the total number of pixels in the
image, results in the Discrete Pulse Transform (DPT) of an
image f .

Definition 3. The DPT of a function I ∈ A
(
Zd
)
, with N =

card(supp(I)) = card
({
x ∈ Zd : I(x) 6= 0

})
, is given by

DPT (I) = (D1(I) , D2(I) , ..., DN (I))

where
D1(I) = (I − P1)(I)

and
Dn(I) = (I − Pn) ◦Qn−1(I) ,

with Pn = Ln ◦ Un or Un ◦ Ln and Qn = Pn ◦ ... ◦ P1 for
n = 1, 2, ..., N . The operator I is the identity operator in
A
(
Zd
)
.

The application of the DPT to an image I provides a
multiscale decomposition into pulses (Definition 4) given in
Theorem 5 below [9].

Definition 4. A function φ ∈ A
(
Zd
)

is called a pulse, if for
some connected set V and nonzero real number α, we have
that φ(x) = α whenever x ∈ V , and zero otherwise.

Theorem 5. Let I ∈ A
(
Zd
)
, then

I =
N∑

n=1

Dn(I) (1)

Also, for every n ∈ N, the function Dn(I) is a sum of discrete
pulses with pairwise disjoint support. In other words, there
exists some number γ(n) ∈ N and discrete pulses φns , s =
1, ..., γ (n) such that

Dn (I) =

γ(n)∑

s=1

φns

and
supp(φns1) ∩ supp(φns2) = ∅ ∀ s1 6= s2 (2)

where φns is the sth discrete pulse on some connected set V
with card(supp(φns)) = n. Further, for all n1 < n2 ∈ N,
1 ≤ s1 < γ(n1) and 1 ≤ s2 < γ(n2) we have that

supp(φn1s1) ∩ supp(φn2s2) 6= ∅ =⇒
supp(φn1s1) ⊂ supp(φn2s2) .

(3)

Hence, together with equation (1) we can write

I =

N∑

n=1

γ(n)∑

s=1

φns

where properties (2) and (3) hold.

This decomposition of the function I thus extracts con-
nected regions in the image matrix. It allows us to de-
compose the image into pulses whose support represent the
disjoint connected regions of different sizes. For examples,
supp(φns) ∀ s = 1, 2, ..., γ(n) represents the pixel locations of
the γ(n) pulses with support of cardinality n. On these sets
we are able to calculate different features of the connected
regions within an image.

IV. ITERATED CONDITIONAL MODES

Iterated Conditional Modes (ICM) is an algorithm first
introduced by [10] to reduce the noise in dirty pictures. It takes
into account both features of each pixel and spatial information
based on a Markov Random Field of each pixel to be clustered
[5]. For a further explanation of Markov Random Fields in
relation to images, see [11].

The ICM algorithm (within the context of noise removal) is
based on the assumption that neighbouring pixels tend to have
similar luminosities, or other features; and that each pixel is
corrupted independently with a given probability. Within the
general context of image analysis we apply the method to the
general feature vectors f(x) of each pixel x and present the
method as such.

Consider an image I with n pixel rows and m pixel columns
in which there are K clusters of pixels which we would like
to detect and extract. Then, for each iteration of the algorithm,
indexed by α, we define
• ω(α)

ij as the class of pixel x = (i, j);

• C(α)
k =

{
x : ω

(α)
ij = k

}
as the set of pixels belonging

to cluster k = 1, 2, ...,K;
• N (α)

k = card
(
C

(α)
k

)
as the number of pixels in cluster

k = 1, 2, ...,K;
• N (α)

ij (k) = card
(
C

(α)
k ∩N(x)

)
as the number of pixels

in the neighbourhood of x belonging to cluster k =
1, 2, ...,K;

• µ(α)
k = 1

N
(α)
k

∑
x∈C(α)

k

f(x) as the d-dimensional mean

vector of cluster k = 1, 2, ...,K;

• ν(α) = 1
nm

K∑
k=1


 ∑
x∈C(α)

k

(
f(x)− µ(α)

k

)′ (
f(x)− µ(α)

k

)



as the total within-cluster variance.
The aim of ICM clustering is then to minimise the total within-
cluster variance, by assigning and reassigning each pixel in the
image to a class, while taking spatial information into account.
To this end we proceed as follows:

1) Initialise the the parameters using only the feature in-
formation for each pixel. We suggest, and have used,
a multivariate K-means clustering procedure. A good
overview of the method and it’s implementation can be
found in [12].
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2) Calculate C
(α)
k , N (α)

k , µ(α)
k and ν(α) for each k =

1, 2, ...,= K.
3) For each pixel x and cluster k calculate

Λ(x, k) =
(
f(x)− µ(α)

k

)T (
f(x)− µ(α)

k

)

−βν(α)Nij(k) ,
(4)

and find k∗ = arg min
k
{Λ (x, k)} .

4) Set ω(α+1)
ij = k∗ for each pixel in the image. In other

words, reclassify the pixel as belonging to cluster k∗.
5) Repeat steps 2 through 4 until C(α+1)

k = C
(α)
k for all

k = 1, 2, ...,K or a predetermined number of iterations
have passed.

If the algorithm converges we end up with a collection of sets
(the C ′ks) containing the clusters of pixels, grouped according
to their likely cluster membership, taking into account the
spatial location of the pixel.

Equation (4) is similar to the function which must be min-
imised within the K-means framework. The only difference is
the second term, which is called the spatial penalisation term
[5]. This term allow for the inclusion of spatial information
when clustering the pixels. In effect, the within-cluster sum of
square deviations is reduced by a multiple of the number of
pixels in the neighbourhood which are in the class k, where
the specific constant of multiplication is βν(α). All else being
constant, if a pixel is surrounded by many pixels which belong
to class k∗, it is more likely that that pixel also belongs to class
k∗, due to our first assumption. Hence the likelihood that k∗

will minimise (4) is increased, by reducing the size of Λ(x, k∗)
by a constant related to the spatial information.

Debba et al [5] suggests that a good choice for the parameter
β is 1.5. A larger value of β will lead to a smoother image
based more heavily on spatial data, while a lower value for
β will lead to a clustering similar to the K-means algorithm.
Figure 1 illustrates the effect of the β parameter. From Figure
1b, it can be seen that a smoother segmented image is obtained
when ICM is applied directly to the pixel luminosities with
a higher value for β, while, as seen in Figure 1c, the effect
is minimal when applied to the feature vectors of the DPT.
This can be explained by the fact that the spatial information
is already largely contained within the pulse supports. Hence,
the application of ICM to DPT is more robust to the choice
of β, which constitutes a major advantage in application. A
value of 2.5 was used for β throughout.

V. REGION FEATURES

We will now present a number of measurements of prop-
erties of regions within an image, with the aim of obtaining
improved segmentation of an image.

Eccentricity is a feature which can be extracted from a set
of connected pixels indicating the roundness of the region. It
is defined as

ε =

√
1− b2

a2

where a and b are the lengths of the semi-major and
semi-minor axes, respectively, of the ellipse with the same
second moment as the region of pixels. For all p, q ∈ N0

the moments of order p + q for an ellipse f(x, y) are
µpq =

´∞
−∞
´∞
−∞ xpyqf(x, y) dxdy, with the corresponding

moments, mpq =
∑
∀(x,y)∈V x

pyqI(x, y), for the connected
image region V [13]. Now, since a ≥ b, the eccentricity of a
region is bounded by 0 and 1. When ε = 0, the region is a
perfect circle, whereas if ε = 1, the region is simply a line
segment. This can, also, then be interpreted as a measure of
the shape and compactness of the region. Figure 2a illustrates
the eccentricity of a region of 5 connected pixels.

We can inspect the direction in which a region of pixels
lie. In order to do so, we calculate the region’s orientation as
the gradient of the major axis of the ellipse, with the same
second moments as the region, in degrees from the horizontal
axis. Figure 2b illustrates this measure for a region of 5 pixels.
The gradient of the regression line (major axis) through the
connected image region, V , is given by

m̂ =

∑
∀(x,y)∈V

xy − nx̄ȳ
∑

∀(x,y)∈V
x2 − nx̄2

where x̄ = 1
n

∑
∀(x,y)∈V x, ȳ = 1

n

∑
∀(x,y)∈V y and n =

card(V ). It follows that the orientation of V is θ = arctan(m̂)
[14]. From this definition, it is clear that the orientation will
be bounded by −90◦ and 90◦. An example of the use of
orientation in texture analysis can be found in [15].

The convex hull of an image region is the smallest convex
set of points, which contains the entire image region [16] as
can be seen in Figure 2c. Methods for calculating the convex
hull can be found in [17] or [18].

Another measure of compactness, based on the convex hull,
is the convexity of a connected region. Iivarinen and Visa [19]
define the convexity of a connected region V as

c =
card(adj(CH(V )))

card(adj(V ))

where CH(V ) is the convex hull of V and adj(V ) ={
x ∈ Zd : x /∈ V , V ∪ {x} ∈ C

}
. Stated differently, the

convexity of a region is the ratio of the length of the perimeter
of the convex hull of V , to the length of the perimeter of V .
A convexity of 1, indicates that the region is perfectly convex,
since the convex hull would coincide with the region; whereas
a value significantly different from 1 would indicate a non-
convex or concave region.

Other measurements of region features which could be made
on an image include (but are not limited to) van der Walt’s
sharpness measure [20], entropy [21], Euler number [22], and
shape number [23].

VI. THE APPLICATION OF ICM TO DPT
DECOMPOSITIONS OF IMAGE FEATURES

We define the notation in Table I in order to apply ICM to
the feature vectors of the Discrete Pulse Transform supports.

We use the standardised feature measures to remove the
effect of the measurement scales, which allows for an even
weighting between the feature measurements during the clus-
tering process.

151



4

(a) Original image. (b) ICM applied directly to image luminosities with β = 1.5
(left) and β = 2.5 (right).

(c) ICM applied to discrete pulses with β = 1.5 (left) and
β = 2.5 (right).

Figure 1: Effect of β-values for ICM applied to the image luminosities, and to the feature vectors calculated on the discrete
pulses.

(a) A superimposed ellipse with the same
second moments as the region. The ratio
of the semi-major and semi-minor axes
are used to calculate the region’s eccent-
ricity.

(b) A superimposed ellipse with the same
second moments as the region. The angle
between the horizontal axis and major axis
is a measure of the region’s orientation.

(c) The convex hull of the region su-
perimposed onto the region. The ratio of
the perimeter lengths is a measure of the
region’s convexity.

Figure 2: Feature measures of a connected region of 5 pixels.

εns, θns and cns
Eccentricity, orientation and con-
vexity of supp(φns).

Ω(x) = {φns : x ∈ supp (φns)}
Set of all pulses to which
pixel x belongs, with ωij =
card(Ω(x)).

ε̄ij =
∑

∀x∈Ω(x)

εns

ωij

Average eccentricity of pixel x
over all pulses towhich it belongs,
with standard value ε̄sij = ε̄ij .

θ̄ij =
∑

∀x∈Ω(x)

θns

ωij

Average orientation of pixel x
over all pulses to which it be-
longs, with standard value θ̄sij =
θ̄ij+90

180
.

c̄ij =
∑

∀x∈Ω(x)

cns

ωij

Average convexity of pixel x
over all pulses to which it be-
longs, with standard value c̄sij =
c̄ij .

lsij =
I(x)− Imin
Imax − Imin

Standardised luminosity value of
pixel x, with Imin = min I(i, j)
and Imax = max I(i, j).

fs(x) =
(
lsij , ε̄

s
ij , θ̄

s
ij , c̄

s
ij

)′
Standardised feature vector of
pixel x using the average dis-
crete pulse support feature meas-
urements of the pulses to which
x belongs.

Table I: Summarised notation for the feature vectors

After calculating the standardised feature vectors for each
pixel in the image, we apply ICM to obtain a segmented image
based on the pixel luminosity; region eccentricity, orientation
and convexity; and the spacial features of the DPT and ICM.
Since we are including more information about the structure

of the image, we expect to obtain an improved segmentation
of the image when compared to ICM applied to the pixel
luminosities, while extracting regions within the image with
similar features.

Figure 3b, presents the results of this algorithm when
applied to the image provided in Figure 3a. It is clear that
we are able to successfully distinguish between the body of
water, trees and dirt within the image, while the apparent
misclassification within the trees is due to the different types
of vegetation and textures evident within those regions. This
technique could, hence, be an effective method for the classi-
fication of different regions in aerial photographs or extended
for use in target detection. For instance, in this example,
successive photographs of the same area could be used to
measure the volume of water in the lake, in order to monitor
the effect of rainfall in the area; or measure the change in
vegetation density for the area.

Figure 3d, presents the results of the algorithm applied to
the image in Figure 3c. This constitutes an example of an
application in texture analysis. From the original image it
clear that there are two distinct sets of textures (the raked
lines and the grass mound), with a secondary texture within
each (the circular lines and straight lines; and the smaller
mounds on top of the larger mound). These are visible to the
human eye within the image. We see here that, allowing for a
certain level of noise due to the complex textures and shadows,
that this algorithm is able to separate the two major textures
effectively, as well as the smaller mounds from the larger
mound; but it fails to distinguish between the two different
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sets of lines. This can be explained by the use of shape and
compactness as feature measures. At a pulse level, we expect
the lines to exhibit similar elongated shapes, while the mounds
would exhibit a more compact and round shape. Further, we
see that the smaller mounds appear to present a consistent
crescent shape while the large mound presents a more irregular
shape. The orientation of the lines have aided in distinguishing
between parts of the texture for the raked lines, as can be seen
in the lower parts of the image. However, we could improve
the effectiveness of the segmentation of the lines (and other
textures) using a Hough Transform, as described in [24], or
other feature measurements.

We compare the result of ICM applied directly to the pixel
luminosities, against ICM applied to the feature vectors of
the DPT in Figure 4. Figures 4a and 4d present the original
images; while Figures 4b, 4c, 4e and 4f present the results of
ICM applied directly to the luminosities (left), and the feature
vectors of the discrete pulses (right), for various values of K.

From Figure 4b and 4c we see that ICM applied to the
DPT is less affected by ambient light, present in the lower-
left of the image. Also, this algorithm is able to distinguish
between potatoes which have different shapes, whereas the
original ICM algorithm only segments the potatoes from the
background. The potatoes coloured black are observed to have
a rounder, more compact shape compared to the other potatoes
which exhibit a more elongated shape.

Figure 4e shows the improvement of ICM applied to the
DPT in target detection, or the segmentation of man-made
objects from natural backgrounds. In this case, the original
ICM algorithm does not successfully segment the truck from
the background, while when applied to the DPT, we can clearly
distinguish between the truck and the background.

At first glance, Figure 4f appears to exhibit outperformance
of the original ICM algorithm over ICM applied to the DPT.
However, after further inspection, it is clear that ICM applied
to the DPT is able to segment particular details, on top of
the truck, which the original ICM fails to achieve. For use in
image compression this constitutes a big advantage, since the
loss of information is minimised.

One benefit of ICM applied to the DPT compared to the
direct application to pixel luminosities, which is not directly
apparent from the segmented images, but which is clear
from the algorithm and its results, is the inclusion of the
various region features of the pixels. Most of the improvements
presented here are a direct result of the inclusion of these
feature measurements. Although the ICM algorithm includes
spatial features of the image, we are not able to include the
measured features in the original ICM algorithm, since the
features cannot be calculated on a single pixel. Overall, the
results show that the ICM algorithm applied to the feature
vectors, calculated on the DPT of an image, provides better
segmentation results, through the incorporation of measured
spatial features of image regions.

VII. CONCLUSION

The application of ICM to the feature vectors calculated on
the DPT of an image yields an effective algorithm for image

segmentation, which is robust to the choice of the coefficient β
of the spatial penalisation factor. This leads to improved results
in the application of the algorithm in image segmentation,
which is easier to apply where automatic segmentation is
required. Due to the complex nature of image analysis, a
perfect segmentation would not be possible; and within each
unique application, different sets of region features would be
needed to obtain efficient results. We have used eccentricity,
orientation and convexity of image regions as our feature
measurements, but generally the choice is at discretion of the
implementer in any given situation.

We have discussed the possible advantages of this algorithm
in the context of scene classification, image compression and
texture analysis, but the algorithm could be applied in any
other segmentation task. Enhancements, including different
feature measurements, have also been suggested.

When compared to ICM applied directly to the pixel lumin-
osities, we observe a marked improvement in the segmentation
results. We are able to extract smaller details within the image,
which could lead to better image compression, and fewer
distortions due to ambient light. These improvements can be
attributed to the inclusion of calculated region features, not
present in ICM, as well as an increased emphasis on spatial
features. Further research will involve comparisons with other
segmentation techniques making use of features such as those
used herein. This work simply provides an indication of the
ability of the DPT in image analysis. Performance analysis
such as class separability indices will also be investigated in
future [25], [26].
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Abstract—We improve on a piece-wise linear model of the
trajectories of Mel Frequency Cepstral Coefficients, which are
commonly used as features in Automatic Speech Recognition.
For this purpose, we have created a very clean single-speaker
corpus, which is ideal for the investigation of contextual effects
on cepstral trajectories. We show that modelling improvements,
such as continuity constraints on parameter values and more
flexible transition models, systematically improve the robustness
of our trajectory models. However, the parameter estimates re-
main unexpectedly variable within triphone contexts, suggesting
interesting challenges for further exploration.

I. I NTRODUCTION

Current approaches to automatic speech recognition (ASR)
require large amounts of speech data to achieve high ac-
curacies, since context-dependent modelling of phones is
an important feature of these approaches. The requirement
for context-dependent modelling results from the physical
constraints of the human vocal tract, which results in co-
articulation effects during the transition from one phone to
the next. Since state-of-the-art ASR systems model speech
with piecewise-constant statistical models, observations of the
influences of various phonetic contexts on each phone are
required to create adequate statistical models of the effects
of co-articulation. Hence, sufficient examples are required
for each representative context. Unfortunately, this leads to
substantial data requirements.

Trajectory modelling approaches [1], [2] have attempted to
model temporal information in a more explicit fashion in order
to reduce these data requirements. It is clear that the effects
of co-articulation are not constrained to the frame level –
appropriate models need to operate at the segmental level, and
even longer-term effects must be considered. Describing the
observed variability on all these levels is a challenging prob-
lem. We are specifically interested to know whether systematic
phone transition effects may be described more accurately.It is
our belief that finding appropriate representations is important
to enable more effective parameter sharing, and thus more
data-efficient ASR.

With this work we improve on a model that can be used to
isolate the key elements that occur in acoustic features during
phone-to-phone transitions. We first show that trajectory track-
ing may be accomplished for a basic model and the ability of

the model to predict trajectory behaviour at different context
sizes is further evaluated. To better account for additional
trajectory behaviour, a more complex model description is
developed to characterise the observed variability.

This paper is structured as follows: Related research is
discussed in Section II. Specific techniques used to model
phone transitions and the measurement strategies thereof are
presented in Section III. We then describe our experimental
setup in Section IV and details regarding our experiments and
results are given in Section V. Our concluding statements are
made in Section VI.

II. BACKGROUND

Accurate modelling of co-articulation effects in speech data
has been the main driving force behind the development of
large speech recognition corpora [3]. In fact, if unlimitedtrain-
ing data were available, it would be more beneficial to model
co-articulatory effects using whole word (or even phrasal)
units instead of phones as the basic modelling unit, since co-
articulation effects are increasingly well modelled by larger
contexts. Limited training data, however, forces the use of
smaller units. Context-dependent phones are currently widely
used to approximate the co-articulation effects for accurate
speech recognition [3]. Finding the correct segment size to
model the diversity of all co-articulation effects can, however,
prove difficult. A key motivating factor for the development
of segmental models is the fact that it is possible to exploit
acoustic features that are apparent at the segmental and notat
the frame level [1], [2].

The hope is that more data-efficient models of co-
articulation can be developed in this way, but this is not
a straightforward goal to achieve. One problem is that any
segmental approach needs to model extra-segmental variability
(between different examples of speech segments) as well as
intra-segmental variability (within a single example) accu-
rately. The observed variability for segments of variable length
may have multiple sources, and their interaction is currently
not well understood. Possible origins for these sources include
factors such as recording conditions, different speaking styles,
phonetic reduction and finally co-articulation.
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A wide variety of approaches to the development of segmen-
tal models have been proposed, based on several fundamental
observations. For example, in [2] the fact that time-normalised
phones tend to behave predictably in various phonetic contexts
was used to develop a probabilistic trajectory model. Also,the
speech production process suggests the influence of underlying
articulatory patterns (trajectories) on speech data [4] and
more recently, convolutional non-negative matrix factorisation
(CNMF) has been used as an approach to discover temporal
(sequential) patterns in speech data [5]. CNMF showed a great
deal of time warping variation and therefore time-coded NMF
(motivated by findings in neuroscience) has been attempted to
improve pattern discovery [5].

Attempts to explicitly model temporal effects (trajectories)
in speech data have, to date, achieved limited success [6].
Specific limitations of the HMM modelling paradigm, in par-
ticular the state-based independence assumption, are addressed
in these methods. This is mainly accomplished by either incor-
porating explicit trajectories within the HMM framework [7]
or by defining longer-term variable-length segmental models
[8].

In a novel approach to implement a hidden trajectory
model, bi-directional filtering of vocal tract resonances (VTR)
yields promising results and also enables the implementation
of variable-length representation of long-contextual-spanning
speech effects) [9]. Conceptually, the opposite approach is
to model the trajectories of the features used for speech
recognition directly, and in [10], [11] it was found that such
models of cepstral features are able to represent co-articulatory
phenomena in a way that makes context dependency explicit.
The current paper similarly models the cepstral trajectories
directly, and demonstrates how more accurate parameter fits
can be achieved by using more sophisticated transition models.

III. A PPROACH

The piece-wise linear approximation that we use to track
cepstral trajectories effectively captures temporal changes us-
ing sub-phone level segments (as opposed to the individual
frames) for every phone transition. Applying a search to
find variable-length positions for these segments allows usto
characterise detailed transitional behaviour and obtain adirect
comparison between the modelled trajectories and the actual
speech data. By measuring how consistent the tracked changes
are, different modelling choices may be compared, leading to
new insights regarding cepstral transition behaviour.

A. Cepstral transition models

We model speech data using MFCC features, which are
widely used in state-of-the-art speech recognition systems.
Near phone transitions, co-articulatory effects on these features
have been shown to be highly regular in [10]. In particular,
the phones on either side of a transition generally determine
a target value (which the trajectory may or may not reach),
and the trajectories generally interpolate fairly smoothly be-
tween those targets. The authors of [11] utilised this finding,
describing individual phone transition behaviour with a simple

piece-wise linear approximation model. Their model consisted
of three line pieces to fit the cepstral values (frames) of a single
MFCC (cepstral transition), using least-squares optimisation.
Start and end line segments were constrained to be constant
values. We refer to these constant line segments asstable
valuesand the remaining central line segments as thechange
descriptor. To find a complete piece-wise linear approximation
for any cepstral transition, a search is required to determine
the start and ending indices (model alignments) of the change
descriptor. Similarly to the method described in [11], the
squared error for all line pieces of the cepstral transition
model can then be found, yielding a single error value for
each approximation. Optimising the squared error enables us
to find the best model alignments. In order to compare the
different options, the squared errors (SEf ) of each parameter
at each instant are estimated, followed by the mean square
error (MSEmodel) across features:

SEf = |t(xf ) − yf |2 (1)

where t(xf ) is the trajectory value at framexf and
|t(xf ) − yf |2 is the squared residual.

MSEmodel =
1

F

F∑

f=1

SEf (2)

In [11] an algorithm is described that allows the piece-
wise linear model to share contextual information with other
(similar) transitions. By constraining the stable values to
reference value estimates of different context sizes, the context
dependency of these models can be evaluated. Similarly, what
constitutes a single “cepstral transition model” can be specified
according to context length, phone identities or even broad
classes of phones.

B. Model evaluation

Our first priority in modelling phone transitions is to accu-
rately represent speech data. This will then subsequently serve
as the enabling factor, so that systematic effects (if they are
present) may be identified. In terms of the models described
here, we analyse two main criteria to facilitate these goals. The
first measurement (model fit) is used to evaluate the ability of a
model to track observed trajectories. Secondly we characterise
individual cepstral transitions by evaluating:

• The consistency of a measurement across multiple sam-
ples of the same transition in a data set.

• The ability of the model to predict parameters of unseen
samples (we estimate transition model parameters on a
training set and evaluate the error on a separate test set).

1) Model fit: In Figure 1 the linear approximations for the
first four cepstra of a single diphone transition example canbe
seen. The separate model parts of the first cepstral coefficient
(MFC 1) can clearly be identified: two stable values (frames
9 − 15 and frames17 − 21) and a single change descriptor
(frame16, connecting the stable values). As this is a segmented
model, the stable values are anchored to the start and ending
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frames of the diphone segment (frames9 and21 respectively)
and do not extend to adjacent transition frames numbers (1 −
8 or 22 − 26). For all cepstra a single definite transition is
observed near the ASR boundary.

Fig. 1. Piece-wise linear model fit of the first four cepstra of the diphone
transition /@-n/ using 3-piece segmented models

Through Equation 2, the MSE measurement can be calcu-
lated for the separate model parts, or for the whole piece-
wise approximation of the specific coefficient and multiple
transition examples, by including the relevant frames. To
measure how well different trajectory estimation approaches
compare with respect to the actual observed MFCC feature
vectors, the MSE measurement (MSEtrans) of trajectories is
particularly useful. This value allows the direct comparison of
phone transitions, with regard to the training data, acrossall
cepstral transition models. TheMSEtrans measurement can
be calculated as

MSEtrans =
1

∑S
s=1 CFs

S∑

s=1

C∑

c=1

Fs∑

f=1

SEfcs (3)

where SEfcs is the squared error for a specific framef , a
specific coefficientc and a specific samples.

Every transition generatesF squared errors (one for every
frame) and there areC = 13 of these cepstra (one for every
MFCC coefficient). To analyse the parameters for all of the
examples (S) of a given class, the mean and standard deviation
are calculated for the binned trajectories of the same MFCC
coefficients.

Finally, to represent the entire set of transitions with a single
error value, the summation of the contributions from each class
is evaluated:

MSEglobal =
1

T

T∑

t=1

MSEtrans, (4)

whereMSEtrans are the mean trajectoryMSE estimated for
S examples of a contextual class and a total ofT classes.

2) Model consistency:To identify systematic behaviour
for cepstral transition trajectories, we present two consis-
tency measurements, in which both stable values and change-
descriptors are evaluated. Different modelling options can then
be compared directly (for the same transition examples). More
consistent model parameters are a more favourable choice for
the representation of the transition model.

Reference stable values are estimated using the training
data set. These values are obtained in a similar way to that
described in [11]. Once an initial set of trajectories have been
fitted to the training data, the mean is estimated for the stable
(constant) parts of every particular context that is required.
After estimating the reference stable values, these valuescan
also be predicted for the unseen samples of the test set. We
evaluate the model fit (as described in III-B1) in order to
compare the trajectories obtained with predicted stable values.

For the measurements described here, change-descriptor
model parts are treated differently. We choose to determine
change-descriptor behaviour in terms of temporal informa-
tion and define two representative parameters to evaluate the
consistency: (1) Relative position to ASR boundary and (2)
Absolute duration.

During the speech segmentation process, a single ASR
boundary for every phone transition is obtained. This boundary
has the same location for all13 cepstra and is useful to provide
an initial alignment of similar transition examples. In this way,
we compensate for the fact that not all examples are equal
in length. Measuring the centre positions (exactly half way
between the model boundaries) of the change descriptors and
relative to the ASR boundary then provides a good indication
to the position where most of the change for a cepstral
transition is occurring. The absolute duration is the length
of the change descriptor as defined by the model alignments.
Both position and duration measurements are given in terms
of frame units.

For each cepstral transition class, we estimate:

x̄cep =
1

N

N∑

n=1

x (5)

and

σcep =

√√√√ 1

N

N∑

n=1

(x − x̄cep), (6)

wherex is the measured parameter value,x̄cep the mean and
σcep the standard deviation forN examples of the cepstral
transition class. To represent an entire set of cepstal transitions
with a single consistency value, we sum the contributions from
each class:

Cglobal =
1

T

T∑

t=1

σcep, (7)

whereσcep are the standard deviations estimated forN exam-
ples cepstral transitions and a total ofT classes.
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C. Cepstral model improvements

In order to gain a better understanding of the trajectory
model, and to improve its capabilities, we have refined the
basic model along a number of dimensions. These refinements
are described below.

1) Connecting model segments:In the standard model, each
segment is modelled separately. This means that stable value
estimates of two adjacent models will not necessarily be the
same, but could exhibit a ‘gap’. We extend the piece-wise
linear approximation algorithm to model the entire utterance
in a single process, eliminating this artificial gap by forcing
adjacent stable values to be equal to one another.

2) Predicting stable values with constrained alignments:
Trajectory models with fixed reference stable values behave
differently with regard to the model alignment algorithm than
free trajectory models. An intermediate option would be to
first fit free trajectories (to find transitions), then enforce
stable values (from predicted reference values). This combined
information then constitutes the final trajectory.

Fig. 2. Piece-wise linear model fit of the first four cepstra of the diphone
transition /@-n/ using 4-piece connected models

3) 4-piece models:In Figure 2 another example of the same
diphone transition as shown in Figure 1, but in a different
context, is shown. While some of the cepstral transitions are
seen to be moving (relatively) in similar directions and some
start and end positions seem to agree, it is clear that the
transition itself behaves rather differently. Instead of single
transitional changes, characteristic peaks and troughs are now
formed. This behaviour is seen quite frequently for certain
transitions and coefficients. It is clear that in such cases,a
more elaborate change descriptor could be of value to model
the change accurately.

To improve change descriptor representation, we implement
a 4-piece symmetrically constrained model. With this con-
figuration, the change descriptors consist of two line pieces,
which are kept at equal length. (This requirement drastically
reduces the search space to find model alignment, compared

to the requirement when any of the four line pieces could be
of arbitrary length, and may be more robust in specifically
detecting the peaks and troughs). In Figure 2 the linear
approximations with 4-pieces are estimated for the first four
cepstra. Since this is also a connected model, the stable value
parts are now shared with the adjacent transition models (e.g.
the stable value of the first cepstral coefficient, MFC 1, is now
fitted to frames1 − 12 with this diphone transition example
only beginning at frame9).

IV. EXPERIMENTAL SET-UP

A. Overview

The experiments of this paper are performed on phone
transitions that are selected to ensure that data scarcity does
not interfere with our investigation. (Although we eventually
want to apply our model in limited-data environments, our
current goal is to understand its description of speech features
in the absence of such a constraint.) In this section, we provide
a discussion of the selection process. Each phone transition is
selected from a high quality set of speech recordings (of a sin-
gle speaker) and reviewed acoustically before being included
in the final data set. To model any phone transition, specific
MFCC features and the appropriate speech segmentation are
derived. We also present the specifics of the features used to
model the cepstral transitions.

B. Speech data

About 6000 short utterances were recorded for the experi-
ments that we conduct. This provides a large corpus of high
quality speech of a single male speaker. Only considering a
single speaker allows us to focus on contextual effects first,
without inter-speaker differences complicating the results. The
recordings were made using a list of short Afrikaans prompts
(1 to 5 words in length) with balanced phonetic coverage
[12]. Additionally, a dynamic programming scoring algorithm
was used with initial acoustic models to verify the speaker’s
pronunciations and obtain a high quality (aligned) set of
recordings [13]. The number of utterances that showed perfect
alignment was4974 and had a total duration of about3 hours.

From this “clean” data set, training and test data sets were
selected. All diphone transitions that occur30 or more times
in the clean data set were retained, and greedy selection was
used to select test utterances until the test set contained at least
3 examples of each of these diphones. The remaining clean
utterances formed the training data set. After performing these
steps the total number of utterances that were selected totalled
902 and4072 for the test and training data sets, respectively.

C. Segmentation

Accurate identification of phone transition boundaries is
very important, since our modelling approach relies on these
boundaries. We use a standard HMM-based ASR system
trained on all4974 clean recordings to automatically align the
speech data. A context-dependent cross-word phone recogniser
with tied triphone models is employed;39 MFCC features are
used, which include the first13 and their first and second
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order derivatives. These features are computed with a window
size of 25ms and a frame rate of 10ms. Semi-tied transforms
are applied. Each triphone model has 3 emitting states with 7
Gaussian mixtures per state and a diagonal covariance matrix.
Verifying phone recognition accuracy on the test set, usinga
flat-phone grammar yields a value of 92.71%.

Triphone model alignments are obtained using a forced
alignment on all the data and the model alignment labels are
then converted to the base label sequence (the actual phonemes
observed in the training data).

D. Features for transition modelling

After transition boundaries have been obtained, we extract
13 MFCCs features for transition modelling. For these fea-
tures, while we still use a window size of 25ms, the frame
rate is adjusted to 5ms. This provides us with better time
resolution. Only the raw MFCC coefficients are used and
not any of the derivatives. Finally, for every utterance, each
of the MFCC vectors is associated with the phone-boundary
alignments from above, which provides contextual labelling at
the triphone level.

E. Selection of transition examples

Transitions All data Train Test
Total number 783 769 678

> 30 examples 470 436 173
Final selection 331 331 331

TABLE I
Number of unique diphone transition labels in data sets for various

selection stages.

Given the test and training data sets, a further selection
process was used to select the data for our experiments. In
Table I, the total number of unique transition labels is given to
show that for a large number of labels (470) we have more than
30 examples. (For the transition model analysis all transitions
with fewer examples are ignored.) After excluding transitions
including the silence label, we perform a final (per example)
selection. A particular transition example is only allowedif
the duration (in frames) is no more than a single standard
deviation from the mean. The result of this selection provides
us with the331 most frequent transition labels and transition
examples that have low speech rate variability.

V. EXPERIMENTS AND RESULTS

We compare various trajectory tracking techniques, re-
porting on the results obtained with each of the possible
improvements described in Section III-C. For all of the model
options, theMSEglobal values are calculated to measure
overall effectiveness. In the case of connected models, we
always convert to a valid segmented representation, which
ensures that direct comparison of the phone transitions on
a per-segment basis is valid. Model options with predicted
stable value parts require a train and test data set to assess
trajectory tracking. Reference stable values are predicted using

the training data and then applied as fixed stable value fits
during model estimation on the transitions of the test data set.

To compare change-descriptor behaviour we estimate the
global consistency valuesCglobal of specific temporal parame-
ters. More detailed comparison can be obtained (on a cepstral
level), comparing the standard deviationσcep for the same
cepstral transitions.

A. Connecting segments

As mentioned in Section III-C3, correctly representing the
more stable parts of phone transitions given the imposed
models requires us to extend the piece-wise linear approxima-
tion algorithm. Now, an entire utterance must be represented
by a single piece-wise approximation. Finding the utterance-
level trajectory model is accomplished in two estimation steps
(adding to the definition in Section III-A):

• Locate the model alignments for all of the transitions in
the utterance for segmented models.

• Use model alignments to fit all required line pieces of
the utterance. On a per-segment basis (left-to-right), fit
the change descriptor and ending stable value (except for
the first transition), re-using the last stable value of the
previous segment as the first stable value of the current
segment.

Additionally, if fixed reference stable values are required, fit
the mean of the two reference stable values contributing to a
single shared stable value. By sharing the first stable valueof
the previous segment (transition), the segmented models are
connected to form a single trajectory for the whole utterance.

Table II shows all of the estimatedMSEglobal values.
Global MSEs are estimated for the phone transitions of dif-
ferent data sets (train and test) and two values are given per
measurement: the means and standard deviations (in brackets)
of the diphone transition class MSEs, respectively. Only free
trajectories are constructed for the training data set. Theglobal
MSE for the test set, however, are compared for all options
(free or fixed stable value trajectories). To aid the comparison,
a ratio is also determined between the global MSE values with
every fixed stable value trajectory option and its corresponding
free trajectory. Finally, separate model parts can be evaluated,
and the global MSE values for only the frames corresponding
to the stable value of change-descriptor parts of trajectory
models are given.

We observe that the error on the training set is in agreement
of the test set results for free trajectories. There is a costto
connecting segments: Overall the error increases (as can be
expected for the more constrained model). However, the ratios
of error between fixed stable value and free trajectories are
similar, and we see that the error increases at least five-fold
when predicting stable values (rather than estimating themon
each phone occurrence).

As previously observed [11], larger context sizes allow for
more specific stable values and improved model fit. Therefore,
we test reference stable values of different context sizes
(monophones, biphones and triphones) and find that predicted
stable value model fits improve up to the triphone context
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Model Stable Global MSE Global MSE Ratio Global MSE Global MSE
reference value (train) (test) (with free fit) (stable values) (change)

3-piece segmented Monophone 24.553 (6.338) 6.803 27.636 (6.662) 8.861 (5.165)
Biphone 19.228 (4.223) 5.328 21.908 (4.447) 6.756 (2.979)
Triphone 19.118 (3.574) 5.297 21.961 (4.105) 6.974 (2.141)
No ref 3.604 (1.265) 3.609 (1.306) 4.047 (1.448) 1.821 (0.794)

3-piece connected Monophone 47.659 (8.232) 6.196 54.594 (10.458) 18.354 (5.893)
Biphone 43.595 (7.319) 5.668 50.038 (9.503) 17.339 (4.226)
Triphone 42.157 (7.064) 5.481 48.826 (9.219) 17.038 (3.512)
No ref 7.710 (2.335) 7.692 (2.433) 8.299 (2.667) 5.415 (1.837)

4-piece connected Monophone 22.788 (3.614) 5.450 38.089 (6.691) 13.482 (2.362)
Biphone 21.497 (3.410) 5.142 35.968 (6.109) 12.461 (2.107)
Triphone 21.398 (3.453) 5.118 36.246 (5.978) 12.303 (2.220)
No ref 4.211 (1.243) 4.181 (1.242) 4.959 (1.481) 3.427 (1.106)

TABLE II
Overall MSEglobal measurements for train and test data trajectories, including options with predicted stable values.

level. Finally, consistency measures of the mean position of
the change descriptor and the mean duration of the change
descriptor show similar distributions for 3-piece segmented
and connected models.

B. Aligned transitions

Once stable values have been estimated, the timing of the
change descriptor of a specific transition is determined by
finding the best fit from one stable value to another. This may
not produce optimal change descriptor alignment, especially
if a specific stable value does not suit a specific sample
of a transition well. Change descriptor alignments can be
constrained to the free trajectory alignments for better change
detection. The fixed stable values can then still be applied
without allowing the model to find a further optimal fit for
chosen parameters.

In Table III, a global free trajectory baseline consistency
(Cglobal) of the change descriptor centre position is estimated.
Since trajectories with fixed stable values only exist for the
test data, all comparisons are made for the transitions of the
test set. We find that the measured change descriptor position
is less consistent for trajectory models with fixed stable values
(free trajectory models show most consistent change descriptor
positions in all cases).

The more consistent change descriptor positions of the
free trajectory models motivate further investigation of free
trajectory alignments. To better understand the relationship
between reference stable values, free trajectory alignments
and model fit, we also determine the MSE parameters when
constraining fixed stable value trajectory models to have free
trajectory alignments. Similarly to the values in Table II,
Table IV shows theMSEglobal values, now with free trajec-
tory alignments. As expected, the overall MSE measurements
show increased error for constrained alignments. Since 3-piece
model change-descriptors are so dependent on stable valueswe
find substantial error increases when comparing the values of
Table II.

C. 4-piece segments

For all the previous trajectory options, a change descriptor
consisted of a single straight line, connected to the start and

Model Stable Position
reference value (centre)

3-piece segmented No ref 2.847 (1.215)
Biphone 4.095 (1.753)
Triphone 4.107 (1.753)

3-piece connected No ref 2.848 (1.215)
Biphone 3.924 (1.708)
Triphone 4.024 (1.721)

4-piece connected No ref 2.167 (0.751)
Biphone 2.289 (0.832)
Triphone 2.281 (0.827)

TABLE III
Overall consistencyCglobal measurement of change descriptor position on

test set

Fig. 3. Comparing consistencyσcep of change descriptor position on a per
cepstrum basis

end points of the stable values (at the model alignments). With
4-piece models, the complexity of the change descriptor is
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Model Stable Global Global MSE Global MSE
reference value MSE (stable values) (change)

3-piece connected Monophone 50.245 (8.563) 54.156 (9.826)36.059 (7.502)
Biphone 45.429 (7.315) 49.102 (8.512) 32.014 (5.904)
Triphone 44.521 (7.057) 48.169 (8.161) 31.199 (5.870)

4-piece connected Monophone 32.890 (5.485) 50.626 (8.655)15.527 (2.696)
Biphone 29.856 (4.771) 45.772 (7.339) 14.268 (2.409)
Triphone 29.373 (4.888) 45.001 (7.151) 14.002 (2.521)

TABLE IV
Overall MSEglobal measurement on test set, when applying fixed stable values and constrained alignments

Fig. 4. Comparing mean duration̄xcep of the change descriptors on a per
cepstrum basis

increased to include two straight lines. This allows the change
descriptor to have a freely varying centre point (connecting the
two change descriptor line pieces). As a final constraint, the
change descriptor must be symmetrical along the time axis
(two lines of equal duration) during model alignment. Final
model fits (when connecting segments) of the utterance may
however find “shared” stable values different to the ones used
during model alignment, leading to non-symmetric change
descriptors.

Comparing the overall consistencyCglobal of the change
descriptor position with that of the 3-piece models shows the
4-piece models to be the most consistent choice for free tra-
jectory models (Table III). Furthermore, rather than becoming
much less consistent when trajectories with fixed stable values
are used, 4-piece models show comparable consistency for
fixed stable value trajectories.

Figure 3 provides a more detailed comparison. Measuring
the centre position of the change descriptors relative to the
ASR boundary for each cepstral transition example, and com-

puting the standard deviationσcep allows transition compari-
son on a per cepstrum basis. The scatter plot therefore depicts
these values for3 and4-piece models and the same transition
examples. We find that most of the cepstral transitions have
larger standard deviations when 3-piece models are used.
According to the histogram frequencies and the placement
of cepstral transition measurements, only a relatively small
number of cepstral transitions have smaller standard deviation
for 3-piece models. Generally 4-piece models also tend to have
lower standard deviation for most of these cepstral transitions.

Model Duration (absolute)
3-piece segmented 2.710 (0.858)
3-piece connected 2.583 (0.876)
4-piece connected 2.842 (0.930)

TABLE V
Overall consistencyCglobal measurement of change descriptor durations on

all data

To understand more about the differences between the 3-
piece and 4-piece change descriptors, we also compare their
absolute durations (length in frames). Figure 4 shows the mean
duration in frames compared for every cepstral transition class
between 3-piece and 4-piece models. It is clear that for all
cepstral transition classes, the mean durations of the change
descriptors are longer for 4-piece models compared to 3-piece
models and the same class.

Confirming the overall variabilityCglobal on the mean
duration (free trajectories), we find that connecting segments
for 3-piece models seems to provide the most consistent mean
change descriptor durations in general (Table V). Although4-
piece models with longer change descriptors are less consis-
tent, this value is still very comparable to the 3-piece model
case.

Finally, the overallMSEglobal values in Table II confirm
that the additional freedom of the 4-piece model reduces
overall error by considerable amounts; this is true for both
the model fit of change descriptor and stable value parts, as
well as trajectories with predicted stable values comparedto 3-
piece models of similar configuration. The ratio of the MSE for
trajectories with predicted stable values and free trajectories
is also seen to improve for 4-piece models.

Additional insight regarding the predictability of reference
stable values may be achieved by exchanging (“swapping”)
the matching reference values between3 and4-piece models.
Table VI shows theMSEglobal values for the different context
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Model Stable Global Global MSE Global MSE
reference value MSE (stable values) (change)

3-piece connected Monophone 47.860 (8.270) 54.505 (10.367) 18.474 (6.062)
Biphone 43.701 (7.381) 49.706 (9.341) 17.306 (4.309)
Triphone 42.638 (7.440) 48.940 (9.445) 17.159 (3.738)

4-piece connected Monophone 23.095 (3.708) 38.847 (6.920)13.518 (2.393)
Biphone 22.070 (3.612) 37.100 (6.586) 12.665 (2.184)
Triphone 21.906 (3.597) 37.245 (6.375) 12.465 (2.271)

TABLE VI
Overall MSEglobal on test set for “swapping” reference stable values between3 and 4-piece models

sizes. Improved model fit of stable regions for 3-piece models
(using the 4-piece predicted stable values) are obtained, in all
cases except the triphone case. Similarly, the 4-piece model
model fit for these regions degrades in all cases. Overall model
tracking degrades slightly in all cases.

VI. CONCLUSION

With this work we improve upon the piece-wise linear
model approximation of cepstral transitions. This is accom-
plished by the introduction of new approximation options
(connecting segments, constraining model alignments and
more complex change descriptors). Trajectory model tracking
is analysed in more detail and for separate model parts
(change descriptors and stable values). We find that connect-
ing segments, to form a single linear approximation for the
entire utterance, proves to be successful and leads to similar
distributions for the change descriptors. Although we do obtain
similar context dependent improvements to [11] for predicting
stable values, these predictors are confirmed not to be very
accurate representations of the actual magnitudes for frames
of the stable regions of individual transition examples.

Our analysis of change descriptor behaviour shows free
trajectories to be the most consistent at detecting the relative
position of change. Change descriptor behaviour is tightly
coupled to the chosen stable values for 3-piece models and are
therefore strongly affected, introducing large error, foraligned
model fits. In contrast, the extra degree of freedom for the
change descriptor of the 4-piece model is seen to be much less
dependent on the stable value parts, resulting in comparatively
consistent positions of detected changes. Further examination
of the change descriptors shows the 4-piece approximation
to model much longer changes in general, which agrees
with plots of cepstral transitions where characteristic (longer)
double transition behaviour can frequently be observed near
the ASR boundary for some cepstra and phone transition
labels. This also implies that fewer frames are assigned to
stable regions.

In spite of these factors, the error in the stable values of the
4-piece approximation increases substantially for constrained
alignments and is fairly similar to the stable value error for

the 3-piece model case. Swapping the predicted stable values
between 3 and 4-piece models also generate similar error
for these parts, with slight improvement when using the 4-
piece predictors. The exact reason why these regions show
so much intra-segmental variability is not yet well understood
and additional investigation may prove valuable.
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Abstract—The paper presents work aimed at optimising acous-
tic models for the AutoSecretary call routing system. To develop
the optimised acoustic models: (1) an appropriate phone set
was selected and used to create a pronunciation dictionary,
(2) various cepstral normalization techniques were investigated,
(3) three South African corpora and multiple training data
combinations were used to train the acoustic models, and, (4)
model-space transformations were applied. Using an independent
testing corpus, which contained proper names and South African
language names, a named-language recognition accuracy of 95.11
% and proper name recognition accuracy of 93.31% were
obtained.

I. INTRODUCTION

Interactive voice response (IVR) systems are widely used by
companies to automatically assist their clients. The automation
of services can greatly reduce company costs and in certain
instances can be used by company staff to improve their
productivity. Through Dual Tone Multi-Frequency (DTMF)
keypads and Automatic Speech Recognition (ASR), IVR sys-
tems can capture digit information (such as account numbers)
and more sophisticated information via a person’s speech (e.g.
person’s name and surname). Unfortunately, DTMF input has
an innately low information carrying capacity which is largely
limited to digit-centric information. To overcome DTMF short-
comings, adding a natural spoken input and ASR information
extraction capability can greatly increase the versatility of an
IVR system.

A typical IVR application that makes use of speech pro-
cessing capabilities is a call routing service, i.e. a system
that routes incoming calls automatically to appropriate services
or individuals. One such system is the AutoSecretary system
introduced by Modipa et. al. [1], which routes incoming calls
to a person based on a spoken name.

In this paper we describe the development of acoustic
models for the AutoSecretary IVR application. Specifically,
we focused on acoustic model optimisations which would:
• enable the system to route calls to an operator based on

the callers language preference, and,
• allow new names to be added to the system relatively

easily.
The next Section II describes the AutoSecretary system and

provides background on some application-specific ASR issues.
Section III details the ASR development effort as well as
corpus selection and design. Our experiments are described

Fig. 1. High level AutoSecretary call flow.

in Section IV and results and a discussion are presented in
Section V. Lastly, the conclusion and possible future work
appear in Section VI.

II. BACKGROUND

A. AutoSecretary IVR System

Figure 1 shows the high level call flow of the AutoSecretary
call routing system. At the beginning of a session the system
prompts the caller to say the name of person they are looking
for or the word “enquiries”. Following a valid name request
the system will route the caller to the registered land line
number. In addition, the system has the ability to route to a
mobile number if it could not make a connection via the land
line. If the word “enquiries” was spoken instead of a name,
the system prompts the user for a language option - any of
the eleven official South African languages - which allows
the system to route the call to an operator who speaks the
requested language.

The simple confidence scoring method implemented by
ATK [2], is used to make a decision to either accept the
recognition output if the confidence score is high or re-prompt
the user to repeat their request if the confidence score is too
low. Following two successive re-prompts, the system will
automatically route the caller to a default operator. Figure 2
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Fig. 2. AutoSecretary confidence scoring mechanism.

shows the AutoSecretary confidence scoring mechanism and
how its application to the call flow.

On all successful recognitions, the system will parrot back
the name to verify the selection. The caller may interrupt
the transfer if the system selection is incorrect by saying
“stop”. The AutoSecretary system previously described by
Modipa et. al. [1] had a similar call flow but did not include
the functionality to route a user to an operator that spoke a
particular language.

B. AutoSecretary ASR

The main issue in developing robust acoustic models for
the AutoSecretary system is accurate proper name recognition.
This type of problem has been encountered previously in
directory assistance systems [3] and voice-navigation systems
[4].

The first challenge in achieving accurate proper name recog-
nition is robust pronunciation modelling. Initially, a phone set
that can effectively represent the speech acoustic space must be
chosen. This becomes an important aspect when dealing with
multilingual environments which, in general, contain many
sound classes and require careful phone set selection. Another
major problem is that the phonemic representation of a word
and the way it is pronounced vary greatly [4]. A possible
cause of this mismatch is that people are altering the way in
which they are pronouncing the proper name [5] based on what
they think the word should sound like. This generally happens
when an unknown or foreign word has to be spoken and the
speaker has no prior knowledge. In multilingual environments
this problem increases and becomes more difficult to solve as
more languages are added. A way in which to partly overcome
this problem, is to add multiple pronunciation variants to the
pronunciation dictionary [1]. Adding pronunciation variants
is a manually intensive task but affords greater accuracy
compared to automatic methods. Automatic methods, such as
G2P, have been shown to work well for common words but
extracting rules for proper names still proves to be difficult

Corpus Name # utterances duration in hours
Lwazi English 5843 5.03

Lwazi English plus Lwazi language prompts 7770 5.57
NCHLT English 106018 76.97

AST English (5 dialects) 51745 29.80

TABLE I
THE NUMBER OF TRAINING UTTERANCES AND DURATION FOR EACH

DEVELOPMENT CORPUS.

[6]. Accurate proper name prediction is made difficult because
proper names do not have set ways of pronouncing them [4],
which makes robust rule extraction hard to accomplish. Also,
predicting foreign words adds to incorrect pronunciations [5].

The second challenge is to develop robust acoustic models.
In the standard HMM paradigm, creating word-based Hidden
Markov Models is infeasible. As reported in [7], in the United
States alone there were an estimated 1.5 million surnames
with a third of these being unique. In multilingual environ-
ments, such as South Africa, these numbers would increase
drastically. Another point of failure for word-based HMMs is
the effort required to add new names to the system. Thus, a
better approach would be to follow a large vocabulary ASR
system development cycle. Here, development corpus selection
is important as one would require large amounts of data to
train robust acoustic models. A benefit of large vocabulary
ASR systems is that they allow easier modification of the
recognition grammar - for instance adding language name
recognition - which adds flexibility to the system. Collecting
a corpus of names per application [1] would be impractical as
this would not in general produce robust acoustic models. In
addition, if one would require the system to be re-deployed, a
time consuming audio data collection process would have to
be run before the system can be reliably operated in a new
environment.

III. ASR DEVELOPMENT

In this section we describe the speech corpora used for
acoustic model development, the phone set selection and
pronunciation dictionary creation, the feature extraction pro-
cess, acoustic model development as well as the recognition
grammar and concept mapping that were used during system
evaluation.

A. Training Corpora

To enable robust acoustic model development in a multilin-
gual South African context we focused on three South African
corpora. Table I shows the number of training utterances per
corpus and indicates the duration in hours.

1) Lwazi: The Lwazi corpus contains annotated telephony
speech data covering eleven South African languages [8], [9].
Each language-specific corpus was produced by collecting
read and elicited speech data from approximately 200 speak-
ers; with each speaker contributing roughly 30 utterances [9].
A portion of the utterances were randomly selected from a
phonetically balanced corpus and the remainder are words
or short phrases. Importantly, each corpus contains utterances
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which captured the response of the speakers when queried
about their first language.

2) NCHLT: The NCHLT ASR corpus contains annotated
high-bandwidth speech data collected for eleven South African
languages [10]. The individual corpora contain a minimum of
50 hours of speech data collected from 200 speakers (gender-
balanced) with each speaker contributing in the order of 500
utterances. The volume of collected data improves triphone
coverage and should make it easier to add new names or short
phrases to the recognition grammar.

3) AST: The African Speech Technology (AST) corpus
contains annotated telephony speech data for five South
African languages [11]. The speech data was collected from
300 - 400 speakers and the prompts were chosen to support
information retrieval, transactional teleservices and hotel book-
ing applications. Given the prompt design, the corpus contains
a large proportion of proper names and a good coverage of lan-
guage prompts. Additionally, the English corpus contains data
collected from five common South African English accents
which should add to the robustness of the acoustic models. In
the current investigation the same train, development and test
sets were used as those described in Kamper et. al. [12].

B. Testing Corpus

A testing corpus was developed by, firstly, expanding the
recognition grammar to create text prompts and then collecting
speech data from a variety of speakers. The testing corpus
contained speech data from approximately 20 unique speakers
with each speaker contributing 22 names- and 46 language-
specific utterances. The data was collected from both land line
and mobile handsets which represents a close approximation
to the proper testing environment. After manual validation,
the final utterance count was 555 names-related and 1003
language-related utterances. The duration of the testing audio
at this point was 1.42 hours. To increase the testing data
size further, we included a previously collected name-surname
corpus which contained 31 unique name-surname pairs. The
final testing corpus contained 2.13 hours of audio data, 1480
names-related and 1003 language-related utterances.

C. Phone Set and Pronunciation Dictionary

The initial phone set was a union of all the phones found
in the Lwazi corpus [8] and consisted of 87 unique phones.
These were then mapped to a simplified set of 62 phones
where affricates were split (e.g. [tS] →→→ [t] [S], [d 0Z] →→→ [d]
[Z]) and clicks and subtle phone distinctions merged (e.g [h\]
became [h], etc.). The motivation for simplifying the phone
set is that multilingual speakers will probably not pronounce
the distinctions correctly, thus removing them from the start
would be better.

The corpora-specific pronunciation dictionaries were
mapped to the simplified 62 phone set. As the majority of
the training corpora used in our investigation were South
African English (SAE) the final phone set only contained 41
South African English phones. The reduction in the number
of phones, is due to English not containing phones which

occur in other languages. As a final phase, foreign words had
phonemic representation generated manually using the closest
English phones.

The recognition pronunciation dictionary or AutoSecre-
tary dictionary contained 158 unique entries which included
multilingual person and South African language names as
well as a few English honorifics (ms, mr, mrs, dr). With
pronunciation variants this count increased to 415. The 41
phones in the English set were used to manually create all the
pronunciations.

D. Feature Extraction

39 (13 static, 13 delta and 13 delta-delta) dimensional
Mel Frequency Cepstral Coefficient (MFCC) features were
generated using the Application Toolkit (ATK) [2] and the
Hidden Markov Model Toolkit (HTK) [13]. These MFCCs
were extracted every 10 ms from a 25 ms speech frame.
The frequency bandwidth was limited to 150-3600 Hz and
is applied by HTK independent of sampling rate.

Channel normalisation was performed by means of cep-
stral mean normalization (CMN). Four different options were
considered, i.e. no CMN, HTK CMN, Global CMN, and ATK
CMN.

HTK CMN is implemented by estimating a cepstral mean
vector on a per utterance basis and removing the cepstral
vectors’ offset [13]. The Global CMN method estimates a
cepstral mean vector from the entire training data set and
then uses the vector to normalize the training and testing
cepstral vectors. ATK CMN is implemented by first loading an
initial mean vector which, for our experiments, was a global
mean cepstral vector estimated on the training data [2]. This
cepstral mean is updated on every speech frame according to
the formula:

µ′µ′µ′ = α(µµµ− xxx)xxx, (1)

where µ′µ′µ′ is the updated cepstral mean, α is the time constant
set to 0.995, and xxx the input cepstral vector. For each utterance,
ATK resets the mean cepstral vector to the initial mean vector
µ0µ0µ0. To determine whether a frame is speech, ATK uses the
first 40 frames of each utterance to train a silence detector
and performs a speech / non-speech analysis on each frame.
The first 10 frames of an utterance are not used to update the
mean cepstral vector.

When experimenting with a specific CMN approach both
the training and testing data were normalized using the same
CMN technique.

E. Acoustic modelling

A standard acoustic model development strategy was used
as detailed in HTK book [13]. The acoustic models were tied-
state context-dependent (triphone) Hidden Markov Models
(HMMs), using a three state left-to-right topology. Question-
based tying was used to create the tied-state models. Eight
Gaussian mixtures per HMM state were used to model the
cepstral densities. Different sets of acoustic models were
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Fig. 3. The AutoSecretary name and language recognition networks.

created using the corpora described in Section III-A as well
as using combinations of some of the corpora.

F. Recognition Grammar and Concept Mapping

The test set vocabulary contained 40 unique name-surname
pairs and 11 unique language options. The recognition net-
works for names and languages are shown in Figure 3.

Expanding the recognition network provides 156 name and
46 language possibilities. The name network also contained
the following words: “enquiries”, “switchboard”, “reception”,
and “stop”.

During normal AutoSecretary operation the application is
only aware of the unique name and language options and maps
the expanded ASR text output. For example, the following
mappings would be performed:
• “Mr John Doe” or “John Doe” mapped to “John Doe”
• “Sesotho sa leboa” or “Northern Sotho” mapped to

“Sepedi”
For system performance evaluation we defined the vari-

ous unique names and language options as “concepts” and
performed “concept mapping” which reduced the expanded
ASR recognition output to their unique name and language
equivalents. When reporting the system results we report on
“concept” accuracies unless otherwise stated.

IV. EXPERIMENTS

A. Training data combinations and cepstral normalization

In addition to the English sub-corpora of the Lwazi, AST
and NCHLT corpora, different combinations of the various
corpora were used as training data. We defined the data
combinations as follows:

1) Lwazi English + Langs: Training data pooled from the
English sub-corpus of Lwazi and all language prompts
from the remaining 10 language-specific corpora.

2) Lwazi English + Langs + AST: Training data pooled
from (1) and the five AST English dialects.

3) Lwazi English + Langs + NCHLT: NCHLT English sub-
corpus added to (1).

4) Lwazi English + Langs then AST: (1) was used to train
single mixture tied-state HMMs. Then, the five AST
English dialects data was added to the training data and
used during mixture incrementing.

5) Lwazi English + Langs then NCHLT: Similar to (4)
except that the NCHLT English sub-corpus was used
instead of the AST data.

The four different options for channel normalization de-
scribed in Section III-D (“No CMN”, “Global CMN”, “HTK
CMN” and “ATK CMN”) were tested in combination with each
of these training sets.

B. Semi-tied versus Constrained MLLR

HMM-based large vocabulary ASR systems generally use
diagonal covariance matrices to reduce the number of model
parameters. Full covariances matrices, however, are able to
model the non-Gaussian nature of data which could potentially
provide an increase in accuracy. Semi-tied transformations
[14] transform diagonal matrices into full covariance matri-
ces but instead of estimating state-specific transformations,
estimate class-specific transforms. These classes are usually
defined by a regression class tree which groups similar HMM
states together [13]. In this way the parameter count may be
kept relatively low which prevents excessive recognition times.
The semi-tied transform is defined as:

ΣΣΣ(m) = HHH(r)ΣΣΣ
(m)
diagHHH

(r)T , (2)

where ΣΣΣ(m) is the component-specific diagonal covariance
matrix and HHH(r) is the class-specific semi-tied transform.
Unfortunately, ATK does not implement semi-tied transforms
but does support constrained maximum likelihood linear re-
gression (CMLLR) transforms [15], [13]. Constrained MLLR
is typically used for speaker and channel adaptation and per-
forms the adaptation by transforming the mean and covariance
components in the HMM set. If one compares the semi-tied
and the CMLLR transforms, the forms are quite similar. The
CMLLR transform is defined as:

µ̂µµ(m) = HHH(r)µµµ(m) + b(r)b(r)b(r), Σ̂ΣΣ
(m)

= HHH(r)ΣΣΣ
(m)
diagHHH

(r)T , (3)

where µ̂µµ(m) and Σ̂ΣΣ
(m)

are the transformed component-specific
mean and covariance matrices, µµµ(m) and ΣΣΣ(m) are the original
component-specific mean and covariance matrices and HHH(r)

and bbb(r) are the class-specific CMLLR transforms.
Both methods iteratively solve for the transform parameters

by optimising a modified Expectation-Maximization auxiliary
function. The auxiliary functions, found in [14] and [13],
highlight the differences in the equations which change the
iterative optimisation equations. As a final experiment we
wanted to determine whether CMLLR transforms could per-
form comparably to semi-tied transforms.
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System B
# Correct # Incorrect

System A # Correct w x
# Incorrect y z

TABLE II
A 2X2 CONTINGENCY TABLE USED IN A MCNEMAR’S TEST.

C. McNemar’s Test

McNemar’s test can be used to establish whether the differ-
ences in error-rates, produced by two systems, are statistically
significant [16]. This test requires that the errors produced
by the system are independent events and in terms of speech
recongition, can be used to test isolated-word recognition
results [16]. The first step in performing a McNemar’s test
is to create a 2x2 contingency table as shown in Table II.

From this, we define the null and alternative hypotheses as,

H0 : px = py

H1 : px 6= py

The test statistic is a one degree of freedom chi-squared
distribution (χ2) with Yates’s correction for continuity [17]
and is given by,

χ2 =
(| x− y | −0.5)2

x+ y
. (4)

The null hypothesis can be rejected or accepted by calculat-
ing the two-sided P-value of the χ2 distribution and comparing
it to standard significance levels of 0.05, 0.01 or 0.001.

V. RESULTS AND DISCUSSION

In this section we present results on various training data
combinations and cepstral normalization techniques which
were used to perform acoustic model optimisations for the
AutoSecretary system. We also show results around our hy-
pothesis that CMLLR can be used as an approximate replace-
ment for semi-tied transforms. Throughout this section the
tables show concept accuracies (refer to Section III-F for a
description) unless otherwise stated. Training data combina-
tions and their labels are detailed in Section IV-A and cepstral
normalization techniques are described in Section III-D.

A. Training data combinations and cepstral normalization

Table III shows language and name concept accuracies for
different training data combinations, various training schemes
and cepstral normalization techniques. Focusing on the cep-
stral normalization techniques (compare results within rows)
we can see that some normalization methods produced sur-
prising results. The “HTK CMN” produced the worst results
which indicates that for this type of application utterance-
based normalization is not ideal. This may be due to the
short testing utterances which are often less than a second
in duration and long-term biases are not estimated properly.

The “No CMN” and “Global CMN” results are quite similar
which indicates that “Global CMN” did not perform effective
normalization. In the majority of cases (except for language

experiments using “Lwazi Eng + Langs” and “Lwazi Eng +
Langs then NCHLT” data combinations) the ATK normaliza-
tion proved to be the best cepstral normalization approach.
The “ATK CMN” normalization method begins with the same
initial mean cepstral vector as the “Global CMN” normal-
ization but adapts the mean cepstral vector as it progresses
through the utterance and only updates on speech frames. This
selective adaptation seems to provide a good normalization
mechanism. Previously it was observed by Modipa et. al. that
there was a large discrepancy between the off-line and online
ASR accuracies. A possible cause could be the differences in
HTK and ATK cepstral normalization procedures.

Turning to the language recognition results and considering
only our best normalization method (compare results within
the ATK CMN column), we see that adding the Lwazi language
prompts gave quite a large boost in performance, which
was to be expected. Surprisingly, the AST and NCHLT only
experiments produce rather poor results. In the case of NCHLT,
this may be put down to a channel mismatch as the NCHLT
corpus contains high-bandwidth audio data. More investigation
is needed to establish why the AST data performed so badly.
Combining data (“Lwazi Eng + Langs + AST”, “Lwazi Eng +
Langs + NCHLT”) resulted in a slight increase in performance
when adding the AST data but did not achieve any increase
in accuracy when adding the NCHLT data. Training a system
on the “Lwazi English + Langs” then adding AST for mixture
incrementing produced the best results. It is interesting that
state-tying on the smaller “Lwazi English + Langs” corpus
resulted in an increase in performance. Further investigation
is needed to determine why state-tying on a smaller corpus
produced such an increase and to establish whether such a
gain would be seen if the testing vocabulary was much larger.
The last experiment, where NCHLT was used for mixture
incrementing manage to achieve a slight increase in accuracy.

For name recognition (compare results within the ATK
CMN column), the AST data and combinations with the AST
data produced the top results with the “Lwazi Eng + Langs
then AST” producing the best names recognition performance.
The “Lwazi Eng + Langs then NCHLT” produced the best
result out of the non-AST experiments but other NCHLT
combinations performed marginally better or worse than the
“Lwazi Eng + Langs” data combination.

B. Semi-tied versus CMLLR

In Section IV-B we speculated if it were possible to use
CMLLR as a semi-tied replacement since ATK does not
support semi-tied transformations. Table IV shows name and
language concept recognition accuracies for various training
data combinations and using either no, semi-tied or CMLLR
transformation. ATK cepstral normalization was used for all
the experiments.

If one compares the semi-tied and CMLLR columns of
Table IV, for both language and name recognition results,
we can see that the semi-tied approach outperforms CMLLR
technique in the vast majority of the experiments (12 out of
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No CMN HTK CMN Global CMN ATK CMN
Lwazi Eng 85.33 / 78.72 60.88 / 70.14 85.33 / 78.92 87.13 / 83.18

Lwazi Eng + Langs 93.11 / 80.27 68.66 / 75.88 93.01 / 80.27 92.81 / 84.19
AST 58.78 / 60.14 64.57 / 72.70 60.58 / 60.07 75.25 / 77.43

NCHLT 79.84 / 78.85 67.07 / 74.73 79.54 / 78.65 80.44 / 81.28
Lwazi Eng + Langs + AST 90.12 / 77.84 69.36 / 77.64 89.52 / 77.77 93.71 / 87.91

Lwazi Eng + Langs + NCHLT 89.92 / 82.36 73.35 / 78.85 90.82 / 82.16 92.81 / 84.46
Lwazi Eng + Langs then AST 86.53 / 90.27 75.85 / 84.80 85.83 / 89.93 95.11 / 93.31

Lwazi Eng + Langs then NCHLT 91.82 / 87.70 77.84 / 83.92 92.22 / 87.70 91.92 / 89.46

TABLE III
Language AND Name CONCEPT ACCURACIES (%) FOR VARIOUS TRAINING DATA COMBINATIONS AND CEPSTRAL NORMALISATION TECHNIQUES. THE

RESULTS ARE PRESENT IN PAIRS - LANGUAGE ACCURACY % / NAME ACCURACY %.

None Semi-tied CMLLR
Lwazi Eng 87.13 / 83.18 86.43 / 83.65 85.83 / 81.82

Lwazi Eng + Langs 92.81 / 84.19 93.21 / 84.26 92.81 / 83.72
AST 75.25 / 77.43 78.64 / 81.42 78.54 / 78.78

NCHLT 80.44 / 81.28 78.34 / 81.28 80.64 / 79.19
Lwazi Eng + Langs + AST 93.71 / 87.91 93.01 / 89.32 94.01 / 87.23

Lwazi Eng + Langs + NCHLT 92.81 / 84.46 93.71 / 84.32 93.51 / 83.31
Lwazi Eng + Langs then AST 95.11 / 93.31 93.71 / 94.32 94.91 / 93.65

Lwazi Eng + Langs then NCHLT 91.92 / 89.46 91.22 / 89.46 91.32 / 88.85

TABLE IV
Language AND Name CONCEPT ACCURACIES (%) FOR VARIOUS TRAINING DATA COMBINATIONS AND SEMI-TIED AND CMLLR TRANSFORMATION

TECHNIQUES. THE RESULTS ARE PRESENT IN PAIRS - LANGUAGE ACCURACY % / NAME ACCURACY %.

16), however, the differences in accuracies are relatively small.
To investigate whether there was any significant difference
between the semi-tied and CMLLR results, McNemar’s test
was used to analyse the recognition outputs. Refering to the
fourth column of Table V, we can see that only the “Lwazi
Eng”, “AST” and “Lwazi Eng + Langs + AST” experiments
produced a significant difference in the results, if one chooses
a significance level of 0.05. At a stricter significance level,
0.001, all the null hypothesis would be accepted, which
implies that the semi-tied and CMLLR are quite similar.

Comparing the McNemar’s test P-values, calculated be-
tween semi-tied and no transform (column two Table V) and
CMLLR and no-transform (column three Table V), we can see
that only a few experiments produced a significant difference
between the results. These are semi-tied and CMLLR “AST”
experiments, CMLLR “Lwazi Eng” experiment and CMLLR
“NCHLT” experiment. The remaining results (12 of 16) allow
us to accept the null hypothesis and conclude, for these
experiments, that using semi-tied or CMLLR transforms does
not produce a significant increase or decrease in accuracy, as
compared to a ASR system that does not implement these
transforms.

To investigate further we performed a few experiments with
the Timit and NTimit corpora. The results are presented in
Table VI and indicate word accuracies in percent. The standard
ASR system was developed (see Section III-E) and a flat
recognition grammar was used which only contained words
from the testing vocabulary. ATK cepstral normalization was
utilized.

The results in Table VI show that semi-tied transforms pro-
vide an increase in accuracy for within corpus experiments but

Training Corpus Testing Corpus
Timit NTimit

Timit with semi-tied 60 10.11
Timit 56.60 19.44

NTimit with semi-tied 16.92 46.50
NTimit 23.38 43.46

TABLE VI
WORD ACCURACIES (%) WHEN BASELINE AND SEMI-TIED TRANSFORMS

SYSTEM ON THE Timit-NTimit CORPORA.

for cross-corpus experiments applying semi-tied transforms
reduced the ASR accuracy. The semi-tied transforms seem to
amplify the data mismatch and thus decrease performance.
This might explain why semi-tied transforms did not produce
an average gain in performance for the AutoSecretary ASR
models since there are slight mismatches between the training
and testing environments which were amplified by the trans-
form.

VI. CONCLUSION AND FUTURE WORK

The paper presented work aimed at optimising acoustic
models for the AutoSecretary call routing system. The op-
timised acoustic models were developed by:
• creating a modified South African English phone set and

an appropriate pronunciation dictionary,
• investigating various cepstral normalization techniques,
• experimenting with three South African corpora and

training data combinations, and,
• applying model-space transformations.
The pronunciation dictionary contained a simplified South

African English phone set which was used to robustly repre-
sent the acoustic sounds found in the South African multilin-
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None & Semi-tied None & CMLLR Semit-tied & CMLLR
Lwazi Eng 1.00000 0.00626 0.01383

Lwazi Eng + Langs 0.71830 0.52480 0.28980
AST 1.2e-08 0.00017 0.00347

NCHLT 0.19390 0.02830 0.62410
Lwazi Eng + Langs + AST 0.21100 0.50500 0.04658

Lwazi Eng + Langs + NCHLT 0.60010 0.38650 0.16210
Lwazi Eng + Langs then AST 1.00000 0.82200 0.90350

Lwazi Eng + Langs then NCHLT 0.59440 0.15520 0.51570

TABLE V
P-values CALCULATED USING MCNEMAR’S TEST, FOR VARIOUS TRANSFORMATION COMBINATIONS (NONE, SEMI-TIED AND CMLLR).

gual acoustic space. Each name and language entry contained
multiple pronunciation variants to cope with the variability
found in proper name pronunciation. For future work an inves-
tigation into automatically generating proper name pronuncia-
tions and variants should be performed to reduce the amount of
manual intervention required during dictionary development.
An automatic pronunciation-prediction method will also help
to rapidly customize the AutoSecretary application.

The choice of cepstral normalization technique is important
since the approach used to normalize the training and testing
data does affect the results produced by the ASR system, as
was shown by the results captured in Section V-A. The ATK
normalization method proved to be the best approach while the
generally used utterance-based normalized performed poorly.

Our data combination experiments showed that the best
training corpus was a combination of “Lwazi English, Lwazi
language prompts and AST”. Specifically, by developing a
tied-state ASR system on the Lwazi English and Lwazi
language prompts, then adding the AST data for mixture
incrementing we managed to achieve a language recogni-
tion accuracy of 95.11% and a name recognition accuracy
of 93.31% on an independent test corpus. These optimised
acoustic models should:
• with high accuracy be able to detect a spoken South

African language name which the system can use to route
a caller based on language preference, and,

• accurately recognize new names provided that an ad-
equate number of accurate pronunciations and relevant
variants are included in the pronunciation dictionary.

Surprisingly, the larger NCHLT corpus did not provide
substantial gains in accuracy and in some cases no gains were
achieved. The most likely explanation is that the data mismatch
hindered its effectiveness due to the corpus containing high-
bandwidth recordings instead of telephony recordings which
make up the AST corpus.

In Section IV-B we postulated that CMLLR could be used
as an approximate replacement for semi-tied transforms. Our
results in Section V-B showed that overall the accuracies
produced by both methods are quite similar and only three
experiments showed statistical significant results. Furthermore,
when comparing the results between systems that did not
implement semi-tied or CMLLR trasforms, to those that did,
the vast majority of experiments failed to produce statistcally
significant improvements.

Our results indicated that although semi-tied transforms can
increase the ASR system performance when the training and
testing data are relatively matched, care should be taken when
applying the transform when there is a data mismatch as this
could degrade the system performance.
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Abstract—When modelling code-switched speech (utterances
that contain a mixture of languages), the embedded language
often contains phones not found in the matrix language. These are
typically dealt with by either extending the phone set or mapping
each phone to a matrix language counterpart. We use acoustic
log likelihoods to assist us in identifying the optimal mapping
strategy at a context-dependent level (that is, at triphone, rather
than monophone level) and obtain new insights in the way
English/Sepedi code-switched vowels are produced.

I. INTRODUCTION AND BACKGROUND

Code switching – using words and phrases from more than
one language within a single utterance – is a common phe-
nomenon among multilingual speakers. There are a number of
reasons why multilingual speakers engage in code switching.
In the case of Sepedi, speakers often use a foreign language
(English) for numbers, dates and time, a phenomenon that has
been observed in other South African languages as well [1].

For automatic speech recognition (ASR) systems, code-
switched (CS) speech provides an interesting challenge. This
can be dealt with by building fully multilingual systems
(combining dictionaries, language and/or acoustic models from
multiple languages) or by running more than one monolingual
system in parallel, switching from the one to the other [2], [3].
We are interested in the first approach, and specifically where
acoustic models are combined at the phone or sub-phone level.

Various techniques have been used when deciding how and
when to combine the acoustic model of a phone from the
embedded language (English in this case) with a phone from
the matrix language (Sepedi in this case). One such technique
consists of mapping the embedded phones to the matrix phones
prior to system training. This can be achieved in different
ways, specifically:

• Using IPA features directly: mapping phones based on ex-
isting linguistic knowledge. (IPA features classify sounds
based on the phonetic characterisation of those speech
sounds [2]).

• Using a confusion matrix from an existing ASR system:
calculating the rate of confusion between two phones
using a phoneme recogniser in the matrix language and
acoustic data from the embedded language [3].

• Using log likelihood differences directly as a distance
measure that tests how well two different models fit the
same data [4], [2].

• Using acoustic distance measures such as Kullback-
Liebler measure, Battacharyya distance metric, Maha-

lanobis measure or a simple Euclidean measure [5].
• Using a probabilistic phone mapping [6], that is, a model

for mapping phones between source sequence X, and
target sequence Y, where the model parameters are given
by

PM(x | y) : x ∈ X, y ∈ Y (1)

and this model is estimated from the results of a phoneme
recogniser and the modelled pronunciations. Note that
this model (like the current work) is context-sensitive.

In an earlier analysis of English/Sepedi CS speech [7], it
was found that applying grapheme-to-phoneme (g2p) rules of
the matrix language (Sepedi) to the code-switched words di-
rectly, outperformed more sophisticated mapping approaches,
and specifically one whereby the g2p rules of the embedded
language (English) is used to predict possible pronunciations
and these then mapped on a per-phone basis to the closest
matching Sepedi phone. This was an unexpected result: it
could either mean that the mapping used (obtained from a
confusion matrix, as described in [7] ) was not optimal, or that
Sepedi speakers do interpret some English words according
to Sepedi pronunciation rules, for example, pronouncing the
word ‘chocolate’ as / S O k O l a t / rather than as / t S Q k
l @ t / (using X-SAMPA notation).

In this work we investigate the process of obtaining a
phone mapping from the embedded language to the matrix
language. The main goal is to determine whether a better
mapping can be obtained, given the specific corpus we are
modelling, and to explore tools to analyse this task. We focus
on English vowels (English consonant mappings are more
predictable), and investigate the use of model likelihoods to
guide the mapping choice at a context-dependent level. When
unlimited training data is available, using all matrix language
and embedded language models combined is expected to
perform best; with constrained corpora, extending the phone
set indiscriminately is expected to hurt performance due to
data scarcity. The optimal mapping is therefore dependent
on the specific speech corpus being modelled: our goal is to
investigate tools that can guide this mapping process.

In the current work we first verify and extend the ear-
lier English/Sepedi code-switched ASR results (as discussed
above) to determine whether these were corpus-specific or
whether trends are retained across corpora; we then use log
likelihood ratios to analyse the possible context-dependent

173



phone mappings from the embedded language phones to the
matrix language phones.

The paper is organised as follows: In Section II we describe
the approach we use to analyse context-dependent mappings.
In Section III we describe the speech corpora used in a fair
amount of detail, as this provides the context for the various
experiments undertaken. Experiments and results are discussed
in Section IV. Section V summarises the findings from this
analysis and provides some suggestions for future work.

II. APPROACH

The approach we use to determine an optimal phone map-
ping is fairly straightforward: we score the English vowels
against context-dependent acoustic models of vowels from
both the embedded and matrix language and compare the
likelihood ratios. These ratios give us an indication of ‘model
closeness’ and suggest mapping candidate(s) at a triphone
level. We analyse these mapping candidates to determine
whether a triphone should be mapped, and if so, to which
matrix language triphone.

The specific process we use to determine mappings is as
follows:

1) Context-dependent acoustic models are trained with pure
Sepedi data (not containing any code-switched speech).

2) Context-dependent acoustic models are trained from the
available Sepedi code-switched data by extending the
Sepedi phone set with all English phones.

3) For each English phone, possible mapping candidates
are selected using a confusion matrix (as described
in more detail later in Section IV-A). Note that these
mapping candidates are selected at the monophone level.

4) Analysis is performed at triphone level:
a) The English data is force aligned using the English

triphone model.
b) The same data is similarly aligned using each

of the Sepedi candidate triphone models. These
models are constructed from the actual left and
right contexts observed, with only the centre phone
replaced.

c) The likelihood ratio between (a) and (b) is eval-
uated per candidate triphone, per code-switched
sample, in practice by calculating the difference in
log likelihood, for each English triphone e, match-
ing Sepedi candidate se and data sample de, re-
ferred to from here onwards as ll diff(e, se, de).

d) The average of the values in (c) is obtained per
candidate triphone se by averaging over all data
samples de, giving a single value of ll mean(e, se)
per English and Sepedi candidate triphone pair.

5) The relative scores are used to determine mappings:
a) If there is a clear Sepedi triphone winner, only that

candidate triphone is selected for mapping, that is,
if the difference in ll mean(e, se) between two
candidate triphones exceeds a threshold α.

b) If there is not a clear winner, all triphone can-
didates that have a value of ll mean(e, se) less
than a second threshold value β are selected as
possible mappings (introducing variants for that
specific context).

c) For triphones that have no suitable counterpart
(no candidate mappings that obtain a value of
ll mean(e, se) smaller than β), phone set exten-
sion is considered.

III. DATA

In this section we describe the data used during experiments:
the audio corpora, phone sets and dictionaries.

A. Audio corpora

We use two different audio corpora for the experiments: a
general Sepedi corpus (NCHLT [8]) and a custom-designed
code-switched corpus (SPCS [9]).

The NCHLT corpus was collected using a locally developed
smart-phone based speech data collection tool, Woefzela [8].
The corpus consists of prompted speech, mostly in Sepedi but
also including some English speech (generated from English
text) as produced by Sepedi first language speakers. The
corpus consists of 12 560 unique word tokens produced by 113
speakers. We use both the full corpus (referred to as nchlt all
from here onwards) consisting of all Sepedi and English data
and create a subset (nchtl sep) consisting only of pure Sepedi
utterances. This corpus contained no code-switched sentences.
Table I shows the distribution of male and female speakers, and
the duration of the train and test sets in the different corpora.

TABLE I
Distribution of the number of male and female speakers.

Speakers Duration (min)
nchlt sep Train 92 (38 female, 54 male) 1 417.62

Test 20 (10 female, 10 male) 247.28
nchlt all Train 82 (33 female, 49 male) 2 782.48

Test 30 (15 female, 15 male) 1 055.68

The SPCS corpus was collected using prompts that were
derived from code-switched transcriptions generated from ac-
tual radio broadcasts [9]. It was also collected using Woefzela.
Twenty speakers (12 females, 8 males) each read approx-
imately 450 utterances, resulting in 10 hours of prompted
speech.

Table II lists the number of unique English and Sepedi
words found in the corpus. As discussed in [9], we also list
semi-modified words (giving a total of 787 unique words):
English words that are transformed when embedded in Sepedi
speech, for example the word graduate that can be pronounced
as graduata when used within general Sepedi speech.

TABLE II
Number of unique words and total number of utterances in the SPCS corpus.

# Semi-modified # Eng words # Sepedi words # Utterances
58 345 384 12 386
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B. Phone sets and dictionaries

The pronunciation rules were obtained from two sources:
1) Standard Sepedi g2p rules (Default&Refine [10] trained

on the 5 000-word Lwazi dictionary [11]). In addition,
affricates were split according to [12] resulting in 32
Sepedi phones being used in practice.

2) English g2p rules (Default&Refine trained on a South
African English (SAE) dictionary created using manu-
ally created British-to-SAE phone-to-phone (p2p) map-
pings [13])

All pronunciations of words occurring in the SPCS corpus
were manually verified and corrected, where necessary. The
final dictionary contained 29 phones that occur in English but
are not found in the Sepedi phone set, as shown in Table III.

TABLE III
Number of phones of different categories found in the various phone sets

used.

Sepedi Sepedi split English English phones not
standard affricates occurring in Sepedi

Affricates 9 - 2 1
Fricatives 11 11 10 5
Stops 8 8 6 6
Nasals 5 5 3 -
Vowels 7 7 12 8
Trill 1 1 - -
Approximants 4 4 4 1
Diphthongs - - 8 8
Total 45 36 45 29

IV. EXPERIMENTS AND RESULTS

First, we repeat the experiments as performed in [7] on the
NCHLT corpus, for two reasons: to determine whether trends
are consistent across corpora, and to obtain a comparable
baseline for the phone mapping analysis. Once the baseline has
been established we analyse the context-dependent likelihood
ratios for the English vowels to obtain a possible mapping.

A. Baseline ASR systems

As a baseline implementation we create four systems on the
same training data (nchlt all) using four standard approaches,
the first three of which were used in [7]:

1) Sepedi-only phone set: all words (English and Sepedi)
are predicted using Sepedi g2p.

2) Extended phone set: English words are predicted using
English g2p, Sepedi words are predicted using Sepedi
g2p and all phones retained.

3) Mapped phone set: All English phones (from (2)) are
mapped to the single best candidate based on a confusion
matrix; no English phones are retained. The confusion
matrix was obtained as follows:

• Freely decoded phone-level labels are obtained from
the Sepedi system (using nchlt all, but only Sepedi
phones).

• The SCPS data is aligned using a dictionary con-
taining the extended phone set (English and Sepedi
phones).

• Iterative dynamic programming (using tools from
[14]) is used to obtain an accurate confusion matrix
at phone-level.

• For every English phone, the Sepedi phone with the
highest confusability is selected.

4) Code switched variants: Sepedi pronunciations from (1)
and English mapped pronunciations from (3) are added
as variants both during training and testing.

All four systems are created in a similar way: a fairly
standard Hidden Markov Model (HMM) based ASR system
is implemented using the HTK toolkit [15]. Acoustic models
consist of cross-word tied-state triphones modelled using a
3-state continuous density HMM. Each HMM state distri-
bution is modelled by an 8-mixture multivariate Gaussian
with a diagonal covariance matrix. The 39-dimensional feature
vector consists of 13 static Mel-Frequency Cepstral Coeffi-
cients (MFCCs) with 13 delta and 13 acceleration coefficients
appended. The Cepstral Mean and Variance Normalisation
(CMVN) preprocessing is used and Semi-tied transforms ap-
plied.

These four systems are then tested on three different test
sets, obtained from the Sepedi-only NCHLT data (nchlt sep),
all NCHLT data (nchlt all) and all SPCS data (spcs), respec-
tively. Note that the SPCS data is always used as a test set:
it is never included in data used either for training or system
tuning.

TABLE IV
Phone error rates of different baseline systems on each of three test sets.

Test set Sepedi-only Extended Mapped CS variants
phone set phone set

nchlt sep 30.72 45.09 33.65 31.92
nchlt all 33.37 42.54 34.32 35.88
spcs 39.63 56.46 44.16 42.27

The phone error rates (PER) of NCHLT and SPCS test data
using different approaches to modelling code switched words
are obtained as shown in Table IV. Utterances that cannot be
decoded by any of of the systems are removed from the corpus
to ensure a fair comparison across systems.

In this careful analysis across different test sets, we see
that the previously observed trends remain consistent: Sepedi-
only g2p provides the most effective approach to dealing with
code-switched speech. Simply extending the phone set results
in a large increase in error rate. When the English phones
are mapped to their Sepedi counterparts, error rate decreases
(compared to the extended phone set); error rate again de-
creases when two variants (the English remapped version and
the Sepedi g2p version) are added per code-switched word.
Even though error rates decrease during this process, the best
results are still obtained when using a straightforward Sepedi
g2p prediction.
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Fig. 2. Mean log likelihood differences (ll mean) for one phone /@/ in
different context and mapping candidates /a/, /E/, /i/, /O/ and /u/.

B. Selecting candidate mappings

We obtain mapping candidates from the same confusion
matrix described in section IV-A (previously used to identify
a single best match). This time, we flag all phones that are
confused with the target phone more than 20% of the target
phone occurrences.

Table V lists the frequency of occurrence of the English
vowels in the NCHLT training set, and the SPCS corpus,
respectively. For each vowel, the mapping candidates are iden-
tified and per candidate, the number of times a target phone to
mapping candidate pair was observed in the confusion matrix
is provided in brackets. We also show the number of unique
phone contexts observed in the SPCS corpus.

TABLE V
Phone mapping candidates obtained from confusion matrix. For each
English vowel, the number of times it was observed in each corpus is
provided. For each phone-candidate pair, the number of times that the

confusion was observed in the testing data is provided in brackets.

phone train counts test counts candidates unique phone
(nchlt all) (spcs) contexts

@ 59 652 10 445 a (4448), E (2534)
i (1165), O (1156) 121

u(78)
i: 21 789 711 i (389), E (205) 15
A: 2 731 749 a (635), E (51) 11
{ 2 265 2 479 a (1775), E (536) 39
u: 1 220 1065 u (434), O (216 ) 23
Q 1 214 1811 O (1208), a (429) 32
O: 1 174 1 333 O (1009), a (283) 19
E: 972 991 E (663), a (196) 18

C. Context-dependent analysis

Once the mapping candidates have been identified, the
triphone analysis as described in Section II (4) can be per-
formed. The English models are obtained from the nchlt all
corpus and the Sepedi models from the nchlt sep corpus.

The ll mean(e, se) values are calculated for all the vowels e
and mapping candidates se as listed in Table V. In this work,
we only consider contexts where the left and right contextual
phones occur in both the English and Sepedi phone sets. (This
means, for example, that we do not include a triphone such
as /T-Q+@/ in the current analysis.)

To illustrate the concept, we first plot the results for a single
context /S-@+n/ when found in different words. Results are
averaged over all speakers. As can be seen in Fig. 1, the
best matching context (/S-E+n/) is always the closest match,
irrespective of the word in which it is used. The runner up
is /S-i+n/: this context always provides a poorer match than
/S-E+n/, with results most comparable in the word ‘national’,
which interestingly, does have a different morphological con-
struct than the others. The results displayed in Fig. 1 is
better contextualised by considering the mean log likelihood
difference between standard Sepedi /S-E+n/ contexts and the
Sepedi /S-E+n/ model, which is 0.004 (indicated in Fig. 1) by
a horizontal line.

In Fig. 2 we provide the same results, but now averaged
over all words that contain a specific context. We plot the
results for one phone /@/ when found in different contexts.
Again, results are averaged over all speakers. From Fig. 2
it is clear that /E/ provides the best match in general, but
that there are some contexts where other phones are better
mapping candidates. The phones /a/, /O/ and /i/ also provide
best matches in a limited number of contexts, whereas the
phone /u/ only provides a best match in two instances.

This process was repeated for all the vowels. Two more
examples are shown in Figures 3 and 4, illustrating the mean
log likelihood differences for vowels /Q/ and /{/, respectively.

When this process is repeated for additional contexts, we
are able to identify additional context-dependent Sepedi can-
didates that provide the best match to each of the context-
dependent English vowels.

Fig. 3. Mean log likelihood differences (ll mean) for phone /Q/ in different
context and mapping candidates /a/ and /O/.
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Fig. 1. Mean log likelihood differences (ll mean) for one context /S-@+n/. Each mapping candidate is displayed using a different colour. /EE/ is displayed
as calibration: the ll mean of standard Sepedi /E/ data measured against the standard Sepedi /E/ model.

Fig. 4. Mean log likelihood differences (ll mean) for phone /{/ in different
context and mapping candidates /a/ and /E/.

D. Obtaining a mapping from likelihood results
The above likelihood results are used to determine possible

actions to take with regard to the English vowels. As men-
tioned in Section II, the possible options per phone context
are to:

1) Extend the matrix language phone set by adding the
embedded language phone (if no candidate with an

ll mean value of less than β);
2) Map the embedded language phone to the single closest

matrix language phone; or
3) Map the embedded phone to more than one candidate

matrix phone (if candidates closer than α).
Both α and β can be tuned on a development set. The

context-dependent mapping is obtained by finding the most
appropriate candidate triphones using these thresholds. For
every winning candidate triphone (see 2), we determine which
other candidate triphone is within the defined threshold.

In order to illustrate the concept, we use the analysis in
IV-C to select thresholds such that α is 0.02 and β is 0.1
(implying that the phone set is not extended).This results in
the mappings determined for /@/, as shown in Table VI.

V. CONCLUSION

In this investigation, we have shown that acoustic log
likelihoods provide a useful tool when analysing the optimal
mapping of embedded language phones to matrix language
phones, and that context is important when applying such
mappings. We also introduced a new corpus of Sepedi/English
codes-switched speech, and confirmed that (for this corpus,
as found earlier in [7]), Sepedi g2p predictions of the pro-
nunciations of English words provide a viable alternative to
more sophisticated modelling approaches, and that, in fact, it is
difficult to obtain a better alternative with context-insensitive
mappings.
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TABLE VI
The context-dependent mapping for phone /@/.

Phone Mapping
n-@+S a
s-@+m a,i,O,u
m-@+f a
S-@+l a
m-@+sil a,O
n-@+l a
d 0Z-@+l a,O,u
d 0Z-@+h b a,O
s-@+d 0Z a
f-@+f E
S-@+n E
s-@+l a,E
n-@+m E,O
s-@+n a,E,O
h b-@+l E
n-@+s E,i
d 0Z-@+n E
m-@+n E
s-@+s E,i
l-@+s O
s-@+w i,O
i-@+w O
l-@+n a,O
i-@+f u
l-@+d 0Z E,u

The next step in our research will be to determine the impact
of the identified mappings on ASR system performance. This
will also require a thorough investigation of the thresholds
α and β, balancing the need for accurate mappings with
the additional confusability introduced by extra pronunciation
variants.

Future work will include extending the phone mapping
analysis to contexts where the left and right phones themselves
are only in one of the two phone sets. This will also allow
us to extend the analysis to the full phone set by iteratively
mapping phones, in the process increasing the matched phone
sets. In addition, we would like to analyse whether some of
the observed mappings are speaker-specific, or robust across
speakers (the current assumption); and whether the graphemic
context of the triphone also plays a role in producing an
optimal mapping.

While the above would provide a practical (and more
nuanced) tool when producing phone mappings for code-
switched speech, the current analysis already provides some
interesting insights with regard to the acoustic properties of
English/Sepedi code-switched speech.
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Abstract—Connected operators act directly on connected com-
ponents in an image, and though they present a strong framework
for extraction of meaningful structures in an image, always
suffer from the issue of leakage. The concept of leakage within
any connectivity framework refers to situations in which two
connected components are connected to each other via a thin,
possibly long, pixel-sized connected component and are subse-
quently considered a single connected component. The LULU
operators Ln and Un used to derive the Discrete Pulse Transform
are also connected operators and suffer from leakage. We present
the Pulse Reformation algorithm to combat leakage in the pulses
extracted by the DPT, making use of erosion and subsequent
restricted dilations. This enables extraction of meaningful objects
consisting of partial pulses of the DPT related over various scales.
The examples presented illustrate a useful technique.

I. INTRODUCTION

The concept of an axiomatic connectivity was introduced
by Serra [1] and Matheron [2], for use in Mathematical
Morphology. The need arose due to elements of the discrete
grid on Z2 not satisfying a total order such as that achieved by
a sequence on Z. On Z one can see that we have an obvious
ordering of the elements, namely xi+1 follows xi and xi−1

precedes xi. It is then natural to consider the elements xi+1

and xi−1 as the neighbours of xi. However, consider the case
of images defined on a discrete grid in Z2. Although it is
natural to consider the 8 surrounding pixels for a pixel x as the
neighbours, there is no immediate ordering of the neighbours
as is the case in one dimension. This is because Z2 is only
partially ordered. We can apply a raster scan to the grid, that is,
starting with the first row move left to right from pixel to pixel
and then repeat at next row and subsequent rows. This would
however mean we have reduced the grid in Z2 to a sequence
on Z and we won’t have achieved a logical extension from one
to two and higher dimensions. Serra and Matheron recognised
this need for the concept of an axiomatic connectivity defined
in Definition 1.

Definition 1: C is a connectivity class or a connection on
P(E) if the following axioms hold:

(i) ∅ ∈ C
(ii) {x} ∈ C for each x ∈ E

(iii) For each family {Ci} in C such that
∩
Ci ̸= ∅, we have∪

Ci ∈ C.

A set C ∈ C is called connected.
The well-known 4- and 8-connectivity are examples of

a connectivity forming a connectivity class. The concept

presented in Definition 1 has been used extensively in math-
ematical morphology with regard to image processing appli-
cations. However, the problem of leakage has been discussed
extensively in the same setting.

The concept of leakage within any connectivity framework
refers to situations in which two connected components are
connected to each other via a thin, possibly long, pixel-
sized connected component and subsequently considered a
single connected component. See Figure 1 for an illustration
of this. Most commonly, this occurs due to noise or the
intensity difference between objects and backgrounds. More
realistically, such a connected component should be separated
into the two larger connected components as these most likely
represent two separate objects of the scene and have only been
joined together due to noise, low resolution and such quanti-
zation effects. It results in, for example, oversegmentation or
fragmentation [3], [4].

Fig. 1: An illustration of leakage in a connected component.
Objects A and B are likely separate objects in reality but are
connected by a thin connected component C resulting in a
single connected component

Various methods have been employed to counter the prob-
lem of leakage. O’Callaghan and Bull [5] explain that leakage
occurs in image segmentation due to the existence weak points
in the gradient of object boundaries so that the object ‘leaks’
into the background. They present an improved watershed
algorithm for segmentation using decimated wavelets to take
care of such cases. Li and Wilson [6] make use of a mul-
tiresolution technique via the Fourier transform and a Markov
random field to deal with leakage. Leakage also occurs fre-
quently in active-contour techniques. Law and Chung [7] adapt
the active-contour algorithm using a minimal weighted local
variance condition to estimate where edges should be instead
of allowing leakage. Lu and Bao [8] also adapt the active-
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contour algorithm by requiring contours to be significantly
concave or convex. Graham et al [9] also encounter leakage
when developing an algorithm for human-airway segmenta-
tion, and adapt the parameters of the segmentation to be
more conservative when leakage is observed. Terol-Villalobos
et al [10] introduce a stopping criterion to combat leakage
and obtain a result between a morphological opening and an
opening by reconstruction. Wilkinson [11] defines a second
generation connectivity to combat the leakage problem which
occurs for all connected filters, that is, filters that operate
on the connected components defined by the connectivity
involved. Salembier and Oliveras [12] relax the definition
of a connection (Definition 1) to define pseudo-connectivity
and enable a solution to the leakage problem. Tzafestas and
Maragos [13] work with multiscale connectivity obtained via
their generalized connectivity measure which essentially mea-
sures the degree to which a connected component exhibiting
leakage should be connected. Santillán and Herrera-Navarro
[14] introduce connected viscous filters to combat leakage.
Ouzounis [15] incorporates shape orientation to deal with
leakage.

In this article we propose a new algorithm to combat leakage
which makes use of the structure of objects in an image
obtained via the Discrete Pulse Transform (DPT) [16]. The
Discrete Pulse Transform based on the LULU operators for
sequences was derived in [17]. Using the extension of the
LULU operators Ln and Un to functions on Zd presented in
[16] we present the DPT for functions in A(Z2). Similar to
the case of sequences we obtain a decomposition of a function
f ∈ A(Z2), with finite support. As usual supp(f) = {p ∈ Z2 :
f(p) ̸= 0}. Let N = card(supp(f)). We derive the DPT of
f ∈ A(Z2) by applying iteratively the operators Ln, Un with
n increasing from 1 to N as follows

DPT (f) = (D1(f), D2(f), ..., DN (f)), (1)

where the components of 1 are obtained through

D1(f) = (id− P1)(f) (2)
Dn(f) = (id− Pn) ◦Qn−1(f), n = 2, ..., N, (3)

and Pn = Ln◦Un or Pn = Un◦Ln and Qn = Pn◦...◦P1, n ∈
N. This decomposition has the property that each component
Dn in (1) is a sum of discrete pulses with pairwise disjoint
supports of size n, where in this setting a discrete pulse is
defined as follows.

Definition 2: A function ϕ ∈ A(Z2) is called a pulse if
there exists a connected set V and a nonzero real number α
such that

ϕ(x) =

{
α if x ∈ V
0 if x ∈ Z2 \ V .

The set V is the support of the pulse ϕ, that is supp(ϕ) = V .
The concept of a pulse as defined in Definition 2 is similar
to the idea of a flat zone from mathematical morphology. It
should be remarked that the support of a pulse may generally

have any shape, the only restriction being that it is connected.
It follows from (2)-(3) that

f =
N∑

n=1

Dn(f) =
N∑

n=1

γ(n)∑

s=1

ψns, (4)

where ψns, n = 1, 2, ..., γ(n) are the pulses extracted by the
DPT at scale n and γ(n) is the number of pulses of size n
extracted at scale n.

The representation (4) provides a multiscale decomposition
of the image f . This extracts information from the image at
all possible scales and provides connected components (the
pulses) which are related through through scale. We thus have
multiscale objects at hand for more robust image analysis.

In Section II we present the implementation of the DPT
and the proposed Pulse Reformation algorithm to deal with
leakage. In Section III we provide illustrations of the technique
with comparisons.

II. ALGORITHM

An algorithm within the DPT scale-space was developed to
introduce pulse reliability and pulse ‘meaning’. The algorithm
defines objects within the DPT scale-space by clustering and
reforming various sets of pulses. We first discuss the DPT
implementation.

A. DPT Implementation

The algorithm is based on the technique developed by Lau-
rie utilizing graph-theory [18]. The algorithm developed here
makes use of two separate graphs, the Work-Graph and the
Pulse-Graph. The Work-Graph is an undirected graph denoted
Gwork = (Vwork, E) representing the finite data sequence
x = {x0, x1, x2, ...xN}. This data sequence presents the pixel
intensities in a one-dimensional array, namely xi = f(mi, ni)
where m is the column position, n the row position and f
the discrete pixel intensity function. The Pulse-Graph is a
directed graph representing the extracted pulses ϕns, where
n is the scale and s the pulse number, and is denoted by
GPulse = (VPulse, A).

The Work-Graph is used directly in executing the DPT. The
edges E represent the connectivity used in the execution of
the DPT, for example 4- or 8-connectivity. The Pulse-Graph
is the output of the DPT with directed edges known as arcs.
The arcs show the relationship between pulses at different
scales. From the data a Work-Graph is first created and then
transformed into a Pulse-Graph by executing the DPT. A visual
representation of the algorithm is provided in Figure 2 with a
simplistic example.

In the example, the algorithm starts by using the input signal
to create the Work-Graph and the basis of the Pulse-Graph.
The Work-Graph is created by using each data point in the
input signal as a node and two zero nodes of infinite size
are added at the beginning and end of the input signal. The
edges of the Work-Graph for each node are created by utilizing
the required connectivity scheme to connecting the appropriate
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Fig. 2: Illustration of the DPT decomposition

nodes. Here a 1-dimensional wave signal is used with a 2-
connectivity scheme, this scheme entails connecting each data
point with its two closest neighbours.

To successfully extract the pulses their height and position
must be stored and to reduce the memory requirement for
the storage of the pulses, they are stored in a graph like
format where the basis of this graph stores the positional
information. Each node consists of arcs and a strength value.
The arcs propagate the different positional information through
the graph. For example, a pulse connected to the basis of the
Pulse-Graph can be translated as all the base nodes connected
to the pulse have a value equal to the strength of the pulse,
remembering that the base nodes represents the pixel positions
in an image.

The Pulse-Graph is constructed by firstly creating the basis,
that is, each pixel in the image creates one node in the basis
of the Pulse-Graph with a strength of zero and a size of 1.
The size is one because each node only contains 1 element in
the data-sequence where the strength must be zero as the sum
of all nodes must be equal to the original image.

The Work-Graph is optimized by joining all connected
nodes with the same value into one node retaining all relevant
edges thus having one node per flat zone, and is then searched
for features of every size creating a Feature-Table. A feature
is defined as a local maximum(bump) or local minimum(pit)
node [16]. The local neighborhood of a node is only one edge
deep. The Feature-Table contains all possible features in the
Work-Graph.

The decomposition is executed by searching for all size n
features in the Feature-Table, n = 1, 2, ..., N , depending on
the decomposition type. For UnLn or LnUn the pits or bumps
will first be extracted respectively. Each identified feature must
be reaffirmed. A feature is reaffirmed by re-checking the node,
making sure it still a pit or a bump. It is possible that a feature
in the Feature-Table can become a non-feature when another
feature in the Feature-Table is extracted. The identified feature
is extracted and a new node is created in the Pulse-Graph with
the arcs connecting to the pulses that constructed the extracted
pulse. By extracting a feature the relating node in the Work-
Graph is merged with the node nearest in height, this node
is then reaffirmed as a feature. If it is a feature the current
entry in the Feature-Table is updated by changing the scale
of the feature, otherwise it is removed from the Feature-table.
This process is repeated by increasing the scale N each time
until no more features are left in the Feature-Table, which is
equivalent the final single pulse obtained by the DPT. The
algorithm is implemented in the c programming environment
and runs in O(n) complexity.

B. Pulse Reformation

1) The Problem: Consider the four separate images in
Figure 3 and regard each structure in each image as an object.
One image can be created by including all four objects in it
as shown in Figure 4a. The challenge is to separate these four
objects from the image.

(a) (b)

(c) (d)

Fig. 3: The four objects which will be combined into one
image and then extracted as four separate objects from the
original in Figure 4a with the proposed algorithm.
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(a) (b)

(c) (d)

Fig. 4: Attempted extraction of the four objects given in
Figure 3 from Figure 4a by using different threshold values.
Thresholded images shown in (b), (c) and (d).

To extract the four objects a very simplistic method such
as thresholding can be applied. This is achieved by choosing
a range of intensity values where all pixel intensities outside
the range becomes 0 and inside becomes 1. The number of
detected objects is then directly related to the number of
connected sets in the image. It can be observed in Figures 4b,
4c and 4d that all possible threshold values have been applied
and none have resulted in the correct extracted connected sets.

Applying the DPT to the image a range pulse sizes chosen
also provides a type of thresholding. Four ranges has been
chosen and can be seen in Figure 5. Here it is also evident that
the extracted connected components do not correctly present
the true objects in the image.

(a) (b)

(c) (d)

Fig. 5: Attempted extraction of the four objects in Figure 3
from Figure 4a by using different DPT pulse size ranges

By the above examples it is seen that neither thresholding in
the intensity domain or in the DPT scale-space has the desired
effect of successfully extracting the objects. We now present
an algorithm which improves the reliability of the pulses in

the DPT by removing the effect of leakage so that the pulses
more accurately represent objects in the image.

2) The Solution: Within the DPT scale-space it is easy to
see that an assumption of each pulse of an object containing
the medial axis [19] of the pulse smaller but closest in scale of
the same object is justified due to the theoretical results in [16].
The medial axis is equivalent to the morphological skeleton.
This assumption is made to provide a framework for excluding
texture from a shape. Texture is mostly the collection of small
pulses on a much larger pulse so that it is evident that only the
texture on the medial axis will be preserved and all other small
pulses will be regarded as noise. We would like to separate
objects that are incorrectly joined by leakage. This is achieved
by dividing the medial axis of the joined objects into separate
medial axis each containing one object. It is assumed that
most medial axis has only one center point. To approximate
the center point of a medial axis from an object, the object
can be eroded consecutively until one element remains. As
objects differ in size a set of joined objects can not be eroded
until only one element remain as the other objects will then be
lost. A set of joined objects are thus eroded until a maximum
number of connected sets have been created. These connected
sets, called eroded sets of the pulse, are assumed to be the
approximations to the medial axis of each object in the set
of joined objects. Algorithm 1 (provided in the appendix)
shows the process of eroding a pulse such that the number
of connected sets remaining is a maximum. It creates a binary
image from the pulse. This image is then eroded with the
smallest compact structuring element, a 3 × 3 sized element.
After each erosion the number of connected components is
checked and the maximum number of connected components
is saved for later usage.

Although all the medial axis centers have been approxi-
mately located the remaining elements in the pulse must be
assigned to one of these sets, each containing one medial axis.
A method to reconstruct a binary image from a medial axis
is to utilize morphological openings [20], which is an erosion
followed by a dilation. An equivalent approach is followed
here where each set is dilated within the pulse boundaries
until all elements in the pulse has been assigned to a region.
Algorithm 2 (provided in the appendix) shows how each
eroded set in each pulse gets dilated on a ratiometric merit
until all elements in the pulse have been assigned to an eroded
set (region).

Another problem arises when two sets are dilated and the
resulting dilations have a non-zero intersection. An element
cannot belong to more than one set. To prevent this a ra-
tiometric merit system is implemented. The eroded set with
the highest ratio gets dilated first. This ratio is calculated
by dividing the cardinality of the dilated eroded set with the
cardinality of the set before it was dilated. Using the ratio is
very important as this gives an approximation of how centered
the medial axis is. However, it also hinders the dilation through
leakage areas in the pulse resulting in the desired effect of
eliminating leakage. Algorithm 3 (provided in the appendix)
creates the regions in each pulse by utilizing the relative eroded
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sets of the pulse. The cardinality of each eroded set is recorded
before they are dilated. The dilation of a eroded set happens
within the boundaries of the pulse, excluding the elements
which is already assigned to other eroded sets. The ratio of
the cardinality before and after the dilation is calculated. The
elements of the eroded set with the highest ratio gets assigned
too that specific eroded set. This process is repeated until all
elements in the pulse have been assigned.

At this point all the pulses are divided into regions and
using the Pulse-Graph, all the regions sharing a pulse also
shares the same arcs. Each region must have its own unique
set of arcs as it is assumed that each region is a unique object
within the pulse. By taking one pulse and starting at a region in
the pulse, all regions in pulses connected to the current pulse
through arcs must be evaluated. To determine whether two
regions are connected the related eroded set of the larger pulse
must intersect with the smaller pulse. Algorithm 4 (provided in
the appendix) traverses through each region created previously
and determine the current region’s connected regions. Each
region has a relative pulse and each pulse has other pulses
connected to it, which in turn have their own regions. The
regions in the connected pulses are possible connected regions
of the current region. The algorithm traverses through all
these possible regions to determine whether they contain the
approximate medial axis of the current region. If the region
being tested contains the approximate medial axis it become
a connected region of the current region.

All the newly created regions can now be seen as new pulses
in the Pulse-Graph. This algorithm changes the structure of
the original DPT, however more meaningful objects can be
extracted from the image setting the scene for object detection
and tracking.

(a) (b)

(c) (d)

Fig. 6: The four objects of Figure 3 extracted from Figure 4a
by the using Pulse Reformation algorithm

3) Cracking the problem: The algorithm presented in Sec-
tion II-B2 was applied to the discussed problem in Section
II-B1 with the results shown in Figure 6. It can be seen that
there is some leakage onto other objects where the object is

reconstructed from the approximated medial axis but all four
objects was successfully extracted without applying any type
of threshold or additional processing.

III. EXAMPLES

A. Text Removal

A typical problem in image processing is the successful
removal of letters imposed on an image without influencing
the structures not directly related to the letters. An image with
some lettering is shown in Figure 7. In the image it is clear
that there will be a leakage problem where the ’T’ touches the
horizon.

Fig. 7: An image with imposed text

To remove text with the DPT and Pulse Reformation two
automatic assumptions are made. Each letter consists of a flat-
zone and an approximate range for the number of elements
in each flat zones is known. The Pulse Reformation creates
objects with specific properties. For text one can expect to see
an object with a large flat zone on the top followed with a few
pulses of approximately the same size which is then supported
by the background pulses. The result is shown in Figure 8.

Fig. 8: Using the Pulse Reformation algorithm the lettering
can be removed from Figure 7

It is clear from Figure 8 that the text was successfully
removed and that the ‘T’ has been successfully separated from
the mountain. Visually the image did not loose any other
detail. It is possible that other flat zones approximately the
same size as the text were removed but this is unobservable.
There is however a small change where the ‘T’ was. It is
observable that a small part of the mountain has also been
removed. This is due to the creation of the regions and the
ratiometric merit. The medial axis of the two different object
is only approximated and then grown from there thus that
part has grown in favour of the ‘T’ and not the mountain.
Evaluating the image, a large flat zone can be observed where
the text was removed. This flat zone assumes an arbitrary
intensity value approximately equivalent to the mean value of
the text background. This also means that in a highly texture
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environment the text will still be evident as it is not replaced
with texture but only an approximate mean value of the
neighbouring texture area. Further algorithmic developments
could improve this technique. However, this example clearly
shows the power of Pulse Reformation and a strong solution
to the leakage problem.

B. Object Extraction

The algorithm main aim is to extract meaningful objects
from an image via the DPT. To test this, the DPT and Pulse
Reformation algorithm was applied to an image of blood cells
shown in Figure 9a. The 8 strongest objects were extracted and
are shown in Figure 9. Here, the object strength refers to the
number of pulses it contains since the most salient structures
in an image are those that are present over a wide range of
scales [21].

Choosing an appropriate range for the objects required, such
as the expected size of the cells, the objects in Figures 9b
to 9g are easily extracted with the algorithm. Examining the
extracted objects it is evident that the objects are not a true
presentation of the original observed objects. The extracted
objects are circular without the inside hole, with jagged edges
and small missing groups of pixels. The inside hole is excluded
from the object as it is treated as texture, the jagged edges
are formed where a pulse is divided into multiple regions,
and the pixels get lost when the approximated medial axis is
dilated and no dilation can fill the pixel. To involve texture
on objects, one can analyze the number and size of objects
formed on top of the current object. If there are many objects
of approximately the same size one can assume that it is
texture and include it in the final object if necessary. Another
addition is to calculated the center of mass of objects created
on top of one another and if the centers are close together
the separate objects can be combined to form one. One can
also observe that the extracted objects have drastic variable
intensity differences where it should be approximately equal.
This is evidence of the formation of a region and occurs near
other possible objects.

The two larger objects in Figures 9h and 9i are a good
example where pulse leakage occurred and it was assumed to
form one large object. By example Figures 9b and 9c forms
part of the object shown in Figure 9h and can be seen as
texture on the object. To distinguish between such cases an
approximated size for an object is required.

The Pulse Reformation can be compared to similar tech-
niques such as the extraction of λ-connected components
[14] which must be used in conjunction with a thresholding
technique In this case Otsu’s method [22] will be utilized.
The λ-connected components are those in which the center of
a disk structuring element of radius λ can be moved along
a continuous path throughout the connected component such
that the entire disk stays within the domain of the connected
component. A few examples are shown in Figure 10.

It can be observed in the samples that the λ-connected
components do not successfully extract the correct objects.
In Figure 10c a manually tuned threshold which provided the

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Fig. 9: The Pulse Reformation algorithm is used to extract
possible objects (blood cells) within Figure 9a. The 6 blood
cells are successfully extracted in addition to two other possi-
ble larger objects.

best results was used. With this image the correct number of
objects can be extracted by using a known cardinality range
of the connected components. Figure 10 demonstrates that it
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(a) λ = 1

(b) λ = 1 Thresholded (c) λ = 1 Manual Threshold

(d) λ = 4 (e) λ = 4 Thresholded

(f) λ = 6 (g) λ = 6 Thresholded

(h) λ = 9 (i) λ = 9 Thresholded

Fig. 10: λ-connected components are created and thresholded
in an attempt to extract the connected sets which presents the
objects(blood cells) in Figure 9a. Only when using a manual
threshold was this achieved.

is clear that the Pulse Reformation is successful at extracting
objects without the use of any thresholding regarding pixel
intensity. The fact that thresholding is not required gives the
algorithm a large advantage, the only information still required

is an approximate range of the size of the objects in question.

IV. CONCLUSION

Connected operators [23] act directly on connected compo-
nents, and though they present a strong framework for extrac-
tion of meaningful structures in an image, always suffer from
the issue of leakage defined in Section I. The LULU operators
Ln and Un used to derive the Discrete Pulse Transform are
also connected operators and suffer from leakage. We have
presented the Pulse Reformation algorithm to combat leakage
in the pulses extracted by the DPT. This enables extraction
of meaningful objects consisting of pulses of the DPT related
over various scales. The examples presented illustrate a useful
technique which will be theoretically investigated as well as
refined in future research.

V. APPENDIX

Algorithm 1 Approximate the medial centers

f o r ( each p u l s e [ i ] ) {
B i n a r y I = C r e a t e b i n a r y image of p u l s e ;
do {

B i n a r y I = e r od e d B i n a r y I ;
e roded_k = amount o f c o n n e c t e d s e t s i n

B i n a r y I ;
} whi le ( e roded_k i s n o t maximum ) ;
f o r ( each e roded_k ) {

Eroded s e t [ i ] [ k ] = Connec ted s e t [ k ] i n
B i n a r y I ;

}
}

Algorithm 2 Create regions in a pulse

f o r ( each p u l s e [ i ] ) {
f o r ( each Eroded S e t [ i ] [ k ] ) {

Reg ion I [ k ] = Eroded S e t [ i ] [ k ] ;
}
T o t a l R e g i o n s = Union of a l l Reg ion I [ k ] ;
T o t a l R e g i o n S i z e = C a r d i n a l i t y o f

T o t a l R e g i o n s ;
P u l s e S i z e = C a r d i n a l i t y o f p u l s e [ i ] ;
whi le ( T o t a l R e g i o n S i z e != P u l s e S i z e )

D i l a t e t h e Reg ion I [ k ] w i th l a r g e s t
R a t i o [ k ] ;

T o t a l R e g i o n s = Union of a l l Reg ion I [ k ] ;
T o t a l R e g i o n S i z e = C a r d i n a l i t y o f

T o t a l R e g i o n s ;
}

}
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Algorithm 3 Dilate RegionI[k] with largest Ratio

f o r ( each Eroded S e t [ i ] [ k ] ) {
MaskI = Union of a l l Reg ion I e x c l u d i n g

Reg ion I [ k ] ;
MaskIPu l se = P u l s e [ i ] e x c l u d i n g MaskI ;
D i l a t e d I [ k ] = D i l a t i o n o f Reg ion I [ k ]

i n t e r s e c t i n g wi th MaskIPu lse ;
R a t i o [ k ] = C a r d i n a l i t y ( D i l a t e d I [ k ] ) /

C a r d i n a l i t y ( Reg ion I [ k ] ) ;
}
Max_k = k v a l u e r e l a t e d t o maximum v a l u e o f

R a t i o [ k ] ;
Reg ion I [ Max_k ] = Union of Reg ion I [ Max_k ] and

D i l a t e d I [ Max_k ] ;

Algorithm 4 Connecting regions through arcs.

f o r ( each p u l s e [ i ] ) {
f o r ( each Reg ion I [ i ] [ k ] ) {

f o r ( each p u l s e c o n n e c t e d by Arc [ i ] [m] ) {
f o r ( each Reg ion I [m] [ n ] ) {

I f ( Eroded S e t [ i ] [ k ] I n t e r s e c t s w i th
Reg ion I [m] [ n ] ) {

Add Arc from Reg ion I [m] [ n ] t o
Region [ i ] [ k ] ;

}
}

}
}

}
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Abstract—This paper reports on the automatic alignment of
audiobooks in Afrikaans. An existing Afrikaans pronunciation
dictionary and corpus of Afrikaans speech data are used to
generate baseline acoustic models. The baseline system achieves
an average duration independent overlap rate of 0.977 on the
first three chapters of an audio version of “Ruiter in die Nag”,
an Afrikaans book by Mikro. The average duration independent
overlap rate increases to 0.990 when the speech data from the
audiobook is used to perform Maximum A Posteriori adaptation
on the baseline models. The corresponding value for models
trained on the audiobook data is 0.996. An automatic measure
of alignment accuracy is also introduced and compared to
accuracies measured relative to a gold standard.

I. INTRODUCTION

Audiobooks are available in many languages. Before the
advent of the digital era, books were made available in
analogue format. More recently new books are created in
digital format and older books that were published on cassettes
are gradually being converted to digital format.

Some digital formats facilitate audiobook access and nav-
igation by people who have challenges using regular printed
media. DAISY is an internationally established standard for
creating digital audiobooks for use by print-disabled peo-
ple [1]. DAISY books exist in a variety of formats. For some
books, both the audio and text are available and the audio and
text are aligned at word level. However, many DAISY books
are published with limited alignment between audio and text
(typically at the chapter level) or with no text at all.

Automatic speech recognition (ASR) technology can en-
hance audiobook publication in two ways. Firstly, for books
that are published as audio only, ASR can be used to generate
the text corresponding to existing audio. Secondly, ASR can
be used to enhance the level of mark-up for books that
are currently only aligned at chapter level. Finer grained
alignments between audio and text enable word level search
in audiobooks as well as synchronised reading, i.e. the text
corresponding to the audio is highlighted during playback.

In this paper we will focus on using ASR technology
to align large audio files at word level. The process will
specifically be investigated for an under-resourced language
for which, until fairly recently, only limited text and speech
resources were available, namely Afrikaans. The ultimate aim

of the work reported here is to improve the level of mark-up
for existing books in any language by automatically converting
the recognition output into DAISY .smil files. Section II
provides some background on previous research on audiobook
alignment. The pronunciation dictionary and acoustic data
that were used during the study are described in Section III.
Section IV describes the ASR systems that were used to
perform alignment and Section V introduces a measure to
verify alignment accuracy automatically. Results are presented
in Section VI and conclusions in Section VII.

II. BACKGROUND

Word and phone-level alignments between the audio and
text versions of audiobooks are used either to enhance the level
of accessibility of the books [2], [3] or to develop resources
for text-to-speech (TTS) development [4], [5], [6].

A large project was undertaken in Portugal to improve the
access to digital audiobooks by print-disabled readers [2].
Amongst other things, an ASR system was developed to
automatically align the audio and text at phone level. The
authors reported challenges such as bad audio quality of the
original analogue recordings, differences of quality within the
same book, inconsistent reading of tables, figures, chapter
numbers, etc. A pilot corpus was therefore compiled for
the development of their alignment system which used a
hybrid of Hidden Markov Models (HMMs) and a Multi-
Layer Perceptron (MLP) to perform acoustic modelling and
a Weighted Finite State Transducer (WFST) framework for
pronunciation modelling. The system achieved phone level
alignment accuracies of more than 90%. Speaker adaptation
as well as pronunciation variation modelling were found to
enhance system performance substantially [2]. Pronunciation
variation seems especially beneficial to capture phenomena
like vowel reduction that are often observed in read speech [2].
In addition to an automatic alignment system, a Digital Talking
Book player incorporating TTS playback and ASR-enabled
navigation were also developed during the same project [3].

From a TTS point of view, aligned audiobooks constitute
rich speech databases for more natural acoustic modelling
because they capture broader prosodic contexts such as dis-
course, information structure and affect that are expressed
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beyond sentence level. However, many books are published
as large, unsegmented audio files and traditional alignment
strategies may fail because of the huge memory requirements
associated with the alignment of big audio files. In [4] and [5]
the authors propose modifications to the Viterbi algorithm that
enable the automatic segmentation of large, multi-paragraph
speech databases. The proposed technique is independent of
the duration of the target audio file.

Another technique that was proposed in the TTS domain is
Lightly Supervised alignment [6]. The book under investiga-
tion was first segmented into small audio chunks of about 30
seconds each. The resulting audio files were submitted to a
two-pass recognition strategy. During the first pass the files
were processed by a large-vocabulary, speaker independent
system for general segmentation and during the second pass
the alignments were improved by using Maximum Likelihood
Linear Regression (MLLR) to adapt the models to the speaker
specific characteristics of the reader. In addition, the acoustic
models are supported by a language model that consists of an
interpolation between a general background language model
and one trained on the text of the audiobook. The authors show
that the proposed approach is able to extract the majority of
correctly read sentences without any manual intervention [6].

In this study, automatic alignment was first performed with
acoustic models trained on out-of-domain but channel-matched
data. Alignment was subsequently repeated using acoustic
models that were either adapted using Maximum A Posteriori
(MAP) estimation or trained with in-domain data, and the
effectiveness of the various approaches compared.

III. PRONUNCIATION DICTIONARY & SPEECH DATA

A. Pronunciation dictionary

An existing Afrikaans pronunciation dictionary containing
around 24 000 entries [7] was used during system develop-
ment. Grapheme-to-phoneme (g2p) rules [8] were extracted
from the dictionary to generate pronunciations for words in
the text that are not in the dictionary.

B. Speech data

In 2010 the National Centre for Human Language Tech-
nology (NCHLT) launched a number of projects to support
HLT resource development for all 11 official languages of
South Africa. During one of these projects broadband (16 kHz)
speech corpora were collected for each language. The corpora
all contain in the order of 80 to 90 hours of speech data. In
this study, the Afrikaans NCHLT speech corpus was used to
train the baseline acoustic models.

The test data constitutes an audio version of “Ruiter in
die Nag”, an Afrikaans book by Mikro that was published
in 1936. The audiobook was originally recorded on analogue
tapes in 1960 and was recently converted to digital format.
“Ruiter in die Nag” (loosely translated as “The Rider in the
Night”) was chosen because we had access to both an audio
and a text version and because the copyright on it has already
expired, so the data can be made available freely for research
purposes. The book consists of 17 chapters, each with an

average duration of about 12 minutes. In total, it yielded 3.25
hours of read speech produced by a single speaker.

IV. ASR SYSTEMS

Three different ASR systems were developed in order to
evaluate the effect of different acoustic modelling approaches
on alignment accuracy. The systems all had the same basic
system architecture and were implemented using HTK [9], a
well-known Hidden Markov Model Toolkit.

A. Feature extraction
Standard 39-dimensional (13 static, 13 delta and 13 delta-

delta) MFCC features were extracted from the data. Cepstral
mean and variance normalisation was applied.

B. Acoustic models
All the acoustic models were standard 3-state, left-to-right

context dependent triphone HMMs with decision tree cluster-
ing and semi-tied transforms, corresponding to the Afrikaans
phone set. Three different sets of acoustic models were used
to perform alignment: baseline, MAP-adapted and audiobook
models.

1) Baseline models: The baseline acoustic models were
trained on approximately 90 hours of broadband (16 kHz)
Afrikaans speech data from the Afrikaans NCHLT corpus.

2) Maximum A Posteriori (MAP) adapted models: A sec-
ond set of acoustic models was created by using the speech
data from the audiobook to perform MAP adaptation on the
baseline models.

3) audiobook models: The third set of acoustic models was
trained on the audiobook itself.

V. AUTOMATIC ALIGNMENT VERIFICATION

Once the audiobook has been aligned, it would be ideal to
have a clear measure of the accuracy of the alignment without
requiring manual verification. As an automatic measure of
alignment accuracy, we compare the difference in the final
aligned starting position of each word, with an estimate of the
starting position obtained using phoneme recognition.

Specifically, we decode each chapter using a flat phone
grammar, creating a single string of phonemes. We also
generate a target phoneme string per chapter, using the aligned
text and dictionary as input. Forced alignment is used to
select the best among competing pronunciation variants. Once
these two phone strings have been obtained, we use dynamic
programming to find the corresponding phones (and therefore
words) in the two strings. As each phone is associated with
timing information (either from the alignment, or from the
decoding process) we now have two estimates of the word
starting position. If there is a discrepancy in starting position
estimates, we flag this as a potential alignment error.

This is related to the validation technique used in [10],
except that the dynamic programming scores are not used at
all, and the difference in timing information is directly used as
a confidence measure. As in [10] the dynamic programming
process to match the two phone strings can be made more
accurate by using a variable cost matrix or, if limited errors
in the corpus, a flat scoring matrix can be used.
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VI. RESULTS

Manually verified word-level segmentations of the first three
chapters of the audiobook were created to serve as a gold
standard. Specifically, the alignments obtained using the base-
line models were manually verified by a language practitioner
and word boundaries moved where these were not correctly
aligned with the audio. This is illustrated in Fig. 1: four
different alignments are displayed below the waveform and
spectrogram. The language practitioner was provided with the
first (top) alignment, and moved word boundaries where words
were not correctly aligned. This resulted in the gold standard
alignment shown fourth (at the bottom). In this example, the
word ‘oom’ was wrongly aligned to the left of the silence
portion, and corrected.

Note that, while this provides a trustworthy alignment when
identifying word-level errors, the gold standard will at the
millisecond-level be biased towards the models that were used
to create the initial alignments. See for example the boundaries
of the word ‘renen’in Fig. 1; these are at identical positions
for the gold standard and the first two alignments (baseline
and MAP-adapted), but drawn in a slightly different position
by the Audiobook models, which are the models that are most
different from the initial baseline.

Before extracting final results, the gold standard itself was
evaluated. All possible alignment errors of more than 100ms
(obtained using the automated verification tools, which does
not use the gold standard at all) were flagged for manual
evaluation. All segments flagged by all three models were
reviewed. This resulted in a subset of ‘difficult-to-align’ seg-
ments that were carefully reviewed for protocol errors, which
were corrected if the observed error caused a discrepancy of
more than 50ms. Two main protocol errors were observed:
silence that was not inserted when needed and word starting
points that were not correctly set if a silence preceded the
word. 240 segments were reviewed and 24 segments corrected.
(An additional random selection of 50 segments resulted in no
addiontal corrections.)

The audiobook was already aligned at chapter level. Forced
alignment was performed for each chapter individually using
ASR systems based on the three sets of acoustic models
described in Section IV-B. Alignment accuracy was evaluated
by comparing the automatically generated word boundaries to
the gold standard. The comparison was quantified in terms of
duration independent overlap rate (DIOR), defined in [11] as:

DIOR =
Dcom

Dmax
=

Dcom

Dref +Dauto −Dcom
(1)

where Dcom, Dmax, Dref and Dauto are the common,
maximum, reference and automatic durations, respectively.
This definition is not as directly applicable to audiobook
alignment as to TTS; we therefore propose a modified measure
where words are considered correct as long as their start times
in the gold and automatic alignments respectively, are within
ε of each other. At a value of ε = 100ms we obtain the
DIOR results reported on in Table I. The values in the table

represent the average value over the three chapters for which
a gold standard was available.

Acoustic models Average modified DIOR
Baseline 0.977
MAP-adapted 0.990
audiobook 0.996

TABLE I
AVERAGE MODIFIED DIOR FOR BASELINE, MAP-ADAPTED AND

AUDIOBOOK MODELS

Table I shows that using the baseline acoustic models to
perform forced alignment already result in an average DIOR
of 0.977. This value increases to 0.990 for the MAP-adapted
models and to 0.996 for the audiobook acoustic models.

Comparing the gold standard (manually corrected) align-
ments with the automatically obtained alignments, we find
that fairly few errors occur. Table II lists the alignment
errors found in the first three chapters of the audiobook,
when using different error margins. (These errors represent
individual words where the difference in starting time between
the automated alignment and the manual alignment is more
than the error margin ε.

Acoustic models 50ms 100ms 150ms 200ms
Baseline 484 270 182 131
MAP-adapted 334 114 72 46
audiobook 396 61 36 24

TABLE II
ALIGNMENT ERRORS FOR DIFFERENT ERROR MARGINS

If the 50ms margin is not considered, it is clear that the
MAP-adapted models provide an accuracy improvement over
the baseline, and that the audiobook models are again an
improvement over the MAP-adapted models. At the 50ms
margin, the superior performance of the MAP-adapted models
(over the audiobook models) may be due to the bias of the
gold standard, as described in Section VI.

Next, we evaluate our ability to flag possible alignment
errors in the final aligned audiobook. Fig. 2 shows Detection
Error Trade-off (DET) curves for the three acoustic models.
Each curve plots the percentage of true errors flagged versus
the percentage of correctly accepted alignments (where the
number of true errors flagged depends on the error margin
selected). The example illustrated in Fig. 2 corresponds to
an error margin of 150ms. The difference in ms between
aligned and decoded (estimated) word starting points is used
as threshold when constructing the DET curves.

The effect of requiring stricter or more lenient error margins
is illustrated in Fig. 3. We compare the DET curves for
different error margins and the audiobook acoustic models.
At one second, perfect error detection is achieved; at around
150 ms an equal error rate of 0.861 is obtained.

Further error analysis indicated that the main causes of
alignment errors were (a) speaker errors resulting in hesita-
tions, missing or repeated words, (b) rapid speech containing
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Fig. 1. Example of different alignments obtained for a sentence in the audiobook.

Fig. 2. DET curves for the three acoustic models at a 150ms error margin.

Fig. 3. DET curves for the audiobook acoustic model at different error
margins.

contractions, (c) difficulty in identifying the starting position
of very short (one- or two-phoneme words) and (d) a few text
normalisation errors (for example, ‘eenduisend negehonderd’
for ‘neentienhonderd’).

A final observation relates to the applicability of the
pronunciation dictionary used. As the alignment verification
process associates a decoded phone string with each word,
this produces a set of alternative pronunciations that can be
considered per word. By counting the number of times the
same pronunciation is observed, frequently occurring pronun-
ciations not found in the dictionary can be added and the
system retrained. In the current work, initial pronunciations
were of sufficient quality that this process was not necessary
to improve alignment quality, but for audiobooks that contain
large numbers of unknown words (such as expected from
study guides or other technical material) this may be a useful
addition to the process.

VII. CONCLUSIONS

The results obtained in this study indicate that the align-
ments obtained by a baseline system are already good enough
for practical purposes, i.e. to provide word-level mark-up for
DAISY books. They also show that alignment accuracy can
be improved by performing MAP adaptation on the baseline
models – a fast and efficient solution requiring minimal com-
putation. The best results are obtained with acoustic models
trained on the target audiobook.

We have also shown that dynamic programming can be used
to align the freely decoded and forced aligned phone strings
associated with each chapter to yield an automatic measure
of alignment accuracy. Error margins are defined in terms of
the difference between estimated starting positions of words
in the two phone strings. For an error margin of 150 ms the
technique is able to accept correct alignments and flag true
errors with an accuracy of 86%. For a larger error margin (of
1 second), 100% accurate alignment accuracy is achieved: all
true alignment errors are rejected, and all accurately aligned
words are correctly accepted.
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The process will be repeated for additional audiobooks in
the near future. While the voice artist spoke very rapidly, the
audiobook contained few speaker errors; it would be useful to
understand the extent to which a larger percentage of errors
can be tolerated (and identified during alignment verification).
Follow-up research will also investigate the impact of using
gender-dependent baseline models on the alignment accuracy
of the final systems as well as the bias of the gold standard
towards the initial alignments. The results will be used to
design an automated process that can be used to align large
volumes of audiobooks in a fully automated way.
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Abstract—An object tracking algorithm using the Mean Shift
framework is presented which is largely invariant to both partial
and full occlusions, complex backgrounds and change in scale.
Multiple features are used to gain a descriptive representation
of the target object. Image moments are used to determine the
scale of the target object. A kalman filter is used to successfully
track the target object through partial and full occlusions, the
Bhattacharyya coefficient is used to determine the measurement
noise estimation.

I. INTRODUCTION

Object tracking is of great importance in computer vision
and is used in many applications such as visual surveillance,
perceptual user interfaces, augmented reality and intelligent
transport systems. Mean Shift [1] is a popular method
used in object tracking which is also used in commercial
applications due its simple implementation, efficient and
robust performance. The Mean Shift method is a non-
parametric, variable step-size, statistical density estimator
which iteratively determines the nearest mode of a point
sample distribution using gradient ascent. The Mean Shift
method has been used in a number of computer vision
problems, these include line fitting [2], image segmentation
[3] and object tracking [4].

A number of improvements to the traditional formulation
of the Mean Shift method for object tracking have been
investigated [4]. Multiple features have been investigated to
gain a more descriptive representation of the target object
[5,6]. In [5] various colour spaces and edge directions are
used as descriptive features, feature localization weights are
determined according to the similarity between background
features and features present in the target model. In [6] the
RGB colour space, edge directions and textural information
(obtained using the discrete wavelet transform) are used
as descriptive features, feature localization weights are
determined according to the similarity between target
candidate features and features present in the target model.
Scale space theory was adopted in order to successfully
determine the target object’s scale during tracking [7]. The
Mean Shift method was applied to Gaussian kernels at various
scales to determine the target object’s scale. Image moments
have been used with the similarity weights (between the target

model and candidate) to determine the scale and orientation
of the target object [8]. Multiple ellipsoidal, asymmetric
kernels with asymmetric centres have been used to effectively
track target position, scale and orientation simultaneously
[9]. In order to remove background features from the target
model and candidate a level set function has been used along
the contour of the target object [10]. The level set function
defines an asymmetric kernel over the target region which
does not contain any background features. Mean Shift is
used to track the target object’s position, scale and orientation.

This paper proposes a tracking algorithm using the Mean
Shift framework which is largely invariant to both partial
and full occlusions, complex backgrounds and change in
scale. Multiple features are used to gain a more descriptive
representation of the target object, these features include
colour, edges and texture. An adaptive feature weighting
method is used to maximize the feature weights of features
which better localize the target object. Image moments are
used in conjunction with the similarity weights (between
the target model and candidate) to determine the scale of
the target object. A kalman filter is used to improve the
tracking performance during partial and full occlusions,
a measurement noise estimation is determined using the
Bhattacharyya coefficient [11].

The paper is arranged as follows. Section II provides an
overview of the Mean Shift tracking algorithm [4]. Section
III provides a description of the various features used to
describe the target object. Section IV provides details on
the tracking algorithm including scale selection, kalman filter
implementation and a brief overview of the tracking algorithm.
Section V provides experimental results which describe the
performance of the tracking algorithm. Section VI concludes
the paper.

II. MEAN SHIFT TRACKING ALGORITHM

A. Target Representation

A target is typically defined by an ellipsoidal region or patch
surrounding a region of interest in an image. A feature space is
chosen (typically the RGB feature space is used) to determine
a histogram of the pixel distribution in the target region. The
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histogram is represented by target model q. The target model
is used to describe the appearance of the object located in the
target region. The target model q is comprised of m normalized
bins [4].

Target model:
q̂ = {q̂u}u=1...m (1)

m∑

u=1

q̂u = 1 (2)

Let {x∗i }i=1...n denote the n normalized pixel locations in
the target region which are centred around 0. Let k(x) denote a
convex, monotonically decreasing, isotropic kernel. Let b: R2

→ {1...m} be a function which determines the histogram bin
b(x∗i ) associated with the pixel location x∗i . The probability
of the feature u = 1...m in the target models histogram is
determined by

q̂u = C

n∑

i=1

k(‖ x∗i ‖2)δ[b(x∗i )− u] (3)

Where δ is the Kronecker delta function. The normalization
constant C is derived by imposing the condition (2), normal-
ization constant C can therefore be represented by

C =
1∑n

i=1 k(‖ x∗i ‖2)
(4)

B. Candidate Representation

Typically the target model is formed from the target region
in the first frame of a video sequence. The target model
is compared to candidate regions in the current frame to
determine the location and scale of the target in the current
frame. A target candidate p(y) is defined by a histogram of the
pixel distribution of a region in the current frame. The target
candidate p(y) is comprised of m normalized bins [4].

Target candidate:

p̂(y) = {p̂u(y)}u=1...m (5)

m∑

u=1

p̂u(y) = 1 (6)

Let {xi}i=1...nh
denote the nh normalized pixel locations

in the candidate region which are centred around y. Let k(x)
denote the same convex, monotonically decreasing, isotropic
kernel used with the target model only with a different size
(based on the scale of the target object) specified by bandwidth
h. The probability of the feature u = 1...m in the target
candidates histogram is determined by

p̂u(y) = Ch

nh∑

i=1

k(‖ y − xi
h

‖2)δ[b(xi)− u] (7)

where

Ch =
1∑nh

i=1 k(‖ y−xi

h ‖2)
(8)

C. Similarity Model

In order to determine the similarity between the target model
and the target candidate a similarity function is determined.
The similarity function used is the sample estimate of the
Bhattacharyya coefficient [11] between the distributions q̂ and
p̂(y). The similarity function is defined by

ρ̂(y) = ρ[p̂(y), q̂] =

m∑

u=1

√
p̂u(y)q̂u (9)

Due to the conditions imposed by (2) and (6) the similarity
function has a minimum value of 0 (distributions are orthog-
onal) and a maximum value of 1 (distributions are equal).

D. Mean Shift Vector

The Mean Shift algorithm iteratively samples target can-
didate locations in an effort to find the local maximum of
the similarity function ρ̂(y). By taking the Taylor expansion
around the target candidate probability values p̂u(ŷ0) (where
the target candidate p̂(ŷ0) is centred around ŷ0) the estimated
linear approximation of the Bhattacharyya coefficient [4] can
be described by

ρ[p̂(y), q̂] =
1

2

m∑

u=1

√
p̂u(ŷ0)q̂u +

1

2

m∑

u=1

p̂u(y)

√
q̂u

p̂u(ŷ0)
(10)

The first term of (10) is independent of position y, therefore
to maximize ρ[p̂(y), q̂] it is necessary to maximize the second
term of (10), using (7) the second term of (10) denoted by
ρ[p̂(y), q̂]2 can be described by

ρ[p̂(y), q̂]2 =
Ch

2

nh∑

i=1

ωik(‖ y − xi
h

‖2) (11)

where

ωi =
m∑

u=1

√
q̂u

p̂u(ŷ0)
δ[b(xi)− u] (12)

The Mean Shift vector is determined in order to maximize
the similarity function ρ̂(y) by maximizing (11). The Mean
Shift vector is determined by

Y1 =

∑nh

i=1(xi − ŷ0)ωig(‖ ŷ0−xi

h ‖2)
∑nh

i=1 ωig(‖ ŷ0−xi

h ‖2)
(13)

Where g(x) = k′(x). If we choose k(x) to use the
Epanechnikov profile [12] described by

k(x) =

{
1
2c
−1
d (d+ 2)(1− x) if x ≤ 1

0 otherwise
(14)

the computation of (13) can be simplified as g(x) becomes a
constant. Different kernel profiles may be used, they however
have little impact on the localization accuracy of the Mean
Shift algorithm. These kernel profiles have a higher computa-
tional cost as the kernel derivative g(x) must be determined
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for each computation of the Mean Shift vector. Using the
Epanechnikov profile the Mean Shift vector can be described
by

Y1 =

∑nh

i=1(xi − ŷ0)ωi∑nh

i=1 ωi
(15)

The updated position of the target candidate position ŷ1 is
simply described by

ŷ1 = ŷ0 + Y1 (16)

The Mean Shift algorithm is run recursively until conver-
gence, convergence occurs when the Mean Shift vector is
lower than a tolerance ε. The tolerance is usually chosen to
be the width of a single pixel.

III. IMAGE FEATURES

Multiple Image features were used during tracking in order
to better describe the appearance of the target object.

A. Local Binary Pattern Features

The local binary pattern [13,14] is an image operator which
transforms an image into an array of integer labels which
describe the small scale appearance of the image [14]. The
LBP (local binary pattern) is an efficient texture classification
method which is invariant to monotonic grey level changes.
The local binary pattern was used to provide useful textural
descriptive information of the target object.

The basic LBP [13] was initially designed for texture de-
scription. The basic LBP operator assigns a label to each pixel
in the image. Let z(x, y) describe the 3 × 3 neighbourhood
surrounding a pixel. z(x, y) is described by

z(x, y) = I(x, y)− I(xc, yc) (17)

Where I(x, y) represents the pixel values in the 3 × 3
neighbourhood and I(xc, yc) represents the centre pixel in the
3 × 3 neighbourhood. Let s(z(x, y)) be the thresholding step
function where

s(z(x, y)) =

{
1 if z(x, y) ≥ 0
0 if z(x, y) < 0 (18)

The pixels surrounding the centre pixel in s(z(x, y)) form
a binary number which is used as a label to describe the
pixel. Fig. 1 shows an illustration of the basic LBP operator.
A histogram of these labels can be used to describe the image.

Traditionally the histogram describing a texture or image is
determined by separating uniforms patterns (such as 00000000
or 11001111) into bins. Where each unique uniform pattern
has a preallocated bin and all non-uniform patterns are grouped
in a single bin. There are 58 unique uniform patterns in the
basic LBP and 198 non-uniform patterns [14]. In order to
improve the rotational invariance of the LBP, the binary label
for each pixel is circularly bit-shifted to find a minimum binary

value which describes the pixel for eight possible orientations
of the LBP operator. This is shown by

LBP r,i
P,R = min

i
ROR(LBPP,R, i) (19)

Where LBP r,i
P,R denotes the output rotationally invariant

binary label, ROR(x, i) denotes the circular bitwise right
rotation of bit sequence x by i steps and LBPP,R denotes
the original basic LBP binary label.

Performing this rotation invariance step is useful in
that it allows the LBP to perform robustly when rotation
occurs as well as limiting the number of possible unique
uniform patterns. The unique uniform patterns are reduced
to the following 9 patterns 00000000, 00000001, 00000011,
00000111, 00001111, 00011111, 00111111, 01111111,
11111111 after the rotation invariance step.

The basic LBP operator with the rotation invariance step
was used for each channel in the RGB colour space. A 3-
dimensional RGB-LBP histogram with 10 bins per channel
was formed from the 3 channels R, G and B.

B. Edge Features

Edges describe the structure of an image, edges provide
beneficial descriptive information in object tracking when
objects in a scene have similar colour yet different structure.
A 2-dimensional edge histogram of size Ne × Ne with one
channel for edge magnitude and the other for edge direction
is used to describe the edge features in the target object. The
simple Scharr operator [15] was used to find edges in the
image as it provides efficient, robust and rotational invariant
edge detection. The gradients Dx(x, y) and Dy(x, y) are
represented by

Dx(x, y) = Sx

⊗
I(x, y) (20)

Dy(x, y) = Sy

⊗
I(x, y) (21)

Where Dx(x, y) is the gradient in the x direction, Dy(x, y)
is the gradient in the y direction, Sx is the simple Scharr
gradient operator in the x direction and Sy is the simple Scharr
gradient operator in the y direction,

⊗
is the convolution

operator and I(x,y) represents the intensity values in the image.
The edge magnitude denoted by D(x, y) and the gradient
direction denoted by θ(x, y) are represented by

D(x, y) =
√
Dx(x, y)2 +Dy(x, y)2 (22)

θ(x, y) = arctan(
Dy(x, y)

Dx(x, y)
) (23)

Where θ(x, y) is determined between edges directions 0◦

≤ θ(x, y) < 360◦. Edges were filtered such that only edges
with magnitudes above a threshold te were considered in the
edge feature histogram.
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Fig. 1: Local Binary Pattern Operator

C. Colour Features

Colour histograms are most commonly used in conjunction
with the Mean Shift algorithm as they are robust to partial
occlusion and change in scale and rotation. They perform well
under non-rigid deformations of the target object and changing
complex backgrounds [4,12]. Colour histograms do however
fail when other objects or background features have the same
or similar colour. A 3-dimensional RGB colour histogram of
size Nc × Nc × Nc was used to describe the RGB colour
distribution of the target object. A 1-dimensional Hue (from
the HSV colour space) colour histogram of size Nh was used
to describe the Hue colour distribution of the target object. The
Hue histogram is useful as it is largely illumination invariant.

D. Colour and Edge Features

Colour and Edge features where combined in an effort
to combine structural and colour information in a single
histogram. Edges were found using the simple Scharr operator.
The greyscale gradient magnitude D(x, y) was determined for
each pixel in the target object region. The pixel value Ii(x, y)
for each RGB channel is determined by.

Ii(x, y) =

{
Ii(x, y) +Di(x, y) if D(x, y) ≤ te
Ii(x, y)−Di(x, y) if D(x, y) > te

(24)

Where Ii(x, y) is i’th RGB channel value for the pixel
I(x, y) and Di(x, y) is the gradient magnitude for the RGB
channel i. A 3-dimensional colour-edge histogram of size
Nc ×Nc ×Nc was used to describe Ii(x, y).

Let σ denote the scale of the target object. Due to the
elliptical shape of the target region, typically both background
and object features are present in the target region of scale
σ [10]. Background features in the target model can have an
effect on the localization accuracy of the tracking algorithm.
In order to minimize this effect 3 colour-edge histograms
were used to describe the target object. The 3 colour-edge
histograms were determined for target regions of scales σ, 0.8σ
and 0.6σ. Histograms formed from target regions smaller than
the scale of the object are less likely to contain background
features.

E. Background Weighted Colour Features

If some background features are present in the target
model and candidate, the localization performance would be
improved if the background feature information in the target
model and target candidate was suppressed. This is done

by weighting the target model and target candidate with a
background model at each frame such that the target object
has a more salient description relative to the background [4].

Let ô(y) denote the background model centred around y.
Let {xi}i=1...nh

denote the nh normalized pixel locations in
the background model region which are centred around y. Let
a(x) denote a concave, monotonically increasing, isotropic
kernel with a size (based on the scale of the target object)
specified by bandwidth h. The probability of the feature
u = 1...m in the background model histogram is determined
by

ôu(y) = Ch

nh∑

i=1

a(‖ y − xi
h

‖2)δ[b(xi)− u] (25)

where
Ch =

1∑nh

i=1 a(‖ y−xi

h ‖2)
(26)

The background kernel used is described by

a(x) =





0 if x ≤ 1
x− 1 if 1 < x ≤ 2
0 otherwise

(27)

Where 1 represents the boundary of the target model or can-
didate region and 2 represents the boundary of the background
model region. The kernel a(x) assigns weights to pixels such
that features further from the object boundary have a higher
weighting. Let ô∗ denote the smallest non-zero histogram bin
in the background histogram ô(y). The scaling array vu [4]
used to minimize similar features between the background
model and the target model and candidate is described by

{vu = min(
ô∗

ôu
, 1)}u=1...m (28)

The background weighted target model q̂u and target can-
didate p̂u(y) are represented by

q̂u = Cvu

n∑

i=1

k(‖ x∗i ‖2)δ[b(x∗i )− u] (29)

where

C =
1∑n

i=1 k(‖ x∗i ‖2)
∑m

u=1 vuδ[b(x
∗
i )− u]

(30)

p̂u(y) = Chvu

nh∑

i=1

k(‖ y − xi
h

‖2)δ[b(xi)− u] (31)
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where

Ch =
1∑nh

i=1 k(‖ y−xi

h ‖2)
∑m

u=1 vuδ[b(x
∗
i )− u]

(32)

A 3-dimensional background weighted colour histogram of
size Nc ×Nc ×Nc was used to describe a more salient RGB
colour representation of the target object.

IV. TARGET OBJECT LOCALIZATION

A. Feature Localization Weights

Each feature determines an updated target object position
ŷ1 using the Mean Shift localization algorithm. To determine
the best estimation of the target object’s updated position, a
weighted average is determined of the updated target object
positions determined by the various features. The updated
target object position ŷ1 is determined by

ŷ1 =

Kf∑

j=1

ωj ŷ1j (33)

Where ωj denotes the localization weight for feature j,
ŷ1j denotes the updated target object position for feature j
and Kf denotes the number of features. The feature weights
are determined from 3 global weights, The global weights
consist of predetermined feature weights, model-candidate
similarity feature weights and model-background similarity
feature weights.

The global model-candidate similarity feature weight deter-
mines a weight based on the similarity function between the
target model and target candidate. The higher the similarity,
the higher the weight associated with the feature. The model-
candidate similarity feature weight ωc is described by

ωcj =
1

(1− ρ[p̂j(y), q̂j ])(Cc)
(34)

where

Cc =

Kf∑

j=1

1

(1− ρ[p̂j(y), q̂j ])
(35)

Where ωcj denotes the model-candidate similarity feature
weight for feature j, q̂j denotes the target model for feature
j and p̂j(y) denotes the target candidate for feature j. The
global model-background similarity feature weight determines
a weight based on the similarity function between the target
model and background model. The higher the similarity, the
lower the weight associated with the feature. The model-
background similarity feature weight ωb is described by

ωbj =
ωpj

(ρ[ôj(y), q̂j ])(Cb)
(36)

where

Cb =

Kf∑

j=1

ωpj

(ρ[ôj(y), q̂j ])
(37)

Where ωbj denotes the model-background similarity feature
weight for feature j, ôj(y) denotes the background model

for feature j and ωpj
denotes predetermined feature weight

for feature j. The localization weight ωj for the feature j is
determined by

ωj = αωcj + βωbj + γωpj
(38)

where
α+ β + γ = 1 (39)

Where α, β and γ are constants which specify the re-
lationship between the various global weights and the fea-
ture weights. The features weights are normalized such that∑Kf

j=1 ωj = 1.

B. Scale Selection

It is necessary to determine the scale of the target object
to effectively track it through out a video sequence. Image
moments [16,17] are used to determine the scale of the target
object in this algorithm, a similar approach is used by [8]
and [18]. In [18] (CAMSHIFT) the scale and orientation is
determined using image moments on a skin probability back
projection. In [8] (SOAMST) the traditional kernel-based
Mean Shift object tracking algorithm is used, the similarity
weights ωi (12) are used as a probability back projection.
Image moments are used with the similarity weights to
determine the scale and orientation of the target object. A
similarity area estimation is used to correctly determine the
target object’s scale.

In this algorithm the similarity weights ωi are determined
for each pixel in the target region with a scale 1.2σ. Image
moments are then used in conjunction with the similarity
weights to determine the scale of target object in the current
frame. The similarity weights ωi are determined by

ωi =

Kf∑

j=1

ωjωij (40)

Where ωij denotes the similarity weight determined by (12)
for feature j. The zeroth order moment denoted by M00 is
determined by

M00 =

nh∑

i=1

ωi (41)

Where nh is the number of pixels in the target region with a
scale 1.2σ. The second order moments denoted by M20, M02

and M11 are determined by

M20 =

nh∑

i=1

ωix
2
i,1 (42)

M02 =

nh∑

i=1

ωix
2
i,2 (43)

M11 =

nh∑

i=1

ωixi,1xi,2 (44)
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Where xi,1 denotes the i’th x value in the target region with
a scale 1.2σ and xi,2 denotes the i’th y value in the target
region with a scale 1.2σ. The second order central moments
denoted by µ20, µ02 and µ11 are determined by

µ20 =
M20

M00
− x̄21 (45)

µ02 =
M02

M00
− x̄22 (46)

µ11 =
M11

M00
− x̄1x̄2 (47)

Where x̄1 is the target object’s centre x position and x̄2 is
the target object’s centre y position. The second order central
moment covariance matrix donated by Cov is represented by

Cov =

[
µ20 µ11

µ11 µ02

]
(48)

The eigenvalues of the covariance matrix represent the size
of the axis a and b of the target object region. Half the height
of the target object is determined by b and half the width is
determined by a, they are represented by

a =
µ20 + µ02

2
−
√

4µ2
11 + (µ20 − µ02)2

2
(49)

b =
µ20 + µ02

2
+

√
4µ2

11 + (µ20 − µ02)2

2
(50)

It is assumed that the scale change between frames is rela-
tively small, to get a more accurate and smooth scale change
between frames the target height and width is determined by

a = (ζ)ap + (1− ζ)an (51)

b = (ζ)bp + (1− ζ)bn (52)

Where (ζ) denotes a constant which determines the rate
at which the target object’s scale should change, ap denotes
half the object width determined in the previous frame, an
denotes half the object width determined in the current frame,
bp denotes half the object height determined in the previous
frame and bn denotes half the object height determined in the
current frame.

C. State Estimation

The Mean Shift algorithm is not well suited for tracking
objects in the presence of full occlusions. In order to improve
the performance of the Mean Shift tracking algorithm in the
presence of partial and full occlusions a kalman filter [19,20]
is used. A kalman filter is a state estimation algorithm which
compares state prediction against state measurements to get
an accurate estimation of the true state.

The state prediction matrix F in Xk = FXk−1 + vk is
determined using simple equations of motion for position,

velocity and acceleration. The state prediction matrix also
called the system matrix is represented by

F =




1 0 1 0 1
2 0

0 1 0 1 0 1
2

0 0 1 0 1 0

0 0 0 1 0 1

0 0 0 0 1 0

0 0 0 0 0 1




(53)

For the kalman filter to perform accurately the measurement
noise nk [20] needs to be estimated. The measurement noise
nk is used to estimate how reliable the measurements are in
zk = HXk + nk. An accurate estimation of the measurement
noise is necessary in order to minimize the effect of inaccurate
target object localization during occlusion. The measurement
noise nk is determined relative to the similarity between the
target model and the target candidate, the more similar the tar-
get model and candidate, the more accurate the measurement.
The measurement noise nk is described by

{nk = 10l(1−ρ[p̂(y), q̂]c) if εl+1 < ρ[p̂(y), q̂]c ≤ εl}l=0...3

(54)
where

ρ[p̂(y), q̂]c =

Kf∑

j=1

ρ[p̂j(y), q̂j ]ωj (55)

Where εl{l=0...3} are constants which specify the bounds
of the piecewise measurement noise estimation function. It
is assumed that a target object’s velocity is constant during
occlusion. Using this assumption in order to improve the
tracking performance during occlusion, the current state ma-
trix velocity is updated every frame with the target object’s
weighted average velocity Vak

represented by

Vak
= 0.85Vak−1

+ 0.15((1− Vnk
)Vk + Vnk

Vak−1
) (56)

Where Vnk
is the velocity noise at frame k determined by

{Vnk
= 0.2l if εl+1 < ρ[p̂(y), q̂]c ≤ εl}l=0...3 (57)

The state matrix velocity Xkv is updated with the weighted
average velocity such that Xkv

= 0.85Vak
+ 0.15Xkv

.

D. Tracking Algorithm Overview

Using the methods described in sections II, III and IV, the
tracking algorithm can be summarized as follows

1) Determine target model q̂j for features 1...j
2) Initialize iteration number ki ← 0
3) Initialize position y0 of candidate target in current frame
4) Determine candidate target p̂j(y0) for features 1...j
5) Calculate feature localization weights wj for features

1...j
6) Calculate similarity weights ωij for features 1...j
7) Calculate combined similarity weights ωi
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8) Determine updated target object position y1
9) If ‖ y1 − y0 ‖< ε (where ε < 1) or if k ≥ N (where N

is chosen to be 20) stop. Go to step 10)
Otherwise ki ← ki + 1 and y0 ← y1. Go to step 4)

10) Determine height 2b and width 2a of target object
11) Update target object states using kalman filter, this

includes updating object position. Determine y0 for the
next frame using state prediction matrix F

12) Load next frame, go to step 2)

V. EXPERIMENTAL RESULTS

The proposed algorithm’s performance is compared to
the original Mean Shift tracking algorithm with variable
scale selection in [4] and the SOAMST algorithm in [8].
These algorithms were selected to use 64 × 64 × 64 RGB
colour histograms, the algorithms in [4] and [8] were
implemented using the same kalman filter implementation
used in the proposed tracking algorithm. The algorithms
were tested on a complex scene (video sequence:
motinas multi face frontal.avi, frames: 1 - 300, target:
Emilio) [21]. A persons face (Target: Emilio) was tracked
in a complex environment with partial and full occlusions,
change in scale, change in illumination and slight change
in the appearance of the target object. During the video
sequence the target’s face is fully occluded by the face of a
person (target: Joe, frames: 88 - 95). There is a rapid change
in scale of the target (frames: 250 - 300) and a change in
illumination experienced by the target (frames: 196 - 275).

The tracking performance of the algorithms can be observed
from Fig. 2 (visual description of tracking performance for
proposed algorithm, original Mean Shift tracking algorithm
and SOAMST algorithm) and Fig. 3 (graphs describing posi-
tion and scale selection error from ground truth). The original
Mean Shift object tracking algorithm shows good performance
in tracking the target object, however once occlusion occurs
the tracker diverges, the algorithm does not benefit greatly
from the kalman filter implementation. The SOAMST algo-
rithm shows good performance in tracking the target object,
however the algorithm selects the scale of the target object
abruptly and inaccurately. Like the original Mean Shift algo-
rithm the SOAMST algorithm diverges when occlusion occurs
and does not benefit greatly from the kalman filter imple-
mentation. The proposed algorithm shows good performance
in tracking the target object through out the video sequence.
The algorithm localizes the target object inaccurately during
occlusion, however the algorithm does not diverge during
occlusion. The proposed tracking algorithm benefits greatly
from the kalman filter implementation in minimizing the effect
of object occlusion.

VI. CONCLUSION

A tracking algorithm using the Mean Shift framework is
presented which performs robustly in complex scenes where
occlusion occurs. The algorithm uses multiple features to

uniquely describe objects, image moments to effectively de-
termine the target object’s scale and a kalman filter to aid
the localization algorithm during occlusion. The algorithm has
shown superior tracking performance in complex scenes when
compared to the original Mean Shift tracking algorithm and
the scale adaptive SOAMST algorithm.
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(a) Frame: 30 (b) Frame: 80 (c) Frame: 150 (d) Frame: 270

(e) Frame: 30 (f) Frame: 80 (g) Frame: 150 (h) Frame: 270

(i) Frame: 30 (j) Frame: 80 (k) Frame: 150 (l) Frame: 270

Fig. 2: Proposed algorothm (a - d), Original Mean Shift algorothm (e - h), SOAMST (i - l)

(a) Position Error from Ground Truth (b) Scale Selection Error from Ground Truth

Fig. 3: Tracking Error from Ground Truth
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Abstract—This paper presents a comparison of several es-
tablished and recent image feature-descriptors to register long
wave infra-red images in the 8–14 µm band to visual band
images. The feature descriptors were chosen to include robust
algorithms, SURF and SIFT — and fast algorithms, BRISK
and BFROST. To evaluate the feature-descriptors a ground
truth was created by determining the intrinsic and extrinsic
camera calibration parameters for the cameras and using this to
photogrammetrically relate pixel positions between the images.
The inlier results of each feature descriptor for the top 20%,
50% and 100% of the matches (based on match strength) were
used to create a homography. The average pixel error between the
homography reprojected feature points and the photogrammetric
reprojection was used as the error. The results show that none
of the descriptors perform well in standard form, with BFROST
faring slightly better than the other algorithms. This suggests
a need to modify the algorithms to detect physical/structural
features and de-emphasise textural features.

I. INTRODUCTION

A. Relevance of cross spectral registration

Long Wave Infra Red (LWIR) imagery in the 8–14 µm
wavelength band, also known as thermal imagery, has several
advantages over visual band imagery [1]. Among these are
decreased sensitivity to atmospheric aerosols and scintillation,
superior performance in low (visual) light conditions and easy
detection of many objects of interest such as vehicles with an
internal combustion engine. This is due to the majority of light
in this spectrum being emitted by the objects being surveyed
rather than being reflected light.

There are several disadvantages to LWIR imagery too. Of
particular interest is that intensity of objects in LWIR imagery
is solely due to their surface temperature and emissivity, this
implies that distinguishing marks such as colour, insignia and
serial/licence numbers are generally not visible. In addition,
current LWIR cameras typically have significantly lower res-
olution than visual cameras (e.g. see Sections III-A and III-B)
yet cost significantly more. To illustrate these phenomena
Figure 1 shows LWIR photos of the authors, it is much more
difficult to distinguish between them.

Registering the images of the two bands, that is determining
the pixel correspondence between a LWIR and visual image,
would allow both the easy determination of objects of interest
(using the LWIR band) and their identification (in the visual
band). Other benefits may be found such as the haze mitigation

of visual images via incorporating a Near Infra-Red (NIR)
channel [2].

B. Related Work

Many examples of image feature detector/descriptors have
been developed for matching features between visual images.
The Geographical Information Systems (GIS) field yields
some papers on cross-spectral feature detection. Firmenich
et al. [3] describe how the Scale-Invariant Feature Transform
(SIFT) [4] was modified to perform better in matching between
the visual and NIR channels by making it insensitive to rever-
sal in the image gradient. Hasan et al. [5] also improved upon
SIFT for visual-NIR matching by constraining the portion in
the second image on which a match for a feature in the first
image is searched. This was done by using two strong matches
— which include both spatial and orientation information —
to predict where each other feature will be and their scale.
Teke and Temezel [6] applied this scale restriction method to
the Speeded Up Robust Features (SURF) [7] algorithm. Their
results show a worst case matching between the NIR and Blue
channels, with results of between 77% and 85% depending on
the implementation of SURF and whether or not the scale
restriction is applied. Equivalent results for red channels are
86% through 91%.

Brumby et al. [8] investigate the supervised evolution of
feature extraction kernels by combining primitive image pro-
cessing operations in order to extract the desired features (such
as roads, crop types and rivers) from pre-registered hyper-
spectral images extending from the visual to short wave infra
red (SWIR).

This work is different from that described above in that
LWIR is used instead of NIR, a difference of over tenfold
in wavelength. This results in a further decrease in feature
mapping performance due to the greater dissimilarity between
the bands.

C. Axis and notation definition

The mathematical notation used in this paper is as follows:
A 3D vector, Vbac, is a vector from point a directed towards
point b expressed in terms of its projections on orthogonal
coordinate system c’s axes. Vbac is used when the magnitude
of the vector is unknown or unimportant. Tbac represents the
translation or displacement of point b relative to point a.
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(a) Author 1 (b) Author 2

Fig. 1. LWIR images of the authors
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Fig. 2. Axis definition.

Rab is a 3-by-3 Euler rotation matrix expressing the rotation
of an orthogonal axis system a relative to (and in terms of
its projections on) an orthogonal axis system b. Individual
elements of 3 dimensional vectors are referred to as x, y or z
whereas 2 dimensional (2D) vector’s elements are referred to
as horizontal (h) and vertical (v) to avoid confusion. Figure
2 defines the axis system used and the directions of positive
rotation.

D. Paper organisation

The rest of this paper is organised as follows: Section II
describes the basic workings of the feature detectors. Section
III describes the equipment used in this comparison. Section
IV details procedure used to objectively compare the different
feature metrics. Section V provides the results of the compar-
ison. Section VI summarises the results and places them in
context.

II. FEATURE DESCRIPTOR

This section describes the feature detectors used in this
comparison. Two floating point and two binary feature point
descriptors were evaluated.

A. Scale-Invariant Feature Transform

The SIFT [4] detector searches for stable features across
multiple scales by searching for local extrema features over a
set of Difference-of-Gaussian (DoG) images. An orientation

histogram is constructed by sampling gradient orientations
around the feature. The highest peak in the histogram is used
as the feature orientation.

The region around the feature is divided into 4 by 4 sample
areas. An orientation histogram is calculated for each of the
sampling areas. A Gaussian weighting is then applied to the
magnitudes before they are accumulated into the histogram.
The values of all the histograms are placed into the feature
vector. The normalised feature vector forms the 128 floating
point value feature descriptor. SIFT is robust to almost all
common image transformations.

The match strength between two SIFT features is defined
as the L2-Norm: i.e. the length of the difference between the
two feature vectors. Smaller values are better.

B. Speeded Up Robust Features

SURF [7] was inspired by SIFT [4], with the main goal to
improve the execution speed of the detector and descriptor.
SURF depends mainly on an integral image to approximate
and speed-up the execution time.

The detector relies on the determinant of the Hessian matrix.
The Hessian matrix is approximated by sampling rectangular
regions that approximate the Gaussian derivatives. The local
extrema from the approximate determinant of the Hessian
matrix is located across different scales. Haar wavelets are
used to calculate the orientation of sampling points around the
feature. The feature orientation is detected by examining the
magnitude of the orientations within a sliding arc window. The
arc direction with the highest resulting magnitude is chosen
as the dominant orientation.

The region surrounding the feature is divided into 4 by 4
sub-regions. Haar wavelet responses for each sub-region are
accumulated to form the 64 element floating point feature
vector.

The match strength between two SURF features is also
defined as the L2-Norm: the length of the difference between
the two feature vectors.

C. Binary Robust Invariant Scalable Keypoints

Binary Robust Invariant Scalable Keypoints [9] (BRISK) is
a binary feature extractor, the feature detection part uses the
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improved version of the Features from Accelerated Segment
Test [10] (FAST) detector, namely Adaptive and Generic
Accelerated Segment Tests [11] (AGAST) to detect key-
points. The feature detection phase tries to detect features
by searching in different scale-spaces. Local image gradients
are calculated between sampling point pairs surrounding the
feature. The sum of all gradients is used as the feature rotation.

The binary descriptor is built by comparing pairwise,
smoothed pixel intensities from sampling points surrounding
the feature. Each bit is set when the first pixel intensity is
greater than the second pixel intensity. The resulting bits are
concatenated to form the 512 bit descriptor.

The match strength between two binary features is defined
by the number of elements that differ between the two binary
vectors, i.e. the Hamming distance. Smaller values are better.

D. Binary Features from Robust Orientation Segment Tests

Binary features from robust orientation segment tests [12]
(BFROST) is a fast feature extractor designed for the Graphics
Processing Unit (GPU). BFROST uses the same continuous
pixel-set criteria as the FAST detector to detect features with
an additional 16 possible feature rotation estimations based on
the median of the continuous pixel-set segment.

The feature descriptor describes an area around a detected
feature point with a 256 bit binary vector. The descriptor is
built by comparing the average pixel intensities of regions
surrounding the feature. An integral image is used to speed-up
the intensity calculations performed on the sampling pattern.

BFROST is scalable, rotation and translation invariant and
robust to noise. The match strength between two features is
also defined as the Hamming distance.

III. EQUIPMENT

One visual and one LWIR camera, as described below, were
rigidly mounted relative to each other. Their intrinsic and
extrinsic parameters were then determined (see Section IV-A)
to allow for photogrammetric registration.

A. Visual Cameras

Prosilica GT1920 cameras, which have a 3MP resolution of
1936×1456, were used in this work. Pentax lenses with 8mm
focal length were used, and provided a field of view (FOV)
of ±50◦ horizontally by ±40◦ vertically.

B. Long Wave Infra Red Cameras

Xenics Gobi 640GigE microbolometers were used in this
comparison. The cameras have a large 10.88mm by 8.17mm
Charge Coupled Device (CCD) offering a resolution of 640×
480 pixels. Combined with a 10mm lens, this provided an
FOV of ±60◦ horizontally by ±48◦ vertically.

IV. EXPERIMENTATION METHODOLOGY

A. Generating the ground truth

In order to quantifiably compare the different feature de-
scriptors, a ground truth registration was sought. This was
obtained by photogrammetrically calibrating the cameras.

The lens distortion and inverse distortion was determined
as described de Villiers et al. [13] using five radial, three
tangential parameters and the optimal distortion center. The
focal length and the extrinsic parameters of the camera were
then determined as per de Villiers [14].

Once these parameters are known, the position that a pixel
from Camera B should be placed in Camera A’s image is de-
termined by first calculating the the point where the distortion-
corrected vector associated with each pixel of Camera B meets
the stitching surface (assumed here to be a sphere [14]). This
point is then back projected through to Camera A’s image
plane, where it was redistorted and scaled to determine the
pixel position.

In order to calculate the point on the stitching sphere
associated with each pixel, one first recalls the cosine rule:

a2 = b2 + c2 − 2bc cos θbc (1)
where:
a, b, c = the lengths of the side of a triangle, and
θbc = the angle between sides b and c.

Now for a pixel i of Camera B, assign the corners of a
triangle to be the known center of the sphere in some reference
system (i.e. TSRR), the position of camera B expressed in the
same reference system (i.e. TCBRR) and the point where the
pixel’s vector intersects the sphere. This then infers that side a
is equal to the stitch radius (R), and that side b is the distance
between the camera and sphere center, or ‖TSCBR‖ where
TSCBR = TSRR−TCBRR. All that is required is to determine
the vector associated to each pixel and the cosine between it
and TSCBR.

First one creates a vector in Camera B’s axis using the focal
length and intrinsic distortion parameters:

Iui = fundistortB (Idi ),

VPiBB =




FLenB
(PB

h − Iuih)pix wB

(PB
v − Iuiv )pix hB


 ,

UPiBB =
VPiBB

‖VPiBB‖
,

UPiBR = RBRUPiBB (2)
where:

Idi = the image coordinate of pixel i,

fundistortB = the predetermined lens undistortion
characterization function [14] for camera B,

(PB
h , P

B
v ) = the principal point of camera B,

(Iuih , I
u
iv ) = the undistorted pixel position of pixel i,
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pix wB = the width of the pixels on camera B’s CCD,
pix hB = the height of the pixels on camera B’s CCD,
RBR = rotation of camera B relative to the ref. axis

(known from the extrinsic parameters), and
UPiBR = desired pixel unit vector in reference axis.

Now, recalling that the dot product of two vectors is equal
to the product of their magnitudes multiplied by the cosine of
the angle between them, Eq. 1 can be rewritten as:

R2 = ‖TSCBR‖2 + c2 − 2c× TSCBR • UPiBR (3)
which can be rewritten as:

0 = c2 + c(−2× TSCBR • UPiBR) + ‖TSCBR‖2 −R2

(4)

This is a quadratic in standard form, and if the camera is
inside the stitch sphere will yield a positive and a negative real
solution. The positive solution is the desired answer, which
yields the point on the stitch radius as

TiRR = TCBRR + c× UPiBR (5)

Once this point is known it is projected onto camera A’s
image plane, scaled to the pixel domain and then converted
from the undistorted to distorted pixel domains to determine
the corresponding pixel from Camera A. This process is
exactly the same as that described in Sections III-B through
III-D of de Villiers [14].

B. Creating the homography

OpenCV [15] was used to perform the homography cal-
culation using the specified top percentage of the matches.
The Random Sample Consensus option was selected to reject
outlier matches. The percentage of inlier matches was recorded
and used as further indication of the robustness of the homog-
raphy determined with that particular feature descriptor and
match strength.

C. Comparison metric

The metric used is the average error of the inlier features
used to create the homography as described in Section IV-B.
The error is the distance in pixels between the features in
camera B reprojected onto camera A as determined by the
homography of Section IV-B and photogrammetric calibration
of Section IV-A. This is expressed mathematically as:

Error =
1

N

j<N∑

j=0

(
‖PH

j − PP
j ‖
)

(6)

where:
N = the number of inlier features used,

PH
j = homography based pixel position of feature j, and

PP
j = photogrammetrically based coordinate of feature j.

D. Image Scenes

Figure 3 shows the first scene used for this evaluation, it is
an urban outdoor scene containing man-made structures with
strong edges and texture. Figure 4 shows the outdoor scene
used which contains natural vegetation. Both scenes appear,
subjectively, to contain rich texture in the visual band.

V. RESULTS

A. Intra-band registration

Table I provides the results of registering between visual
images, the values are the number of inliers that agree with
the best fit homography. Each scene is registered three times
using only the top 20%, 50% or 100% of the matches
respectively. The inlier percentage is the percentage of these
top matches that were used. Table II provides the same results
for registering the LWIR images.

The high percentage of agreement gives confidence on the
correctness of the implementations of the four feature-detector
algorithms. This is further supported by Figures 5 and 6, which
show features correctly being matched within each band. Inlier
matches are shown with a green line, while outliers are shown
by the blue lines.

The BRISK algorithm performs poorly when 50% or 100%
of the matches are used as many of the matches are weak and
erroneous. It performs comparably to SIFT and BFROST when
only the top matches are used. BFROST performs poorly on
the LWIR Urban scene, but is comparable to SIFT in terms of
performance when only the top 20% of the matches are used.
SURF is consistently worse than SIFT and only marginally
better than BRISK.

TABLE I
VISUAL TO VISUAL REGISTRATION INLIER PERCENTAGES

Feature Scene 1 Scene 2
Descriptor 20% 50% 100% 20% 50% 100%

SIFT 95.00 99.34 88.15 96.01 99.26 78.86
SURF 65.05 73.60 73.84 94.44 91.26 75.50
BRISK 96.89 85.33 51.75 91.61 71.59 44.12

BFROST 94.11 93.02 86.58 98.92 86.69 65.23

TABLE II
LWIR TO LWIR REGISTRATION INLIER PERCENTAGES

Feature Scene 1 Scene 2
Descriptor 20% 50% 100% 20% 50% 100%

SIFT 100.00 100.00 81.48 92.30 94.11 66.17
SURF 75.00 68.47 66.30 87.17 85.71 75.00
BRISK 91.48 81.19 64.25 100.00 69.29 50.78

BFROST 71.42 77.35 81.13 100.00 80.00 70.37

B. Inter-band registration

Table IV provides the results of registering the LWIR im-
ages onto the visual images, the values are as per Eq. 6. Table
III provides the percentage of inlier features from generating
the best fit homography. Figure 7 helps put these numbers
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(a) LWIR image 1 (b) LWIR image 2

(c) Visual image 1 (d) Visual image 2

(e) Photogrammetrically stitched image

Fig. 3. Scene 1, Urban landscape
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(a) LWIR image 1 (b) LWIR image 2

(c) Visual image 1 (d) Visual image 2

(e) Photogrammetrically stitched image

Fig. 4. Scene 2, Natural landscape
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Fig. 5. SIFT feature matches between visual and visual of Scene 1.

Fig. 6. BRISK feature matches between LWIR and LWIR of Scene 1.

Fig. 7. SIFT feature matches between visual and LWIR of Scene 1.

206



in context by displaying the features matched between the
thermal and visual bands.

Inspection of the values clearly shows that none of the
descriptors were able to successfully register the LWIR and
visual images. All the algorithms obtained errors of several
hundred pixels (expressed in the 3MP AVT Camera’s image
space) in Table IV, this is further shown by the extremely low
agreement percentages in Table III. Often it was not possible
for OpenCV to find more than 6 points (the minimum is 4)
that agreed to create a consensus homography.

SIFT and BFROST had the greatest number of inliers in
the urban and natural scenes respectively, and the second
greatest agreement in the other scene. However BFROST had,
in almost all the tests, a noticeably lower error than all the
other feature descriptors.

A final verification of the correctness of the photogrammet-
ric procedures (in addition to generating Figures 3(e) and 4(e))
was performed. Ten points were crudely selected in each band
in each scene, and their equivalent error was calculated. These
results are given in the final row of Table IV and confirm the
correctness of the photogrammetric procedures. These errors
being in the order of 10 pixels, are due to the non precise
manual feature selection (which is magnified by the difference
in resolutions) and the poor image quality of the Pentax lenses,
whose soft focus in the peripheries of the FOV adversely
affected the calibrations.

LWIR–visual registration based on canonical features does
not perform well. This is due to different keypoints being iden-
tified in each band which is compounded by the descriptions
of correctly identified matching keypoints frequently being
different too.

Further work on feature based matching ma focus on
contour alignment and modification of feature descriptors to
better cater for cross band matching.

VI. CONCLUSIONS

This paper tested four popular feature descriptors for the
purpose of registering LWIR and visual imagery. The feature
descriptors were used in unmodified canonical form6 to fa-
cilitate the selection of which descriptor should modified for
LWIR-visual registration. In addition to the standard calcula-
tion of number of inlier matches, a quantified error based on
comparison to photogrammetric calibration and stitching was
performed.

It was found that none of the algorithms were able to register
across the two bands, although all the algorithms registered
well within either of the bands. This finding is consistent with
Firmenich et al. [3] who speculated that a new feature extractor
may need to be developed for LWIR imagery registration.

SIFT and BFROST significantly outperformed SURF and
BRISK for inter band registration. BFROST was significantly
quicker than SIFT, and so it is recommended for future
modification for LWIR-visual registration.
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TABLE III
LWIR TO VISUAL REGISTRATION INLIER PERCENTAGES

Feature Scene 1 Scene 2
Descriptor 20% 50% 100% 20% 50% 100%

SIFT 57.14 27.77 16.21 33.33 15.21 7.60
SURF 23.07 12.30 5.38 12.00 4.80 1.99
BRISK 28.57 17.75 9.81 25.80 23.22 12.25

BFROST 44.44 22.72 13.33 37.50 17.07 8.43

TABLE IV
LWIR TO VISUAL REGISTRATION ERRORS

Feature Scene 1 Scene 2
Descriptor 20% 50% 100% 20% 50% 100%

SIFT 926.6 488.6 638.2 604.8 812.2 611.4
SURF 743.1 599.1 798.7 471.8 810.1 574.2
BRISK 888.8 765.3 781.9 531.3 763.4 741.0

BFROST 684.6 438.0 620.7 929.2 371.3 441.0
Manual 11.0 11.0
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ABSTRACT

The US Patent and Trademark Office, together with the
NASA Tournament Lab, launched a contest to develop spe-
cialized algorithms to help bring the seven million patents
presently in the patent archive into the digital age. The contest
was hosted by TopCoder.com, the largest competitive online
software developer community. The challenge was to detect,
segment and recognize figures, captions and part labels from
patent drawing images. The solution presented in this work
was the winning submission.

Index Terms— Image analysis, Character recognition,
Image segmentation, Document image analysis

1. INTRODUCTION

Around seven million patents are presently stored in the US
Patent and Trademark Office (USPTO) patent archive. Many
of these patents are originally created before the digital age.
Images of the scanned versions of these old dated patents are
stored in the patent archive. These documents contain de-
scriptive information as well as drawings about the patent.
Most of the drawings are mechanical drawings which contain
a lot of parts. Each part is labeled such that it can be ref-
erenced from the text description. The figures also contain
captions that are used to identify and reference each specific
figure.

The USPTO, together with the Harvard-NASA Tourna-
ment Lab launched an innovation challenge to invite develop-
ers and academics to develop specialized algorithms to detect
and label figures and parts from the USPTO patent archive.
The evaluation and submission interface to the challenge were
hosted by TopCoder.com. TopCoder [1] hosts the world’s
largest competitive community for software developers and
digital creators with a community of over 380,000 members
around the world. Up to $50,000 of prizes were distributed to
contest winners. The challenge ran for four weeks from mid
December 2011 to mid January 2012.

Harvard University concurrently ran a research project
about a study on how competitors work together within such
contests. All registered competitors were divided into teams
of two. The protocol used to match competitors to form teams

is described in [2]. Each week during the contest, competitors
had to complete a survey about their progress and their team-
mates progress. The strategic behavior of TopCoder contes-
tants has been analyzed in [3].

Section 2 describes the problem statement. The algorithm
evaluation method, implementation restrictions and limita-
tions are described. Related work is reviewed in section 3.
The method used by the author to solve the problem is pre-
sented in section 4. Section 5 provides some results produced
by the proposed method. Finally section 6 concludes the arti-
cle.

2. PROBLEM STATEMENT

The problem is to extract useful information from patent
drawing pages. Each patent drawing page contains one or
more figures. There can also be additional data that do not
belong to any of the figures. Each figure has a caption and
consists of many parts. Each part is labeled with text (typi-
cally a number). Some parts may have multiple labels. The
task is to extract the location and caption for each figure and
to extract the location and text for each part label.

Figure 1 illustrates the useful information of a patent
drawing page for the challenge. It contains 3 figures namely
2A, 2B and 2C. Each figure has 14, 8 and 8 part labels, a to-
tal of 30 part labels for the whole drawing page. The figures
are indicated by the blue polygons and the part labels by the
red polygons.

The input to the algorithm consists of a raw input image
and the patent text data if available for the particular patent.
Patent text pages contain text that describes the patent and
their drawings, the text usually contain references to figures
and part labels. The ground truth of a set of 306 patent draw-
ing pages were created for the purpose of evaluating the algo-
rithms. 178 of these drawing pages were provided as a train-
ing set. 35 drawing pages were used for preliminary online
testing. The remaining 93 drawing pages were used for the
final evaluation to determine the prize winning solutions.

The output of an algorithm is evaluated against the ground
truth data. The score for each drawing page is determined by
the correctness (Scorr) and performance score (Sperf ). The
performance score is based on the run-time (T in seconds)
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Fig. 1. Example of a patent drawing page with ground truth
data. Figures are marked with blue and part labels marked
with red polygons.

of the algorithm and calculated by equation 1. No penalty
is applied if the run-time is less than a second, but anything
slower than that can result up to a 10% penalty.

Sperf = 0.9 + 0.1 ∗ ( 1

max(T, 1)
)0.75 (1)

The correctness score is calculated by finding the inter-
section between the bounding boxes of the ground truth data
and the algorithms output. For each correctly matched inter-
section the intersection score is incremented with 0.25 and
incremented with another 0.75 if the text for the label or part
matches. The intersection score is then used to calculated the
precision and recall measurements, which are combined by
the harmonic mean 2 to form the final correctness score for
the given patent drawing page.

Scorr =
2 ∗ precision ∗ recall
precision+ recall

(2)

The score for an individual test case is given by 3. The

overall score is then the sum of scores over all the individual
test cases.

Score = 1000000 ∗ Scorr ∗ Sperf (3)

Competitors were allowed to program in C++, C#, Visual
Basic, Java or Python. The source code size limit was set to 1
MB. No access to external files were allowed. The time limit
for each test case was 1 minute and the memory limit 1024
MB.

3. RELATED WORK

An overview of the benefits, requirements and challenges in-
volved in the development of a patent image retrieval frame-
work is provided in [4]. Furthermore, a patent search engine
called PatMedia was developed based on the proposed frame-
work. The framework segments the patent drawings into fig-
ures, extract their captions and perform feature extraction on
each detected figure. The extracted figure features are used
to index patent drawings and to search for similar drawings
within the patent database. Information extracted from the
associated patent text pages are merged with the image based
information to improve the performance and resolve ambigu-
ities.

The PATSEEK [5] application is a content-based image
retrieval search engine for the US patent database. Just like
PatMedia [4], PATSEEK [5] detects the figures from patent
drawings and extracts a feature vector for each figure to be
used for retrieval purposes. Both of them use slightly different
techniques. PATSEEK do not make use of the information in
the patent text pages and is outperformed by PatMedia.

The work presented in [6] focus on the extraction of fea-
tures from patent or technical drawings for retrieval purposes.
Lines and their attributes are detected from the drawings. The
set of lines is transformed into a nearest neighbor graph and
the graph attributes are converted into a 2-Dimensional his-
togram for fast image comparisons.

The use of angular and radial distribution information for
figure feature description was used in [7]. The work in [7]
focused thus more on 2-Dimensional shape features in patent
drawings.

A method to detect alphanumeric labels from figures is
described in [8]. The work doesn’t focus specifically on
patent drawings, but focuses on documents that contain a mix-
ture of text and figures.

Captions and part labels are extracted from patents in [9]
to create a user friendly browser interface. Their approach
used an unsupervised clustering algorithm to classify con-
nected components as characters or not. It is assumed that
the font used across multiple drawings of the same patent re-
mains the same. The same authors presented a patent drawing
segmentation algorithm in [10]. The segmentation algorithm
performs Delaunay triangulation to segment the drawing into
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a graph. The graph is then further reduced and segmented
such that document layout constraints are not violated.

The method presented in this article use similar tech-
niques used in [4], [8] and [9] to extract figure captions and
part labels. PatMedia used a commercial Optical Character
Recognition (OCR) library where as it was not allowed for
the USPTO challenge.

4. METHOD

The method presented in this work was the top submission
for the USPTO innovation challenge. Patent drawings usually
consist of a header, a typical header can be seen at the top of
the drawing page in figure 1. The figures on the drawing may
be orientated horizontally or vertically. Section 4.1 describes
how the page orientation is detected.

Firstly a margin around the border of the image is cleared
to eliminate the header from further image processing steps.
The gray scale image is then converted to a binary image by
applying a fixed threshold.

Many old patent images contain a lot of salt and pepper
noise. A connected component algorithm is performed and if
the number of very small components detected are more than
30% of the total number of components, a dilate and erode
process are performed to reduce the noise.

4.1. Page orientation

In order to recognize the text from captions and part labels,
the orientation of the page needs to be detected. All the con-
nected components that could possibly be a character are used
to determine the page orientation. Figure 2 illustrates a patent
drawing which is vertically orientated along with its detected
connected components.

A voting system classifies the page to be horizontal or ver-
tical. For each character, a vote is cast for a horizontal layout
if the width of the character is greater than the height, other-
wise a vertical vote is counted. Also, for each character the
nearest neighboring character is found. A vote is then cast de-
pending on whether the two characters are more horizontally
or vertically aligned to each other.

The dominant orientation with the most votes wins.

4.2. Text extraction

The image is segmented through connected component label-
ing. Each connected component can be a character, part of a
figure or image noise. Each connected component needs to be
classified into one of the categories before the figure extrac-
tion and part labeling process can proceed.

Components with a width and height smaller than 13 or
greater than 250 pixels are regarded as not characters. The
resolution of the images were typically 2560 by 3300 pixels.
The remaining components are marked as possible characters

Fig. 2. Vertical page orientation. The connected components
that could be characters are indicated with blue rectangles.

if they do not contain any other component within the charac-
ters axis aligned bounding box.

Components marked as characters are then sorted from
left to right. Groups of character components are created
based on the same merging metric described in [8]. The met-
ric merges two components if their horizontal spacing is small
and they overlap significantly in the vertical direction.

The group of characters are then recognized. Each charac-
ter is separately processed by the character recognition system
explained in section 4.3.

4.3. Character recognition

A simplistic template matching algorithm is used to perform
optical character recognition. Patches containing known char-
acters were manually extracted from the set of training im-
ages. Only the ten numerical characters and the characters f ,
g, a and c were used as templates. The characters f and g had
to be recognized to detect the figure captions. The characters
a and c mostly appear at the end of part labels and within fig-
ure captions. The character b was not recognized because of
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Fig. 3. Characters manually extracted from the set of training
images.

the similarities between b and 6. Figure 3 shows the template
patches.

The connected component under recognition is firstly
scaled to fit an area of 16 by 32 pixels. All the pixels that be-
long to a hole in the character are marked by using a flood fill
algorithm. The scaled image and hole information are com-
pressed into 32 unsigned integers to form the component de-
scriptor.

To find the best matching character, each template is com-
pared with the input component descriptor. The number of
matching pixels P and mismatched pixels F are counted. A
matching score is calculated by (P − F )/(P + F ) and the
best scoring template is used as the recognized character.

4.4. Figure extraction

The bounding box and caption of each figure within the draw-
ing need to be extracted and recognized. Firstly the compo-
nents are extracted as described in section 4.2. Text com-
ponents that contain the pattern f1g are removed from the
component list and added in a list of possible detected figure
captions.

A different method is used to segment the figures when
no figure caption was detected. Components with an area less
than 3002 pixels are merged with their nearest neighboring
component. Larger components are merged only with their
intersecting components. Merging two components mean that
their axis aligned bounding boxes are merged into one bound-
ing box that contains both of the original bounding boxes.
The merging process continues until no more components are
merged. Figure 4 shows the components before the merging
process.

Each component is initially assigned to their nearest fig-
ure caption if captions were detected. Figure 5 shows the
components after the merging process. Note that the three
components below figure 2B should all be assigned to figure
2B and a simple nearest neighbor assignment will not work in
this case and needs to be refined. A segmentation score is cal-
culated by taking into account the bounding box intersecting

Fig. 4. Components before the merging process begins.

area of the segmented figures. The score is penalized when
none or more than one figure caption intersects the bound-
ing box assigned to a figure. The components assignment
are randomly shuffled for 1000 iterations and the best scoring
segmentation is used.

The header of a patent usually contains text that indi-
cates the current sheet number and the total number of sheets.
These sheet numbers are extracted and used to refine the rec-
ognized figure captions.

Possible figure captions are extracted from the patent text
data and sorted numerically. The recognized figure captions
are matched with the captions from the text. The best match-
ing sequence is used for the figure captions in the drawing,
taking into account the sheet numbers. For example the last
sheet should contain the last figures.

The bounding boxes returned in the output are shrunk
such that they minimize their intersection with each other.

4.5. Part labeling

The part labeling process firstly extracts text components de-
scribed in section 4.2. Patent drawings can contain tables or
graphs, usually they do not contain any part label inside their
boundaries. The border of each component is examined. If
the border is more than 25% filled, the component is con-
sidered to be a table or a graph and all the intersecting text

211



Fig. 5. Components after the merging process.

components are removed. Figure 6 shows a patent drawing
that contains a table.

Text components containing one of the following charac-
teristics do not classify as part labels:

• The width or height is smaller than 10 pixels.
• The component contains more that 4 characters.
• Figure captions are removed.
• Character recognition matching score below zero.
• No numbers occur within the text.
• The text contains more than one alphabetic character.
• The border surrounding the text is more than 4% filled.

Words that contain numbers are extracted from the patent
text data. The recognized text from the remaining text com-
ponents are corrected by finding the best matched word from
the patent text data. The correction only takes place if the
character recognition matching score is below 0.5. The text
component is removed if the best match from the patent text
changed more than half of the original recognized text.

Finally the average height and area of the remaining text
components are computed. Any text component where the
height or area of which differs significantly from the aver-
age is removed from the output. The bounding boxes of the
parts are shrunk such that they minimize their intersection
with each other.

Fig. 6. Patent drawing that contains a table. Red rectangles
show the ground truth data and blue rectangles show the de-
tected part labels by the algorithm.

Table 1. Training set performance.

Correct Total Percentage
Figures detected 234 285 82.1

Captions recognized 213 234 91.0
Part labels detected 2875 3752 76.6
Labels recognized 2424 2875 84.3

5. RESULTS

Table 1 shows the performance on the training set. The per-
centage of correctly segmented figures, recognized captions,
part label locations detected and part label text recognized are
shown. The running time of the algorithm was below 1 sec-
ond for all cases, thus avoiding any time penalty. The average
recall and precision measurements on the training set is shown
in Table 2.

The overall score was 275 million out of a possible 356
million based on the USPTO challenge scoring metric on the
training set.
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Table 2. Recall and precision measurements.

Recall Precision
Figures 0.8534 0.8537

Part labels 0.7533 0.7358

Fig. 7. Patent drawing that contains hand written characters
and figures that are difficult to label.

6. CONCLUSION

The work presented in this paper provides a way to segment
and label figures from patent drawing pages. A method for
part label extraction has been described. The algorithm was
tested on a set of real patent drawings and the results look
promising as the algorithm scored at the top within the chal-
lenge.

There is still room for improvements to the algorithm due
to the limited duration of the USPTO innovation challenge. A
more sophisticated character recognizer could be integrated.
Figure 7 shows a drawing with hand written characters and
figures that are difficult to segment.

The USPTO challenge1 was an interesting challenge and
drawn the attention of many top problem solvers around the

1http://community.topcoder.com/longcontest/
stats/?module=ViewOverview&rd=15027

world. Hopefully more challenges will be launched in the
future to promote and encourage academics and developers
to solve real world problems together on a global scale.
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