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Abstract. One of the most successful approaches to the formalization of
commonsense reasoning is the work by Lehmann and colleagues, known
as the KLM approach, in which defeasible consequence relations with a
preferential semantics are studied. In spite of its success, KLM is limited
to propositional logic. In recent work we provided the semantic founda-
tion for extending defeasible consequence relations to modal logics and
description logics. In this paper we continue that line of investigation by
going beyond the basic (propositional) KLM postulates, thereby making
use of the additional expressivity provided by modal logic. In particular,
we show that the additional constraints we impose on the preferential se-
mantics ensure that the rule of necessitation holds for the corresponding
consequence relations, as one would expect it to. We present a represen-
tation result for this tightened framework, and investigate appropriate
notions of entailment in this context — normal entailment, and a rational
version thereof.
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1 Introduction and Motivation

The formalization of commonsense reasoning, as usually studied in the AI tradi-
tion, depends crucially on the eschewal of the monotonicity property of classical
logic, or, at the very least, on a careful neutralization thereof. This issue has been
dealt with in a variety of ways in the non-monotonic literature. One particular
approach that has been quite successful is the one by Lehmann and colleagues.
In their seminal papers [12, 14], the authors consolidated what became known as
the KLM approach, in which (propositional) defeasible consequence relations |∼
with a preferential semantics are studied. In this setting, α |∼ β is given the
meaning that “all normal (i.e., most preferred) α-worlds are β-worlds”, leaving
it open for α-worlds that are exceptional (or less preferred) not to satisfy β. The
theory that has been developed around this notion allows us to cope with ex-
ceptionality when performing reasoning. Besides its simplicity and elegance, the
type of consequence relations studied by Lehmann and colleagues has also played
an important role in the formalization of commonsense reasoning in providing
the foundation for the important notion of rational closure [14].

Notwithstanding its fruitfulness, the KLM approach is limited to proposi-
tional logic and so it remained until recently despite some attempts to recast it
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in more expressive formalisms [5, 9, 11, 13, 15, 16]. Indeed, many scenarios that
are interesting from the standpoint of modern AI cannot be satisfactorily formal-
ized in a propositional language. Extensions of the KLM approach have therefore
been driven by either extending the syntax [9, 11, 16] or the underlying prefer-
ential semantics [5, 13] to logics with more expressivity. A unifying semantics,
with a corresponding representation result, was nevertheless still missing until a
recent work by the present authors [6, 7] provided the semantic foundation for
extending defeasible consequence relations to modal logics [2] and description
logics (DLs) [1]. In the referred papers we lifted the notion of rational closure
as defined by Lehmann and Magidor in the propositional case [14] to modal and
description logics, thereby providing a preliminary account of this construction
in logics with more structure than the propositional one.

It turns out that the aforementioned approach, although counting as a true
extension of the KLM framework to non-propositional languages, is still limited
in the sense that it does not make use of the additional expressivity of e.g. modal
languages. To make this more precise, one can state defeasible statements of the
form α |∼ β, where α and β now can be any modal sentence; however the syn-
tactic characterization of defeasible consequence (i.e., the set of Gentzen-style
properties specifying the expected behavior of |∼) is confined to the original
Boolean postulates proposed by Kraus et al. In other words, the additional ex-
pressivity of modal logic is not reflected in terms of new properties, which means
that modal sentences are basically opaque to the postulates. Moreover, despite
the underlying modal formalism, some inference rules that are seen as important
in a modal context such as the necessitation rule behave in an unexpected way.

In this paper we analyze these issues and address them by proposing ad-
ditional properties that a truly modal-based defeasible consequence relation |∼
ought to satisfy. In particular, we study what semantic constraints should be
added to the original preferential semantics for the new properties to hold.

The remainder of the present paper is organized as follows: After some log-
ical preliminaries (Section 2), we recap our preferential semantics for defeasible
modal logic (Section 3). We then motivate the need for KLM-style properties
reflecting the additional expressivity of modal languages (Section 4). In partic-
ular, we define appropriate semantic constraints warranting the new postulates
and establish the corresponding representation result. In Section 5 we define
entailment from defeasible knowledge bases and motivate the need to move be-
yond rational closure. We conclude with a summary of our contributions and
directions for future research.

2 Modal Logic

We work in a (finite) set of atomic propositions P, using the logical connectives
∧ (conjunction), ¬ (negation), and a set of modal operators 2i, 1 ≤ i ≤ n.
Propositions are denoted by p, q, . . ., and formulas by α, β, . . ., built up in the
usual way according to the rule: α ::= p | ¬α | α ∧ α | 2iα. All the other
truth functional connectives (∨, →, ↔, . . . ) are defined in terms of ¬ and ∧ in
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the usual way. Given 2i, with 3i we denote its dual operator, i.e., for any α,
3iα ≡def ¬2i¬α. We use > as an abbreviation for p ∨ ¬p and ⊥ for p ∧ ¬p, for
some p ∈ P. With L we denote the set of all formulas of the modal language.

As for the semantics, we assume the standard possible-worlds one:

Definition 1. A Kripke model is a tuple M = 〈W,R,V〉 where W is a set of
possible worlds, R = 〈R1, . . . ,Rn〉, where each Ri ⊆ W ×W is an accessibility
relation on W, 1 ≤ i ≤ n, and V : W× P −→ {0, 1} is a valuation function.

Figure 1 depicts two examples of Kripke models for P = {p, q}.

M1 :

qw1,2 p, q w1,3

w1,1 p w1,4

M2 :

qw2,2 p, q w2,3

w2,1 p w2,4

Fig. 1. Examples of Kripke models.

Sometimes it is convenient to talk about possible worlds in the context of their
respective Kripke models. Given M = 〈W,R,V〉 and w ∈W, a pair (M , w) is a
pointed Kripke model. Pointed Kripke models are not to be viewed as objects, as
variables are commonly regarded in first-order contexts. A set of pointed Kripke
models describes the intention of a modal statement — cf. Definition 2 below.

Formulas of our modal language are true or false relative to a possible world
in a Kripke model. This is formalized by the following truth conditions:

Definition 2. Given M = 〈W,R,V〉 and w ∈W:

• M , w  p if and only if V(w, p) = 1;
• M , w  ¬α if and only if M , w 6 α;
• M , w  α ∧ β if and only if M , w  α and M , w  β;
• M , w  2iα if and only if M , w′  α for all w′ such that (w,w′) ∈ Ri.

Given α ∈ L and M = 〈W,R,V〉, M satisfies α if there is w ∈W such that
M , w  α. We say that α is true in M (alias M is a model of α) if M , w  α for
every w ∈W. For a given system of modal logic, we say that α is valid (denoted
|= α) if α is true in every model of the underlying system. Here we shall assume
the system of normal modal logic K, of which all the other normal modal logics
are extensions. Semantically, K is characterized by the class of all Kripke models
(Definition 1). We say that α locally entails β in the system K (denoted α |= β)
if for every model M and every w in M , M , w  α implies M , w, β.

Syntactically, K corresponds to the smallest set of sentences containing all
propositional tautologies, all instances of the axiom schema K : 2i(α → β) →
(2iα→ 2iβ), 1 ≤ i ≤ n, and closed under the rule of necessitation below:

(RN)
α

2iα
(1)
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The following are derived rules in the system K:

(RK)
α1 ∧ . . . ∧ αk → β

2iα1 ∧ . . . ∧2iαk → 2iβ
(Mon)

α→ β

2iα→ 2iβ
(Cgr)

α↔ β

2iα↔ 2iβ

Given a system of modal logic, from a knowledge representation perspective it is
convenient to be able to work within a class of models M of the corresponding
system, representing e.g. some background knowledge of relevance for a given
application domain.

3 Modal Defeasible Consequence

A modal defeasible consequence relation |∼ is defined as a binary relation on
formulas of our underlying modal logic, i.e., |∼ ⊆ L × L. We say that |∼ is a
preferential consequence relation [6] if it satisfies the following set of properties
(alias postulates or Gentzen-style rules, as they are sometimes referred to):

(Ref) α |∼ α (LLE)
|= α↔ β, α |∼ γ

β |∼ γ
(And)

α |∼ β, α |∼ γ
α |∼ β ∧ γ

(Or)
α |∼ γ, β |∼ γ
α ∨ β |∼ γ

(RW)
α |∼ β, |= β → γ

α |∼ γ
(CM)

α |∼ β, α |∼ γ
α ∧ β |∼ γ

The semantics of preferential consequence relations is in terms of modal pref-
erential models; these are partially ordered structures with states labeled by
pointed Kripke models (cf. Section 2):

Definition 3. Let M be a class of Kripke models. UM := {(M , w) | M =
〈W,R,V〉 ∈ M and w ∈W}.

Let S be a set and ≺ ⊆ S×S be a strict partial order on S, i.e., ≺ is irreflexive
and transitive. Given S′ ⊆ S, we say that s ∈ S′ is minimal in S′ if there is no
s′ ∈ S′ such that s′ ≺ s. With min≺ S′ we denote the minimal elements of S′ ⊆ S.
We say that S′ ⊆ S is smooth [12] if for every s ∈ S′ either s is minimal in S′ or
there is s′ ∈ S′ such that s′ is minimal in S′ and s′ ≺ s.

Definition 4 (Preferential Model). A preferential model is a tuple P =
〈S, `,≺〉 where S is a set of states; ` : S −→ UM is a labeling function; ≺ ⊆ S×S
is a strict partial order on S satisfying the smoothness condition.1

Given a preferential model P = 〈S, `,≺〉 and α ∈ L, with JαK we denote the
set of states satisfying α (α-states for short) according to the following definition:

Definition 5. Let P = 〈S, `,≺〉 and let α ∈ L. Then JαK := {s ∈ S | `(s)  α}.

1 That is, for every α ∈ L, the set JαK (cf. Definition 5) is smooth.
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States lower down in the order are more preferred (or more normal) than
those higher up. As an example, let M be the class of K-models depicted in
Figure 1. Then UM = {(Mi, wi,j) | i = 1, 2 and 1 ≤ j ≤ 4}. Figure 2 below
depicts the preferential model P = 〈S, `,≺〉 where S = {si | 1 ≤ i ≤ 8}, ` is
such that `(s1) = (M1, w1,1), `(s2) = (M2, w2,1), `(s3) = (M1, w1,2), `(s4) =
(M1, w1,3), `(s5) = (M2, w2,3), `(s6) = (M2, w2,2), `(s7) = (M1, w1,4), and
`(s8) = (M2, w2,4), and ≺ is the transitive closure of {(s1, s3), (s2, s3), (s3, s4),
(s3, s5), (s4, s6), (s5, s6), (s6, s7), (s6, s8)}.

P :

• s2 (M2, w2,1)•(M1, w1,1) s1

•(M1, w1,2) s3

• s5 (M2, w2,3)•(M1, w1,3) s4

•(M2, w2,2) s6

• s8 (M2, w2,4)•(M1, w1,4) s7

m
o
st

p
re

fe
rr

ed
st

a
te

s
←−
−−
−−
−−
−−
−−
−−
−−

Fig. 2. A preferential model for M = {M1,M2}, with M1 and M2 as in Figure 1.

Given P = 〈S, `,≺〉 and α ∈ L, α is satisfiable in P if JαK 6= ∅, otherwise α
is unsatisfiable in P. We say that α is true in P (denoted P  α) if JαK = S.

From the definition of a preferential model one can see that a class M of
Kripke models determines a class of preferential models. We denote the class of
preferential models based on M with MP . We say that α is valid in MP if α
is true in every preferential model P of MP , i.e., P  α for every P ∈MP .

Given P = 〈S, `,≺〉, the defeasible statement α |∼P β holds in P if and
only if min≺JαK ⊆ JβK, i.e., every ≺-minimal α-state is a β-state. As an example,
in the model P of Figure 2, we have ¬q |∼P 2¬p and also q |∼P 3(¬p ∧ ¬q).

The representation theorem for preferential consequence relations then states:

Theorem 1 (Britz et al. [6]). A modal defeasible consequence relation is a
preferential consequence relation if and only if it is defined by some preferential
model, i.e., |∼ is preferential if and only if there exists P such that |∼ = |∼P .

If, in addition to the preferential properties, the defeasible consequence rela-
tion |∼ also satisfies the following Rational Monotonicity property [14], it is said
to be a rational consequence relation:

(RM)
α |∼ β, α 6|∼ ¬γ

α ∧ γ |∼ β
The semantics of rational consequence relations is in terms of ranked models,

i.e., preferential models in which the preference order is modular:

Definition 6 (Modular Order). Given a set S, ≺ ⊆ S× S is modular if and
only if there is a ranking function rk : S −→ N such that for every s, s′ ∈ S,
s ≺ s′ if and only if rk(s) < rk(s′).



6 Britz, Meyer, Varzinczak

Definition 7 (Ranked Model). A ranked model R = 〈S, `,≺〉 is a preferential
model such that ≺ is modular.

The preferential model in Figure 2 is also an example of a ranked model.

Theorem 2 (Britz et al. [6]). A modal defeasible consequence relation is a
rational consequence relation if and only if it is defined by some ranked model,
i.e., |∼ is rational if and only if there exists R such that |∼ = |∼R.

4 Beyond the KLM Postulates

Britz et al.’s constructions and representation results are with respect to the
same set of properties used to characterize propositional rational consequence.
This has the advantage that methods employed in a propositional non-monotonic
setting translate seamlessly to a modal context. This includes reasoning tasks
such as computing the rational closure of defeasible knowledge bases [6, 7]. In that
respect, the definitions in Section 3 provide a good starting point for investigating
more elaborated versions of modal rational consequence. Here we are interested
in doing precisely this and we start by making an important observation:

Proposition 1. Let α ∈ L and let M be a class of Kripke models. Then α is
valid in M if and only if α is valid in MP .

That is, all the validities of the underlying system of modal logic (or of the
specific class of models we are working with) remain valid with respect to our
preferential semantics. An immediate consequence of this is the following result:

Corollary 1. All inference rules of the underlying modal logic are sound with
respect to the preferential semantics.

It is easy to see why: given a rule ρ which is sound in the respective system
of modal logic and of which the premise α is preferentially valid, from Propo-
sition 1 follows that α is (modally) valid, from which follows the validity of ρ’s
consequent β, which, by Proposition 1 again, must be preferentially valid.

In spite of preserving all modal validities and rules of inference, the current
preferential semantics gives rise to a rather odd phenomenon: Contrary to the
classical possible worlds semantics, in the preferential semantics some inference
rules need not be satisfied by individual (preferential or ranked) models. To make
this more precise, one can devise models in which the rule of necessitation (RN)
does not hold. Indeed, the current preferential semantics is too liberal in the
sense that it allows for legitimate models in which α is true (i.e., JαK = S) but
in which 2iα fails to hold (i.e., J2iαK 6= S), for some 1 ≤ i ≤ n. To witness,
let M1 be as in Figure 1, and let S = {s1}, `(s1) = (M1, w1,4), and ≺= ∅. It
is easy to check that P = 〈S, `,≺〉 is a preferential model and that P  p but
P 6 2p. Hence the preferential semantics for modal consequence is not, strictly
speaking, truly normal in the modal sense.

It should not be that hard to see that this is not an inoffensive feature: In
a given P one is told that every state is an α-state, but at the same time it is
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possible to refer to a ¬α-world that is part of the structure of P. It sounds as
though P is not particularly accurate in the knowledge it conveys. The conse-
quences of this become apparent when considering specific application domains.
For instance, in an action context, this could mean that there is a possible execu-
tion of tossing a coin having as outcome “not-heads and not-tails”, even though
there is no configuration of states other than “heads or tails”.

With a similar argument we can also show that the rule of congruence (Cgr)
in general is not satisfied ‘locally’, i.e., in an arbitrary model: Let M1 be as in
Figure 1, and let S = {s1}, `(s1) = (M1, w1,1), and ≺= ∅. Then P = 〈S, `,≺〉 is
a preferential model and P  ¬p↔ ¬q but P 6 2¬p↔ 2¬q. (That this is not
particularly desirable should not be that hard to see.) The same counter-example
applies to Rules RK and Mon.

Surely all of this has to do with the extra richness of modal structures when
compared to the propositional ones, but also, as alluded to above, to the rather
liberal character of our original preferential semantics and its interplay with the
corresponding syntactic characterization.

The obvious direction to follow in tackling the above issues is through the
requirement of additional restrictions in the semantics with appropriate postu-
lates characterizing them. Indeed, the rationality properties from Section 3 seem
too weak in a modal context, as they do not really make use of the full expres-
siveness of modal logic. Without properties referring directly to the extra opera-
tor 2, modal formulas are treated in a completely opaque way by the remaining
Boolean postulates. Hence we shall investigate extra KLM-style properties that
do make use of the non-Boolean connectives of the underlying language.

The requirement that every preferential model also satisfy the rule of neces-
sitation provides us with insights towards our stated aim. In what follows we
shall have a closer look at it.

Proposition 2. Let α ∈ L and P be a preferential model. Then P  α if and
only if ¬α |∼P ⊥ holds in P.

‘Local’ (i.e., model-wise) satisfaction of the rule of necessitation amounts to
having 2α true in a model whenever α is true in the same model. That is to say,
RN holds in P if P  α implies P  2iα, for every 1 ≤ i ≤ n. Given this and
Proposition 2, we obtain the following KLM-style version of RN:

(Norm)
α |∼ ⊥

3iα |∼ ⊥
, for 1 ≤ i ≤ n (2)

We call Property (2) Normality, as it is the KLM version of a fundamental
property of normal modal logics, namely the rule of necessitation. Intuitively it
says that what is inconsistent should not be possible.

The result in Proposition 2 also allows us to derive a KLM-style version of
the rule of congruence. Cgr holds in P if P  α↔ β implies P  2iα↔ 2iβ,
for every 1 ≤ i ≤ n, that is, if the following rule holds in P:

(Equiv)
¬(α↔ β) |∼ ⊥

¬(2iα↔ 2iβ) |∼ ⊥
, for 1 ≤ i ≤ n (3)
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With an analogous argument one can derive the following properties ensuring,
respectively, Mon and RK:

(Imp)
¬(α→ β) |∼ ⊥

¬(2iα→ 2iβ) |∼ ⊥
, for 1 ≤ i ≤ n (4)

(RK|∼)
¬(α1 ∧ . . . ∧ αk → β) |∼ ⊥

¬(2iα1 ∧ . . . ∧2iαk → 2iβ) |∼ ⊥
, for 1 ≤ i ≤ n (5)

Being derived from inference rules that hold in every system of classical
normal modal logics, the postulates in (2)–(5) stand as reasonable properties to
have in modal preferential reasoning. As we have seen, none of them hold in the
standard preferential semantics.

New postulates are usually captured in the semantics by means of additional
restrictions on the preferential models. For instance, in the evolution from prefer-
ential consequence relations to rational ones, the rational monotonicity property
became warranted by requiring the partial order ≺ to be a modular ordering [14].
As we shall see, it turns out that one can also force extra properties (as the ones
we stated above) by imposing additional restrictions on the set of states and on
the labeling function, a route that seems not to have been explored so far.

Looking back at the counter-examples to local satisfaction of the inference
rules, a common pattern emerges: a given rule is violated because of a pointed
Kripke model acting “behind the curtain”, i.e., a pointed model labeling no state
whatsoever but which (implicitly) still interferes with states that are labeled with
pointed models it relates to. We call these pointed models occurring implicitly
in a preferential model spurious models.2

We claim that a modal preferential semantics should not allow for spurious
models. The set of states and the labeling function must be disciplined in such
a way as to prevent a pointed model from determining the truth of formulas
without being itself associated with any state. We make this more precise now.

Definition 8 (Non-Spuriousness). A pair (S, `) is non-spurious if and only
if, for all s ∈ S with `(s) = (M , w) for some M = 〈W,R,V〉, and for all w′ ∈W
such that (w,w′) ∈ Ri for some i, there exists s′ ∈ S with `(s′) = (M , w′).

The non-spuriousness condition requires that whenever a possible world can
be referred to indirectly, then it is indeed a world that can be accessed directly.

Definition 9 (Non-Spurious Model). A non-spurious model N = 〈S, `,≺〉
is a preferential model such that (S, `) is non-spurious.

Given a non-spurious model N = 〈S, `,≺〉 and a formula α ∈ L, as before
with JαK we denote the set of elements of S satisfying α (cf. Definition 5). The
model depicted in Figure 2 is also an example of a non-spurious (ranked) model.

The definition of non-spurious model puts us in a position to state the first
of the results leading us to the realization of our stated aims:

2 Note that requiring the labeling function to be surjective would be too strong as it
would require the cardinality of S to be at least that of UM.
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Lemma 1 (Soundness). Let N = 〈S, `,≺〉 be a non-spurious model and let |∼N

be the defeasible consequence relation it defines. Then |∼N satisfies the preferen-
tial properties (Ref), (LLE), (And), (Or), (RW) and (CM), as well as the prop-
erties (Norm), (Equiv), (Imp) and (RK|∼). If N is moreover a ranked model,
then |∼N also satisfies (RM).

Before we address completeness, it is worth making an observation:

Proposition 3. Let |∼ be a preferential consequence relation. If |∼ satisfies
(Norm), then it satisfies (Equiv), (Imp) and (RK|∼).

The proof of Proposition 3 relies on Propositions 1 and 2 and on the fact that
Rules RK, Mon and Cgr can be derived from RN and the modal validities in the
classical case. From the result above we conclude that it is enough to restrict
our attention to those consequence relations satisfying (Norm).

Definition 10 (Normal Consequence). A modal consequence relation |∼ is
a normal consequence relation if it satisfies all the preferential properties from
Section 3 together with (Norm).

Lemma 2 (Completeness). Let |∼ ⊆ L×L be a normal consequence relation.
Then there exists a non-spurious ranked model N such that |∼N = |∼.

We are now ready to state one of the main results of the present paper:

Theorem 3. A defeasible consequence relation is a normal consequence relation
if and only if it is defined by some non-spurious model.

If |∼ is a normal consequence relation also satisfying RM, we call |∼ a rational
normal consequence relation. This leads us to our second representation result:

Theorem 4. A defeasible consequence relation is a rational normal consequence
relation if and only if it is defined by some non-spurious ranked model.

5 Normal Entailment

So far we have assessed |∼ from the perspective of consequence relations. Fol-
lowing Lehmann and Magidor [14], one can also view |∼ as a connective in an
enriched modal language, which allows us to write down defeasible statements (or
‘conditionals’, as they are also referred to). Given a set of defeasible statements
of the form α |∼ β, from a knowledge representation and reasoning perspective
it becomes important to address the question of what it means for a defeasible
statement to be entailed by others [14].

A defeasible knowledge base K|∼ is a finite set of statements α |∼ β, where
α, β ∈ L [6]. Given a non-spurious model N , we extend the notion of satisfaction
to knowledge bases in the obvious way: N  K|∼ if α |∼N β for every α |∼ β ∈
K|∼. This leads us to an obvious definition of entailment:

Definition 11 (Normal Entailment). K|∼ normally entails α |∼ β if and
only if for every non-spurious model N , if N  K|∼, then α |∼N β.
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On a related note, the normal closure of K|∼ is defined as the intersection of
all the normal consequence relations containing K|∼.

Theorem 5. Let K|∼ be a defeasible knowledge base. Then (i) the set of all
sentences normally entailed by K|∼ is a Tarskian consequence relation; (ii) it is
a normal consequence relation; (iii) it coincides with the normal closure of K|∼.

In the context of normal consequence, normal entailment is therefore the
appropriate notion of entailment for defeasible knowledge bases. However, if we
shift our focus to the class of rational normal consequence relations, the obvious
definition of rational normal entailment does not provide a desirable result.

Definition 12 (Rational Normal Entailment). K|∼ rationally normally en-
tails α |∼ β if and only if for every non-spurious ranked model N , if N  K|∼,
then α |∼N β.

Theorem 6. Given a defeasible knowledge base K|∼, the set of defeasible state-
ments rationally normally entailed by K|∼ is exactly the normal closure of K|∼.

So from Theorem 6 it follows that rational normal entailment generates a
consequence relation that is normal, but is not always rational. This is similar
to a result obtained for rational consequence relations [6]. The following proposal
to define and construct a viable notion of rational normal closure is analogous
to that proposed by Britz et al. [6] which, in turn, is based on the proposal by
Lehmann and Magidor [14].

Definition 13. Let K|∼ be a defeasible knowledge base. The preference order �
generated by K|∼ is a binary relation on the set of rational normal consequence
relations containing K|∼, defined as follows: |∼0 is preferable to |∼1 (written
|∼0 � |∼1) if and only if

• there is an α |∼ β ∈ |∼1 \ |∼0 such that for all γ such that γ ∨ α |∼0 ¬α and
for all δ such that γ |∼0 δ, we also have γ |∼1 δ, and

• for every γ, δ ∈ L, if γ |∼ δ is in |∼0 \ |∼1, then there is an assertion ρ |∼ ν
in |∼1 \ |∼0 such that ρ ∨ γ |∼1 ¬γ.

The idea is to define rational normal closure as the most preferred (with
respect to �) of all the rational normal consequence relations containing K|∼.

Definition 14. Let K|∼ be a defeasible knowledge base, let KR be the class of ra-
tional normal consequence relations containing K|∼, and let � be the preference
ordering on KR generated by K|∼. If � has a (unique) minimum element |∼,
then the rational normal closure of K|∼ is defined as |∼.

In order to provide the conditions for the existence of rational normal closure,
we first need to define a ranking of formulas with respect to K|∼ which, in turn,
is based on a notion of exceptionality. A formula α is said to be exceptional for
a defeasible knowledge base K|∼ if and only if K|∼ normally entails > |∼ ¬α. A
defeasible statement α |∼ β is exceptional for K|∼ if and only if its antecedent α
is exceptional for K|∼.
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Let E(K|∼) denote the subset of K|∼ containing statements that are excep-
tional for K|∼. We define a non-increasing sequence of subsets of K|∼ as follows:
E0 = K|∼, and for i > 0, Ei = E(Ei−1). Clearly there is a smallest integer k
such that for all j ≥ k, Ej = Ej+1. From this we define the rank of a formula
with respect to K|∼ as follows:3 rK|∼(α) is the smallest integer i such that α is
not exceptional for Ei. If α is exceptional for Ek (and therefore exceptional for
all Es), then α does not have a rank (denoted as rK|∼(α) =∞). Intuitively, the
higher the rank of a formula, the more exceptional it is with respect to K|∼.

Theorem 7. Let K|∼ be a defeasible knowledge base. The rational normal clo-
sure of K|∼ exists and is the set R|∼ of defeasible statements α |∼ β such that
either rK|∼(α) < rK|∼(α∧¬β), or rK|∼(α) =∞ (in which case rK|∼(α∧¬β) =∞).

We conclude this section by observing that exceptionality checking for normal
entailment cannot be reduced to (local) classical entailment, as is the case for
preferential entailment. More precisely, given a defeasible knowledge base K|∼,
let K→ be its classical counterpart in which every defeasible statement of the
form γ |∼ δ in K|∼ is replaced by γ → δ. It can be shown that K|∼ preferentially
entails ¬α if and only if ¬α is (locally) entailed by K→ [6]. And while it is easy to
show that ¬α being (locally) entailed byK→ implies thatK|∼ normally entails ¬α
(i.e., α is exceptional for K|∼), it is just as easy to construct a counterexample
which shows that the converse does not always hold.

On the one hand the result above is a negative one as it rules out a reduc-
tion to classical entailment for computing rational normal closure. On the other
hand it is of theoretical importance since it is a concrete indication that normal
rational consequence is a true extension of propositional defeasible consequence.

6 Concluding Remarks

Recapitulating the main contributions of this paper, they can be summarized
as follows: (i) We have provided concrete evidence that the move from propo-
sitional to modal-based defeasible consequence relations bring about gaps that
the original KLM postulates are not able to cope with; (ii) We have tightened
our preferential semantics for modal logic by motivating and defining additional
constraints on preferential models; (iii) We have motivated extra KLM-style pos-
tulates that do make use of the additional expressiveness of modal logic; (iv) We
have proved new representation theorems establishing the link between the se-
mantic constraints and the new set of postulates, and (v) We have extended the
notion of rational closure for the case of normal consequence relations.

Crocco and Lamarre [10] as well as Boutilier [4] have also investigated de-
feasible consequence in a modal context. In particular, Boutilier showed that
(propositional) nonmonotonic consequence can be embedded in conditional log-
ics via a binary modality ⇒. The links between our richer framework and the
conditional ⇒ remain to be explored in more detail, though.

3 Observe that our terminology differs from that of Britz et al. [6], but is consistent
with that of Lehmann and Magidor [14].
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Our representation result paves the way for both the investigation into further
modal properties and the definition of effective decision procedures for modal
preferential reasoning. Another avenue for future research is the integration of
the refined approach here presented with notions of typicality [3] and defeasible
modalities [8], thereby establishing the foundation of a general framework for
modal defeasible reasoning.
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