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Abstract

Historically, approaches to defeasible reasoning have
been concerned mostly with one aspect of defeasibility,
viz. that of arguments, in which the focus is on normal-
ity of the premise. In this paper we are interested in an-
other aspect of defeasibility, namely that of defeasible
modes of reasoning. We do this by adopting a preferen-
tial modal semantics that we defined in previous work
and which allows us to refer to the relative normality
of accessible worlds. This leads us to define preferen-
tial versions of the traditional notions of knowledge, be-
liefs, obligations and actions, to name a few, as studied
in modal logics. The resulting preferential modal logics
make it possible to capture, and reason with, aspects of
defeasibility heretofore beyond the reach of modal for-
malisms.

Introduction and Motivation
Defeasible reasoning, as traditionally studied in the litera-
ture on non-monotonic reasoning, has focused mostly on one
aspect of defeasibility, namely that of arguments. Such is the
case, for instance, in the well-known KLM approach (Kraus,
Lehmann, and Magidor 1990; Lehmann and Magidor 1992),
in which (propositional) defeasible consequence relations |∼
are studied. In this setting, the meaning of a defeasible state-
ment (or a ‘conditional’, as it is sometimes referred to) of
the form α |∼ β is that “all normal α-worlds are β-worlds”,
leaving it open for α-worlds that are, in a sense, exceptional
not to satisfy β. With the theory that has been developed
around this notion it becomes possible to cope with excep-
tionality when performing reasoning.

There are of course many other appealing and equally use-
ful aspects of defeasibility besides that of arguments. These
include notions such as typicality (Giordano et al. 2009;
Booth, Meyer, and Varzinczak 2012), concerned with the
most typical cases or situations (or even the most typical
representatives of a class), and belief plausibility (Baltag and
Smets 2008), which relates to the most plausible epistemic
possibilities held by an agent, amongst others. It turns out
that with KLM-style defeasible statements one cannot cap-
ture these aspects of defeasibility. This has to do partly with
the syntactic restrictions imposed on |∼, namely no nesting
of conditionals, but, more fundamentally, it relates to where
and how the notion of normality is used in such statements.

Indeed, in a KLM defeasible statement α |∼ β, the nor-
mality spotlight is somewhat put on α, as though normal-
ity was a property of the premise and not of the conclusion.
Whether the β-worlds are normal or not plays no role in the
reasoning that is carried out. Furthermore, normality is as-
sumed to be a property of the premise as a whole, and not
of its constituents. Technically this means one cannot re-
fer directly to normality of a sentence in the scope of log-
ical operators. This is also the case in recent extensions of
the KLM approach to logics that are more expressive than
the propositional one (Britz, Heidema, and Meyer 2008;
Britz, Meyer, and Varzinczak 2011a; 2011b).

In this paper we are interested in aspects of defeasibil-
ity related to the aforementioned idea of beliefs that are ex-
pressed in terms of most plausible accessible worlds. We in-
vestigate a more general notion which we refer to as defea-
sible modes of inference. These amount to preferential ver-
sions of the traditional notions of knowledge, beliefs, obli-
gations and actions, to name a few, as studied in modal log-
ics. For instance, in an action context, one may want to state
that the outcome of a given action a is usually α, i.e., in
the most normal situations resulting from the action’s exe-
cution, α holds. This is notably different from saying that in
the most normal worlds, the result of performing the action a
is always α, i.e., stating > |∼ 2aα in Britz et al.’s (2011a)
modal extension to preferential reasoning.

To give a more concrete example, one thing is to say that
in any normal situation, a head-on collision at high speed
results in a situation where there are fatalities, whereas an-
other one is to say that in any situation, a head-on collision
at high speed results in a situation in which there normally
are fatalities. Here we are interested in the formalization of
the latter type of statement, where it becomes important to
shift the notion of normality from the antecedent of an infer-
ence to the effect of an action, and, importantly, use it in the
scope of other logical constructors.

The importance of defeasibility in specific modes of rea-
soning is also illustrated by the following example. Al-
though one may envisage a situation where the velocity of a
sub-atomic particle in a vacuum is greater than c (the speed
of light in a vacuum), it is in a sense known that c is the high-
est possible speed. Moreover, one can derive factual conse-
quences of this scientific theory that also will be ‘known’.
This venturous version of knowledge, which patently dif-



fers from belief, provides for a more fine grained notion of
knowledge that may turn out to be wrong, i.e., that is defea-
sible, but that is not of the same nature as suppositions or
beliefs. Our proposal is not aimed at challenging the posi-
tion of knowledge as indefeasible, justified true belief (Get-
tier 1963; Lehrer and Paxson 1969), but rather provides an
extension to epistemic modal logics to allow for reasoning
with a modality that we shall, argueably for lack of a more
suitable term, refer to as “defeasible knowledge”.

Our third example concerns obligations and weaker ver-
sions thereof. There is a subtle difference between stating
that, in any normal situation, one ought to tell the truth, and
stating that, in any situation, it is one’s normal duty to tell
the truth. In the latter the normality of the current situation
is immaterial, whereas in the former it determines the truth
of the statement. Therefore, the shift in focus is again from
normality of the present world, to relative normality of ac-
cessible worlds.

Scenarios such as the ones depicted above require an
ability to talk about the normality of effects of an ac-
tion, normality of knowledge or obligations, and so on.
While existing modal treatments of preferential reasoning
can express preferential semantics syntactically as modali-
ties (Boutilier 1994; Giordano et al. 2005; Britz, Heidema,
and Labuschagne 2009), they do not suffice to express de-
feasible modes of inference as described above.

In this paper we fill this gap by introducing (non-standard)
modal operators allowing us to talk about relative normality
in accessible worlds. With our defeasible versions of modal-
ities, we can make statements of the form “α holds in all of
the normal accessible worlds”, thereby capturing defeasibil-
ity of what is ‘expected’ in target worlds. Such a notion of
defeasibility in a modality meets a variety of applications in
Artificial Intelligence, ranging from reasoning about actions
to deontic and epistemic reasoning. For instance, we define
a defeasible-action operator allowing us to make statements
of the form p∼∼paα, which we read as “α is a normal necessary
effect of a”, and we define defeasible-knowledge operators
with which one can state formulas such as p∼∼pAα, read as
“agent A knows that normally α”.

These operators are defined within the context of a general
preferential modal semantics (Britz, Meyer, and Varzinczak
2011a). The relative normality of a given world in a Kripke
model is determined by a preference order on states, serving
as place holders for pointed Kripke models. In contrast with
the plausibility models of Baltag and Smets (2008), our or-
der on states does not define an agent’s knowledge or beliefs.
Rather, it is part of the semantics of the background ontol-
ogy described by the theory or knowledge base at hand. As
such, it informs the meaning of defeasible actions, which
can fail in their outcome, or defeasible knowledge, which
may not hold in exceptional accessible worlds, in that it al-
ters the classical semantics of these modalities. This allows
for the definition of a family of modal logics in which defea-
sible modes of inference can be expressed, and which can be
integrated with existing non-monotonic modal logics.

The remainder of the present paper is structured as fol-
lows: In the next section we set up the modal notation of

the paper and we recall the preferential semantics for modal
logics that we shall use throughout this paper. Following that
we present a logic enriched with defeasible modalities al-
lowing for the formalization of defeasible versions of e.g.
knowledge and actions, which we illustrate with examples in
the following section. After a discussion of, and comparison
with related work, we conclude with directions for further
investigations.

Preliminaries
We commence by providing the required background for the
rest of this work. First we recapitulate basic notions from
modal logics and set up the notation we shall use.

Modal Logic
We work in a set of atomic propositions P , using the logi-
cal connectives ∧ (conjunction), ¬ (negation), and a set of
modal operators 2i, 1 ≤ i ≤ n. (In later sections we shall
adopt a richer language.) Here we suppose that the under-
lying multimodal logic is independently axiomatized (i.e.,
the logic is a fusion and there is no interaction between the
modal operators (Kracht and Wolter 1991)). Propositions are
denoted by p, q, . . ., and formulas by α, β, . . ., constructed
in the usual way according to the rule:

α ::= p | ¬α | α ∧ α | 2iα

All the other truth functional connectives (∨, →, ↔, . . . )
are defined in terms of ¬ and ∧ in the usual way. Given 2i,
1 ≤ i ≤ n, with 3i we denote its dual modal operator, i.e.,
for any α, 3iα ≡def ¬2i¬α. We use > as an abbreviation
for p ∨ ¬p, and ⊥ for p ∧ ¬p, for some p ∈ P .

With L we denote the set of all formulas of the modal lan-
guage. The semantics is the standard possible-worlds one:

Definition 1 (Kripke Model) A Kripke model is a tuple
M = 〈W,R,V〉 where W is a set of possible worlds, R =
〈R1, . . . ,Rn〉, where each Ri ⊆ W × W is an accessibility
relation on W, 1 ≤ i ≤ n, and V : W × P −→ {0, 1} is a
valuation function.

Figure 1 depicts two examples of Kripke models for P =
{p, q}. (In our pictorial representations of Kripke models we
shall use p ∈ w to mean that V(w, p) = 1 and p /∈ w to mean
V(w, p) = 0.)

M1 :

qw2 p, q w3

w1 p w4

M2 :

qw2 p, q w3

w1 p w4

Figure 1: Examples of Kripke models.

Definition 2 (Satisfaction) Let M = 〈W,R,V〉, w ∈ W:

• M , w 6 ⊥;
• M , w  p if and only if V(w, p) = 1;
• M , w  ¬α if and only if M , w 6 α;



• M , w  α ∧ β if and only if M , w  α and M , w  β;
• M , w  2iα if and only if M , w′  α for all w′ such

that (w,w′) ∈ Ri.

Given α ∈ L and M = 〈W,R,V〉, we say that M satisfies α
if there is at least one w ∈ W such that M , w  α. We say
that M is a model of α (alias α is true in M ) if and only if
M , w  α for every w ∈ W. Given a class of modelsM,
we say that α is valid in M if every M ∈ M is a model
of α.

As we have just alluded to, among all possible models,
one may want to choose some with specific properties to
work with. This defines a class of models. A class of mod-
els M can be determined by imposing additional proper-
ties on the accessibility relations (e.g. transitivity, reflexiv-
ity, etc.), which is usually done by stating axiom schemas.
These characterize different systems of modal logic. For now
we suffice with a comment on the normal modal logic K, of
which all other normal modal logics are extensions. In the
system K the axiom schema K : 2i(α → β) → (2iα →
2iβ) is valid, and the necessitation rule RN : α/2iα holds.

For more details on modal logic, we refer the reader to the
classic book by Chellas (1980) and the more recent hand-
book by Blackburn, van Benthem and Wolter (2006).

Preferential Semantics for Modal Logic
Now we present a brief summary of the constructions
for preferential reasoning in modal logic as studied by
Britz et al. (2011a). (As we shall see in the sequel, the se-
mantics of the defeasible modalities we shall introduce relies
heavily on the definitions provided below.)

Definition 3 LetM be a class of Kripke models. We define
UM := {(M , w) |M = 〈W,R,V〉 ∈ M and w ∈ W}. We
call UM the class of pointed Kripke models fromM.

It is worth noting that pointed Kripke models are not to
be viewed as objects, as they are commonly regarded in the
context of e.g. description logics (Baader et al. 2007). A set
of pointed Kripke models describes the intention of a modal
statement — cf. Definition 2.

As an example, if M = {M1,M2}, where M1 and
M2 are as depicted in Figure 1, then UM = {(M1, w),
(M1, w2), (M1, w3), (M1, w4), (M2, w1), (M2, w2),
(M2, w3), (M2, w4)}.

Let S be a set, the elements of which are called states, and
let ` : S −→ UM be a labeling function mapping every state
to a pair (M , w) where M = 〈W,R,V〉 is a Kripke model
such that w ∈ W. Moreover, let ≺ ⊆ S× S be a preference
relation on states, which we assume to be a strict partial or-
der. We say that S satisfies the smoothness condition (Kraus,
Lehmann, and Magidor 1990) if and only if every subset of S
has a ≺-minimal element.

Definition 4 (Britz et al. (2011a)) Let M be a given class
of Kripke models. A preferential model is a triple P =
〈S, `,≺〉 where S is a set of states satisfying the smooth-
ness condition, ` is a labeling function mapping states to
elements of UM, and ≺ is a strict partial order on S, i.e., ≺
is irreflexive and transitive.

Figure 2 shows an example of a (modal) preferential
model forM = {M1,M2}, where M1 and M2 are as de-
picted in Figure 1.

P :

s7 : (M1, w4), s8 : (M2, w4)
s6 : (M2, w2)

s4 : (M1, w3), s5 : (M2, w3)
s3 : (M1, w2)

s1 : (M1, w1), s2 : (M2, w1) m
os
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Figure 2: Example of a preferential model for M =
{M1,M2}, where M1 and M2 are as depicted in Figure 1.

Given a preferential model P and α ∈ L, with JαK we
denote the set of states satisfying α in P , according to the
following definition:

Definition 5 (Satisfaction in Preferential Models) Let
P = 〈S, `,≺〉 and α ∈ L. Then JαK := {s ∈ S | `(s) =
(M , w), for some M = 〈W,R,V〉 such that M , w  α}.

Given α ∈ L and P a preferential model, we say that α
is satisfiable in P if JαK 6= ∅, otherwise α is unsatisfiable
in P . We say that α is true in P (denoted P  α) if and
only if JαK = S.

Definition 6 LetM be a class of Kripke models and UM be
the corresponding class of pointed Kripke models fromM.
The classMP of preferential models is the set of all prefer-
ential models P = 〈S, `,≺〉 such that range(`) ⊆ UM.

Let α ∈ L and letM be a given class of Kripke models.
We say that α is valid inMP (denoted |= α) if and only if α
is true in every preferential model P ofMP , i.e., P  α
for every P ∈MP .

Lemma 1 Let α ∈ L (i.e., α is a classical modal formula)
and letM be a class of Kripke models. Then α is valid inM
if and only if α is valid inMP .

Definition 7 (Minimality w.r.t. ≺) Let P = 〈S, `,≺〉 and
let S′ ⊆ S. With min≺ S′ we denote the minimal elements
of S′ with respect to ≺, i.e., min≺ S′ = {x ∈ S′ | there is no
y ∈ S′ such that y ≺ x}.

Given a preferential model P = 〈S, `,≺〉, the defeasi-
ble statement α |∼P β holds in P if and only if every ≺-
minimal α-state is a β-state, i.e., min≺JαK ⊆ JβK.

It is worth noting that, in spite of the richer language
(modal logic) and the richer semantics (based on possible
worlds), defeasible statements here still have the same intu-
ition as mentioned in the Introduction. To witness, the state-
ment 3α |∼ 2β just says that “all normal worlds with an α-
successor have only β-successors”. That is, any |∼-statement
still refers only to normality in the premise, or, in this case,
of the ‘actual’ world.

Logics with Defeasible Modalities
Recalling our discussion in the Introduction, we want to be
able to state that a given sentence holds in all the normal
worlds that are accessible, or in some of such normal worlds.



This leads us to the definition of ‘weaker’ versions of modal-
ities, in the sense that both necessity and possibility can now
‘fail’, or rather have defeasible versions. Through them we
shall be able to single out those normal situations that one
cannot grasp via standard 2 and 3 in the classical case.

We define a more expressive language than L by extend-
ing our modal language with a family of defeasible modal
operators p∼∼pi and p∼∼p i, 1 ≤ i ≤ n (called, respectively, the
‘flag’ and the ‘flame’), where n is the number of classical
modalities in the language. The formulas of the extended
language are then recursively defined by:

α ::= p | ¬α | α ∧ α | 2iα | p∼∼piα | p∼∼p iα

(As before, the other connectives are defined in terms of ¬
and ∧ in the usual way, and > and ⊥ are seen as abbrevia-
tions. It turns out that each p∼∼p i too is the dual of p∼∼pi, as we
shall see below.) With L̃ we denote the set of all formulas of
such a richer language.

The semantics of L̃ is in terms of our modal preferen-
tial models (see Definition 4). As before, given α ∈ L̃ and
a preferential model P , with JαK we denote the set of all
states satisfying α in P .

Definition 8 (Satisfaction Extended) Let P = 〈S, `,≺〉
be a modal preferential model. Then:

• Jp∼∼piαK := {s | `(s) = (M , w), for M = 〈W,R,V〉, and
min≺{s′ | `(s′) = (M , w′) and (w,w′) ∈ Ri} ⊆ JαK};

• J p∼∼p iαK := {s | `(s) = (M , w), for M = 〈W,R,V〉, and
min≺{s′ | `(s′) = (M , w′) and (w,w′) ∈ Ri} ∩ JαK 6=
∅}.
The notions of satisfaction in a preferential model, truth

(in a model) and validity (in a class of models) are extended
to formulas with defeasible modalities in the obvious way.

As alluded to above, we observe that, like in the classical
(i.e., non-defeasible) case, the defeasible modal operators p∼∼p
and p∼∼p are the dual of each other:

|= p∼∼piα↔ ¬ p∼∼p i¬α (1)

Verification: Let P = 〈S, `,≺〉 and let s ∈ S. Then `(s) =
(M , w) for some M = 〈W,R,V〉 and w ∈ W. s ∈ Jp∼∼piαK
if and only if min≺{s′ | `(s′) = (M , w′) and (w,w′) ∈
Ri} ⊆ JαK if and only if min≺{s′ | `(s′) = (M , w′) and
(w,w′) ∈ Ri} ∩ J¬αK = ∅ if and only if s /∈ J p∼∼p i¬αK if and
only if s ∈ J¬ p∼∼p i¬αK.

The following property is easy to verify: If there are no
most preferred accessible worlds, then there are no accessi-
ble worlds at all (and vice versa).

|= p∼∼pi⊥ ↔ 2i⊥ (2)

From (2) and contraposition we conclude |= 3i> ↔ p∼∼p i>.
The following two equivalences are also worthy of men-

tion (their proofs are straightforward):

|= p∼∼pi> ↔ > and |= p∼∼p i⊥ ↔ ⊥ (3)

The following is the p∼∼p-version of Axiom Schema K.

(NK) |= p∼∼pi(α→ β)→ (p∼∼piα→ p∼∼piβ) (4)
Verification: Let P = 〈S, `,≺〉 and let s ∈ S. Then
`(s) = (M , w) for some M = 〈W,R,V〉 and w ∈ W. Let
s ∈ Jp∼∼pi(α → β)K. Then we have (i) min≺{s′ | `(s′) =
(M , w′) and (w,w′) ∈ Ri} ⊆ Jα → βK. If s ∈ Jp∼∼piαK,
then we also have (ii) min≺{s′ | `(s′) = (M , w′) and
(w,w′) ∈ Ri} ⊆ JαK. From (i) and (ii) it follows that
min≺{s′ | `(s′) = (M , w′) and (w,w′) ∈ Ri} ⊆ JαK ∩
Jα → βK = Jα ∧ (α → β)K ⊆ JβK. Putting the results
together gives us s ∈ Jp∼∼piβK.

The validity below is easy to verify:

(NR) |= p∼∼pi(α ∧ β)↔ (p∼∼piα ∧ p∼∼piβ) (5)

We also have |= (p∼∼piα ∨ p∼∼piβ)→ p∼∼pi(α ∨ β), but not the
other direction of the implication, as can be easily checked.

The following validity is an immediate consequence of
our semantics:

(N) |= 2iα→ p∼∼piα (6)
Intuitively, given i = 1, . . . , n, where n is the number of
modalities in the language, we want 2i and p∼∼pi to be ‘tied’
together in so far as one is the defeasible (or the ‘hard’) ver-
sion of the other.

From duality of p∼∼p and p∼∼p and contraposition of N we get:

|= p∼∼p iα→ 3iα (7)

The following rule of normal necessitation (RNN) fol-
lows from the standard necessitation rule RN together with
Schema N in (6) above:

(RNN)
α

p∼∼piα
(8)

From satisfaction of (1), (4) and (5), one can see that
the logic of our defeasible modalities shares properties
commonly characterizing the so-called normal modal log-
ics (Chellas 1980). In particular, we have that the following
rule holds:

(NRK)
(α1 ∧ . . . ∧ αk)→ β

(p∼∼piα1 ∧ . . . ∧ p∼∼piαk)→ p∼∼piβ
(k ≥ 0) (9)

Verification: Assume that |= (α1 ∧ . . . ∧ αk) → β. Then
by Rule RNN we conclude |= p∼∼pi((α1 ∧ . . . ∧ αk) → β).
This and Schema NK give us |= p∼∼pi(α1 ∧ . . .∧αk)→ p∼∼piβ.
Iterated applications of NR tell us that the antecedent of the
latter is logically equivalent to p∼∼piα1 ∧ . . . ∧ p∼∼piαk. From
this result and substitution of equivalents we conclude that
|= (p∼∼piα1 ∧ . . . ∧ p∼∼piαk)→ p∼∼piβ.

The observant reader would have noticed that we assume
we have as many defeasible modalities as we have classical
ones. That is, for each 2i, a corresponding p∼∼pi (its defeasible
version) is assumed. Moreover they are both linked together
via Schema N in (6). In principle, from a technical point of
view, nothing precludes us from having defeasible modali-
ties with no corresponding classical version or the other way
round. The latter case is easily dealt with by simply not hav-
ing p∼∼pi for some i for which 2i is present in the language.
The former case, on the other hand, would require a slight



elaboration of the semantics as, currently, satisfiability of
p∼∼p-formulas call upon the accessibility relation Ri, usually
associated with a 2i-modality. Even though one can make
a case for only wanting the defeasible version of a given
modality to be available, it deviates from our stated aim of
having defeasible versions of the (already existing) modali-
ties in our language and therefore we do not investigate this
further here.

From the perspective of knowledge representation and
reasoning, it becomes important to address the question of
what it means for an L̃-sentence to be entailed from an L̃-
knowledge base.

An L̃-knowledge base is a (possibly infinite) set of sen-
tences K ⊆ L̃. Given a modal preferential model P , we
extend the notion of satisfaction to knowledge bases in the
obvious way: P  K if and only if P  α for every α ∈ K.

Definition 9 (Preferential Modal Entailment) Let K ⊆ L̃
and let α ∈ L̃. We say that K entails α in the classMP of
preferential models (denoted K |= α) if and only if for every
P ∈MP , if P  K, then P  α.

Given this notion of entailment, its associated conse-
quence relation is defined as:

Cn(K) ≡def {α | K |= α} (10)

It is easy to see that the consequence relation Cn(·) as
defined in (10) above is a Tarskian consequence relation:

Theorem 1 Let Cn(·) be a consequence relation defined in
terms of preferential modal entailment. Then Cn(·) satisfies
the following properties:

• K ⊆ Cn(K) (Inclusion)
• Cn(K) = Cn(Cn(K)) (Idempotency)
• If K1 ⊆ K2, then Cn(K1) ⊆ Cn(K2) (Monotonicity)

That is, in spite of the defeasibility features of p∼∼p,
we end up with a logic that is monotonic, just as in
Kraus et al.’s preferential entailment (Kraus, Lehmann, and
Magidor 1990).

Below is an interesting result relating truth of L̃-sentences
in a preferential model with the defeasible consequence rela-
tion induced by the model (cf. paragraph after Definition 7).

Lemma 2 Let α ∈ L̃ and P be a preferential model. Then
P  α if and only if ¬α |∼P ⊥.

This result raises the obvious question on whether we can
reduce entailment of L̃-sentences to that of |∼-statements.
To make this more precise, we need some definitions. We
say that a preferential model P satisfies a defeasible state-
ment α |∼ β if and only if α |∼P β holds. P satisfies
a set of such defeasible statements if P satisfies each of
them. Given a set X of defeasible statements, we say that
X (preferentially) entails α |∼ β (denoted X |= α |∼ β) if
every preferential model satisfying all the statements in X
also satisfies α |∼ β. (Given Lemma 2 it is not hard to see
that |= here is exactly the same entailment relation from Def-
inition 9, just restated in terms of |∼-statements.)

Definition 10 Let K ⊆ L̃. K|∼ := {¬α |∼ ⊥ | α ∈ K}.

Theorem 2 K |= α if and only if K|∼ |= ¬α |∼ ⊥.

Hence, preferential entailment in L̃ reduces to preferential
entailment of |∼-statements in the language of L̃. An imme-
diate consequence of this is that the existence of a sound
and complete KLM-style |∼-based proof system (Kraus,
Lehmann, and Magidor 1990) for L̃ would define a deci-
sion procedure for L̃. At present we can only conjecture that
such a proof system exists.

Examples of Defeasible Modes of Inference
Let us assume the following scenario depicting a nuclear
power station (Britz, Meyer, and Varzinczak 2011a): In a
particular power plant there is an atomic pile and a cooling
system, both of which can be either on or off. An agent is in
charge of detecting hazardous situations and preventing the
plant from malfunctioning (Figure 3).

ON

OFF

DANGER

Figure 3: The nuclear power station and its controlling agent.

In what follows we shall illustrate our constructions from
previous sections in reasoning about action and in epistemic
reasoning using the aforementioned scenario.

Dynamic Defeasibility
We find in the AI literature a fair number of modal-based
formalisms for reasoning about actions and change (De Gia-
como and Lenzerini 1995; Zhang and Foo 2001; Castilho,
Herzig, and Varzinczak 2002; Demolombe, Herzig, and
Varzinczak 2003; Herzig and Varzinczak 2007). These are
essentially variants of the modal logic K we presented in the
Preliminaries Section. Modal operators are determined by a
(finite) set of actions A = {a1, . . . , an}: For each a ∈ A,
there is associated a modal operator 2a. Given a Kripke
model, Ra ⊆ W×W is therefore meant to represent possible
executions of an (ontic) action a at specific worlds w ∈ W,
i.e., Ra is the specification of a’s behavior in a transition
system. Hence whenever (w,w′) ∈ Ra, w′ is a possible out-
come of doing a in w. Formulas of the form 2aα are used to
specify the effects of actions and they are read “after every
execution of action a, the formula α holds”. The operator 3a

is mostly used to specify the executability of actions: 3a>
reads “there is a possible execution of action a”.

In our nuclear power plant example, let P = {p, c, h} be
a set of propositions, where p stands for “the atomic pile is
on”, c for “the cooling system is on”, and h for “hazardous



situation”. Moreover, let A = {f,m} be a set of atomic ac-
tions, where f stands for “flipping the pile switch”, and m
for “malfunction”.

Assume that we are givenM = {M1,M2}, where M1

and M2 are as depicted in Figure 4.

M1 :

cw2 w3

p, cw1 p, h w4

f

m ff f

f

f

M2 :

cw2 w3

p, cw1 p, h w4

f

m ff f

f

m

f

Figure 4: Kripke models depicting the behavior of actions in
our nuclear power station scenario.

Hence UM = {(Mi, wj) | i ∈ {1, 2}, j ∈ {1, 2, 3, 4}}.
We construct a preferential model (Definition 4) in which
to check the satisfiability and truth of a few sentences. The
purpose is to illustrate the semantics of our notion of defea-
sibility in an action context rather than to present a compre-
hensive modeling of the nuclear power plant scenario.

Assume S = {si | 1 ≤ i ≤ 8}, and let a labeling func-
tion ` be such that `(s1) = (M1, w1), `(s2) = (M2, w1),
`(s3) = (M1, w2), `(s4) = (M1, w3), `(s5) = (M2, w3),
`(s6) = (M2, w2), `(s7) = (M1, w4), and `(s8) =
(M2, w4). The order ≺ is given by: s1 ≺ s3, s2 ≺ s3,
s3 ≺ s4, s3 ≺ s5, s4 ≺ s6, s5 ≺ s6, s6 ≺ s7, and
s6 ≺ s8. Figure 5 below depicts the preferential model
P = 〈S, `,≺〉.

P :

s7 : (M1, w4), s8 : (M2, w4)
s6 : (M2, w2)

s4 : (M1, w3), s5 : (M2, w3)
s3 : (M1, w2)

s1 : (M1, w1), s2 : (M2, w1) m
os

tp
re

fe
rr

ed
←
−−
−−
−−
−−
−

Figure 5: Preferential model for the power plant scenario.

The rationale of this partial order is as follows: The utility
company selling the electricity generated by the power plant
tries as far as possible to keep both the pile and the cooling
system on, ensuring that the pile can be easily switched off
(states s1 and s2); sometimes the company has to switch the
pile off for maintenance but then tries to keep the cooler run-
ning, preferably if turning the pile on again does not cause a
fault in the cooling system (state s3); more rarely the com-
pany needs to switch off both the pile and the cooler, e.g.
when the latter needs maintenance (states s4 and s5); in an
exceptional situation, turning the pile on not only may not
produce its intended effect but can also interfere with the
cooler switching it off (state s6); and, finally, only in very
exceptional situations would the pile be on while the cooler
is off, e.g. during a serious malfunction (states s7 and s8).

In the preferential model P depicted above, one can
check that s6 ∈ Jh∧ p∼∼p f¬hK: at s6 we have a hazardous situ-
ation, but it is possible to switch the pile off having as a nor-
mal effect a safe condition. We have that s7 does not satisfy

p∼∼pm⊥, which is satisfied by s1: at s1 a malfunction cannot
occur (cf. Axioms 2 and 6). In P we have P  ¬p→ p∼∼pfp
(the normal outcome of switching the pile on is it being
on), but P 6 ¬p → 2fp (see state s6). We also have
P  c → p∼∼pf¬h (if the cooler is on, the normal result of
switching the pile is a safe situation), but P 6 c → 2f¬h.
Finally we also have P  h → p∼∼pm>: In any hazardous
situation a meltdown is likely to happen.

So far we have illustrated the preferential semantics of
L̃-statements using specific Kripke models and preference
orders. In a knowledge representation context, though, we
are interested in preferential entailment from an L̃-theory or
knowledge base. The latter determines the preferential mod-
els that are permissible from the standpoint of the knowl-
edge engineer. To illustrate this, consider the following L̃-
knowledge base:

K =

{
(p ∧ ¬c)↔ h, h→ p∼∼pm>,
p→ p∼∼pf¬p, c→ p∼∼pfc, p∼∼p f>

}
K basically says that “a hazardous situation is one in which
the pile is on and the cooler off”, “a hazardous situation may
normally lead to a malfunction”, “if the pile is on, then flip-
ping its switch normally switches it off”, “if the cooler is on,
then switching the pile normally does not affect it” and “one
can normally flip the pile switch”. (It is not hard to check that
all the formulas in K are true in the preferential model P of
Figure 5 above.) We can then conclude K |= p → p∼∼pf¬h,
K |= p∼∼pm⊥ → (¬p ∨ c) and K |= (p ∨ c) → p∼∼pf¬h, using
the sound L̃-inference rules and validities presented in the
previous section.

Note that, in the knowledge base K above, the formula
p→ p∼∼pf¬p says something different than what the statement
p |∼ 2f¬p would convey in a |∼-based formalization of this
scenario as we investigated in previous work (Britz, Meyer,
and Varzinczak 2011a). The latter says that “in a normal sit-
uation where the pile is on, every outcome of the flipping
action switches the pile off”, whereas the former specifies
that “in any situation, the normal effect of flipping is the
pile being off”.

Epistemic Defeasibility
Another family of logics that are of great interest from the
standpoint of AI is that of epistemic logics, which allow for
reasoning about knowledge (Fagin et al. 1995).

The language of (modal) epistemic logic contains a (fi-
nite) set of agents A = {A1, . . . , An}. For each agent
A ∈ A there is a knowledge operator 2A. Given a Kripke
model, RA ⊆ W × W represents all epistemic possibilities
from agent A’s standpoint. A formula of the form 2Aα is
therefore used to specifyA’s knowledge about the world and
it is read as “agent A knows that α is the case”.

The core of epistemic logic is the normal multi-modal
logic Km. Hence, the following version of axiom schema K
is valid: 2Aα∧2A(α→ β)→ 2Aβ, i.e., “if A knows both
α and α → β, then she also knows β”. Stronger epistemic
logics are obtained by adding additional schemata, express-
ing specific desired properties of knowledge, to the basic



system K. Since K is at the heart of these logics, we shall
suffice with it in our exposition below.

In what follows we turn our attention to the application of
defeasible modalities in epistemic reasoning. In this context,
given an agent A, we shall read a formula of the form p∼∼pAα
as “A knows that normally α”.

Still in our power plant scenario, let us assume that we
have two agents, say A and B. The set P is as in the previ-
ous section, with the propositions p, c and h keeping their
previous intuition.

Here we do a similar exercise to that of the previous sec-
tion. To that matter, assume that we are given a class of
models M = {M1,M2}, where M1 and M2 are now as
depicted in Figure 6.

M1 :

cw2 w3

p, cw1 p, h w4

B

A

A B
A

A,B

A,B

A M2 :

cw2 w3

p, cw1 p, h w4

B

B

A B
A

B

B

A,B

Figure 6: Kripke models depicting knowledge of two agents
in our nuclear power station scenario.

Assume again that S = {si | 1 ≤ i ≤ 8}, and
let a labeling function ` be such that `(s1) = (M1, w1),
`(s2) = (M2, w1), `(s3) = (M1, w2), `(s4) = (M2, w2),
`(s5) = (M1, w3), `(s6) = (M2, w3), `(s7) = (M1, w4),
and `(s8) = (M2, w4). The order ≺ is given by: si ≺ si+2

and si ≺ si+3, for i ∈ {1, 3, 5}, and sj ≺ sj+1 and
sj ≺ sj+2, for j ∈ {2, 4, 6}. Figure 7 below depicts the
preferential model P = 〈S, `,≺〉 generated like this.

P :

s7 : (M1, w4), s8 : (M2, w4)
s5 : (M1, w3), s6 : (M2, w3)
s3 : (M1, w2), s4 : (M2, w2)
s1 : (M1, w1), s2 : (M2, w1) m
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Figure 7: A preferential model for knowledge in the power
plant scenario.

The rationale behind such a partial order is quite similar to
that of the previous section. Here states in which the pile and
the cooling system are on and in which at least one agent is
aware of what is going on there are the most preferred (states
s1 and s2). These are followed by those in which the pile is
off while the cooler is still running and agent A knows that
the pile is off (states s3 and s4). States s5 and s6 capture the
plant being in maintenance mode, while s7 and s8 are the
least normal situations, namely when a meltdown is immi-
nent and not all the agents know that is the case.

In this preferential model P , one can verify that s1 ∈
Jp∼∼pAc ∧ p∼∼pAp∼∼pAcK, i.e., agent A knows that normally the
cooling system is on and, moreover, knows that normally
it knows this. We have that s2 ∈ J p∼∼pBp∼∼pA¬hK: in s2 B con-
ceives that normally A knows that normally it is a safe situ-

ation. In P we have P  p ∧ ¬c → p∼∼pAh (if the pile is on
but the cooler is off, then agent A knows that normally it is
a hazardous situation). We also have P  p ∧ c → p∼∼pA¬h,
but P 6 p ∧ c → 2A¬h. It can also be checked that
P  p∼∼pAp → 2Bp∼∼pAp (if A knows that normally the pile
is on, then B knows that this is the case). As expected,
P 6 p∼∼pAp→ 2B2Ap.

We end this section with another illustration of entailment
from an L̃-theory. Consider the following knowledge base
(for illustrative purposes we suffice with a formalization of
agent B’s knowledge only):

K =

{
(p ∧ ¬c)→ h, h→ 2Bh,

p∼∼pB(p→ c), (p ∧ c)→ p∼∼pB¬h

}
The intuition behind K here is that “if the pile is on and the
cooler off, then we have a hazardous situation”, “in a haz-
ardous situation, agent B is aware of it for sure”, “agent B
knows that normally if the pile is on then so is the cool-
ing system”, and “if the pile and the cooler are both on,
then B knows that normally it is not a hazardous situa-
tion”. (It can be easily checked that the preferential model
from Figure 7 above is a model of K.) Given this knowl-
edge base, the following holds: K |= (p ∧ ¬c) → p∼∼pBh and
K |= 2Bp→ p∼∼pBp∼∼pB¬h.

Discussion and Related Work
There is a substantial body of work on defeasible knowl-
edge, actions, obligations, beliefs, et cetera. What distin-
guishes our work is that we modify the meaning of modal-
ities through the introduction of a preferential semantics.
This semantics allows us to introduce new, defeasible vari-
ants of existing modalities.

We have not entered here into a philosophical debate on
the nature of knowledge, such as whether knowledge admits
defeasibility. We have also not yet investigated the relevance
of our defeasible modalities in modeling notions such as jus-
tifications (Artemov 2008) or prima facie obligations (Asher
and Bonevac 1996; Nute 1997). Our focus in this paper
has been on the formal semantics of defeasible modalities,
and we have explored their usefulness in modeling dynamic
and epistemic defeasibility, but their employment in broader
range of philosophical application areas such deontic, dox-
astic and justification logics can be explored in much greater
depth.

Baltag and Smets (2008) employ preference orders to de-
fine multi-agent epistemic and doxastic plausibility frames.
These are essentially a special case of Kripke frames, with
each accessibility relation induced by a corresponding pref-
erence order and linked to an agent. This results in modal-
ities of knowledge, (conditional) belief and safe belief that
are closely related to our defeasible modalities.

There are, however, three essential differences between
their proposal and ours: (i) Their work is presented within
the context of dynamic epistemic logic (van Ditmarsch, van
der Hoek, and Kooi 2007), and the semantics of their epis-
temic and doxastic modalities are developed with this spe-
cific context in mind; (ii) their plausibility orders are sub-
jective orders linked to agents, that determine the agents’



knowledge and beliefs, and (iii) an agent’s beliefs are deter-
mined by what the agent deems epistemically possible. Min-
imality, or doxastic appearance, is therefore determined rel-
ative to an epistemic context, which is induced as an equiv-
alence relation on states.

Our work differs from Baltag and Smets’ in that (i) it of-
fers a preferential semantic framework independent of a spe-
cific application area, (ii) we assume a single preference or-
der which forms an integral part of the underlying semantics
of the background ontology, and (iii) the preference order
informs the meaning of existing modalities by considering
minimality in accessible worlds, where accessibility is de-
termined independently from the preference order.

As we have seen, Britz et al. also propose a general se-
mantic framework for preferential modal logics, but they
focus on defeasible arguments rather than on defeasible
modalities. As such, the semantics introduced there provides
a foundation for the semantics of defeasible modalities, but
the syntax of preferential modal logic does not suffice to de-
fine preferential modalities such as ours.

In a recent investigation focussing only on rational con-
sequence relations, Booth et al. (2012) introduce an oper-
ator with which one can refer directly in the language to
those most typical situations in which a given sentence is
true. For instance, in their enriched language, a sentence
of the form α refers to the ‘most typical’ α-worlds in a
semantics similar to ours. One of the advantages of such
an extension is the possibility to make statements of the
kind “all normal α-worlds are normal β-worlds”, thereby
shifting the focus of normality from the antecedent by
also allowing us to talk about normality in the consequent.
This additional expressivity can also be obtained by the
addition of the modality 2 of Modular Gödel-Löb logic
to express normality syntactically (Giordano et al. 2005;
Britz, Heidema, and Labuschagne 2009):

α ≡def 2¬α ∧ α (11)

Despite the gain in expressivity, both these proposals re-
main propositional in nature in that the only modality al-
lowed is the one with semantics determined by the prefer-
ence order. Britz et al. (2011a) extended propositional pref-
erential reasoning to the modal case, but the modalities un-
der consideration there remain classical — their meaning re-
mains as in propositional modal logic, despite the underly-
ing preferential semantics of the logic due to the extension of
the language with conditional statements of the form α |∼ β.
Here we have followed an alternative route by investigating
additional, defeasible modalities, which can be added to a
given modal language by adopting a preferential semantics.

Concluding Remarks
The defeasible modalities introduced in this paper refer to
the relative normality of accessible worlds, unlike syntac-
tic characterizations of normality such as those discussed
above (Crocco and Lamarre 1992; Boutilier 1994; Giordano
et al. 2005; Baltag and Smets 2008; Giordano et al. 2009;
Booth, Meyer, and Varzinczak 2012), which refer to the rel-
ative normality of worlds in which a given sentence is true,

or |∼, which refers to the relative normality of the worlds in
which the premise is true.

We have seen that the modal logics obtained through the
addition of p∼∼pi are monotonic, but can be extended to include
a non-monotonic conditional |∼. However, such extensions
do not make the addition of p∼∼pi a superfluous extension to
the language, since p∼∼pi cannot be expressed in terms of |∼.

One avenue for future research is therefore integrating p∼∼pi
with modal preferential reasoning, since this would allow for
the expression of both defeasible arguments and defeasible
modalities. More pressing, though, is the need for a decision
procedure for L̃. Once this is in place, a deeper exploration
of applications in various modal logics is warranted.

Finally, from a knowledge representation and reason-
ing perspective, when one deals with knowledge bases,
issues related to modularization (Herzig and Varzinczak
2004; 2005a; 2005b; 2006), knowledge base update and re-
pair (Herzig, Perrussel, and Varzinczak 2006; Varzinczak
2008; 2010) as well as knowledge base maintenance and
versioning (Franconi, Meyer, and Varzinczak 2010) become
important. These are threads worthy of investigation in the
richer framework of defeasible modalities.
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