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ABSTRACT   

In this report we theoretically calculate and experimentally measure the OAM density of a coherent superposition of both 
symmetric and non-symmetric non-diffracting Bessel beams.  Although the intensity pattern of the superimposed field 
rotates at a fixed angular velocity (which is due to the differing wave-vectors of the component fields), we show that the 
magnitude and direction of the OAM is dependent on the radial position within the field. We outline a simple approach 
using only a spatial light modulator to measure the OAM density for a superposition of non-diffracting Bessel beams. 
Our quantitative measurements are in good agreement with predicted values.  
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1. INTRODUCTION  
Fields which carry OAM of lħ per photon, some of which include Laguerre-Gaussian beams [1], Bessel-Gaussian beams 
[2] and Airy beams [3], have an azimuthal angular dependence of exp(ilφ) [1, 4],  where l is the unbounded azimuthal 
mode index and φ is the azimuthal angle. Since the discovery of light beams carrying orbital angular momentum (OAM) 
[4], many techniques for the measurement of OAM have been developed, ranging from interferometers [5-7] to computer 
generated holograms [8-11]. These aforementioned techniques do not allow one to obtain a quantitative measurement for 
the OAM density, and instead only measure the average OAM across the entire field.  

In this report we theoretically calculate and experimentally measure the OAM density of both symmetric and 
non-symmetric superpositions of non-diffracting Bessel beams [12, 13]. We outline a simple approach using only a 
spatial light modulator to measure the OAM density for a superposition of non-diffracting Bessel beams. The ability to 
measure the OAM distribution of optical fields has relevance in optical tweezing, and quantum information and 
processing. 

 

2. THEORY  
Symmetric superposition 
 
We will first start with the symmetric case and later develop our argument for the theoretical and experimental OAM 
densities for the non-symmetric case.  The amplitude for a symmetric superposition of two Bessel beams, of opposite 
azimuthal order, is given by 
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where Jl is the Bessel function of order l. q1 and q2 are the radial wave numbers, ∆k is the difference between the two 
longitudinal wave numbers, α0 is the ratio between the two component Bessel fields, and A0 is a normalization constant.  
 
 
 
*aforbes1@csir.co.za 

Complex Light and Optical Forces VI, edited by Enrique J. Galvez, David L. Andrews, Jesper Glückstad, 
Marat S. Soskin, Proc. of SPIE Vol. 8274, 827406 · © 2012 SPIE · CCC code: 0277-786X/12/$18 · doi: 10.1117/12.910779

Proc. of SPIE Vol. 8274  827406-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/14/2012 Terms of Use: http://spiedl.org/terms



 

 

The following result for the Poynting vector 
 

( ) zukuuuu
i

BEcS realreal
)rrr 2

0
**02

0 4
ωε

ωε
ε +∇−∇=×= ,                                      (2) 

 

along with the total OAM density (in the direction of propagation, z)  
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results in the total OAM density for the field given in Eq. (1) to be 
 

( ))()(
2

)( 2
22

01
2

2
0

2
0 rkJrkJ
c
lArL rlrlz −−

−
= αωε .                                                   (4) 

 

The measurement of the OAM density is achieved by performing a modal decomposition of the optical field. It is 
executed by obtaining the inner product of the incoming field with a predetermined match filter, which is programmed 
on to a spatial light modulator, for various OAM values and at particular radial positions. The weighting of each 
azimuthal mode is determined by the following inner product 
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allowing the OAM density to be experimentally measured by the following relation 
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η is a factor for the optical efficiency of the experimental setup and SRing is the area (4πΔR.R) of the ring-slit in the 
match-filter and is a function of its radial position, R. 

The optical field in Eq. (1) can be extended to a generalized form 
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where αl and α-l denote the energy contained in each of the ring-slits, with respects to the energy contained in the inner-
most ring-slit. Due to the fact that the φ-component of the Poynting vector, Sφ, is a linear operator, the OAM density for 
the generalized field described in Eq. (4) can be described both theoretically and experimentally by extending the results 
given in Eqs (4) and (6) as    
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respectively.

 

 
 
Non-symmetric superposition 

The amplitude of a non-symmetric superposition of two Bessel beams is described as
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where the azimuthal indices are of different orders, l ≠ m. The OAM density is determined theoretically by following the 
same procedure in Eqs (2) and (3), 
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Equation 11 is evaluated by summing over the OAM density values for a range of angles varying from 0 to 2π. The term 
Δkz can be ignored as its effect on the optical field is only a constant phase-shift.    

The quantifiable measurement to the theoretical OAM density is determined as [13]    
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The experimental equation for the OAM density is integrated over φ, resulting in the average OAM density  
 

( ),)0()0(
2

)(
2

ml
Ring

z mIlI
S

f
c

rL +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

λ
η
ω                                                      (13) 

 
where the term Δkz can be neglected.  

The amplitude of the non-symmetric superposition can be extended to consist of many Bessel beams  
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Similarly the φ-component of the Poynting vector, Sφ, is a linear operator and the theoretical and experimental OAM 

densities can be extracted by extending the simple forms in Eqs (11) and (13), however since the equations become very 
cumbersome they have been neglected in this manuscript.  

 

3. EXPERIMENTAL METHODOLOGY  
To execute the modal decomposition given in Eq. (5), an inner product of the incoming field with a match filter, exp(ilφ), 
was performed and is denoted in Fig. 1. A HeNe laser (λ ~ 633 nm) was expanded through a 6× telescope and directed 
onto the liquid crystal display (LCD) of a SLM. The first SLM (denoted as LCD 1) was programmed to produce various 
superposition fields using the concept of Durnin’s ring-slit [14], but implemented digitally [15].   
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The resulting images of the symmetric and non-symmetric non-diffracting superposition field were captured on 
a CCD camera. The resulting superposition field was then magnified with a 10× objective and directed to the second 
SLM (LCD 2) for executing the modal decomposition of Eq. (5).   

The incoming field was divided into 10 annular rings and the phase within each annular ring varied as the 
complex conjugate of the azimuthal modes present in the incoming superposition field, from l = -4 to 4. Since the 
weighting coefficients, (al(r))2, can be experimentally measured as a function of the radial co-ordinate and the azimuthal 
mode, by measuring the on-axis intensity of the inner-product, the OAM density can be quantitatively measured.   
 

 
Fig. 1. A schematic of the experimental setup for measuring the OAM density of symmetric and non-symmetric 
superpositions of Bessel beams as a function of the radial position, R.  L: Lens (f1 = 25 mm; f2 = 150 mm; f3 = 200 mm 
and f4 = 200 mm); M: Mirror; LCD: Liquid Crystal Display; O: Objective; PM: Pop-up Mirror; CCD: CCD Camera. The 
objective, O2, was placed at the focus (or Fourier plane) of lens, L4. The corresponding optical fields or holograms are 
represented at the appropriate planes. 
 

4. RESULTS AND DISCUSSION  
Symmetric superposition 
 
The first digital hologram consists of a ring-slit separated into two ring-slits (of equal widths), each possessing an 
azimuthal phase of equal order but opposite handedness, (i.e. linner = 3 and louter = -3). The dimensions (in pixels) of the 
ring-slit are: r1 = 173, r2 = 188, Δr1, Δr2 = 15. In the case that LCD1 was encoded with two ring-slits, where the orders of 
the two azimuthal phases are of equal but opposite handedness, a ‘petal’-structure was produced, where the number of 
‘petals’ is denoted by 2|l| as expected from theory [15].  

Since the match-filter is programmed digitally, the radius of the ring-slit, as well as the azimuthal phase within 
the ring-slit can be easily varied. This dynamical aspect of the SLM allows us to radially locate where in the optical field 
we wish to make a measurement of the OAM density. In this paper, the match-filters consist of ring-slits having ten 
different radii (r1 = 75; r2= 110; r3 = 145; r4 = 180; r5 = 215; r6 = 250; r7 = 285; r8 = 320; r9 = 355 and r10 = 390 (given in 
pixels), each consisting of a width of 20 pixels), where the phase within the rings, n, varied as the complex conjugate of 
the azimuthal modes present in the incoming optical field. The OAM density for a particular radial position can then be 
measured directly from Eqs (4) and (6) by measuring the on-axis intensity of the inner-product. The measured OAM 
densities as a function of the radial position for the symmetric optical field are given in Fig. 2.  
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Fig. 2. (a) The digital ring-slit and the corresponding experimentally produced field in the Fourier plane (b) accompanied 
with theoretically calculated fields (c). The ten white dots in (c) denote the radial positions of each of the ten ring-slits 
used in the match-filters. (d) A density plot of the OAM density for the field given in (b). Red denotes negative OAM 
and blue denotes positive. Light to dark blue denotes an increase in positive OAM and light to dark red denotes an 
increase in negative OAM. (e) the theoretical (blue curve) and experimentally measured (red points) OAM density. 
 

Since the incoming optical field consists of an equal weighting of linner = 3 and louter = -3 order Bessel beams, the 
OAM density represented in the x - y plane consists of evenly-sized concentric rings of positive and negative OAM. This 
is also evident in the radial cross-sectional profile of the OAM density where the OAM density oscillates evenly around 
a value of zero.     
 
Non-symmetric superposition 
 
The second digital hologram was divided into three ring-slits, having the following azimuthal phase variations linner = -3, 
lmiddle = 2, louter = 1, producing a non-symmetric superposition.  The dimensions (in pixels) of the ring-slits are: r1 = 170, 
r2 = 180, r3 = 190, Δr1, Δr2, Δr3 = 10. Our experimental field (Fig. 3 (b)) is in very good agreement with the theoretically 
calculated field (Fig. 3 (c)). Since the ring-slits are equally weighted and the azimuthal mode indices of the ring-slits, in 
Fig. 3 (a), sum to zero, the global OAM is zero, giving rise to the OAM density existing equally in both the negative and 
positive quadrants for the OAM density across the radial direction of the field, evident in Fig. 3 (d) and (e). The OAM 
density is not uniform in all radial directions of the optical field (evident in Fig. 3 (e)) and so the OAM density plotted in 
Fig. 3 (d) is an average over all angular positions. 
 

Proc. of SPIE Vol. 8274  827406-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/14/2012 Terms of Use: http://spiedl.org/terms



 

 

 
Fig. 3. (a) The digital hologram used to generate the experimental field given in (b) of which the theoretical field is 
represented in (c). A magnification of the ring-slit is given as an insert in (a). (d) The theoretical (blue curve) and 
experimentally measured (red points) OAM density. (e) A density plot of the OAM density. Red denotes negative OAM 
and blue denotes positive. Light to dark blue denotes an increase in positive OAM and light to dark red denotes an 
increase in negative OAM. 
 

5. CONCLUSION   
We have used the Poynting vector approach to derive expressions for the OAM density for symmetric and non-
symmetric optical fields theoretically as well as experimentally. We obtain quantitative measurements for the OAM 
density as a function of the radial position for both a symmetric and a non-symmetric superposition of non-diffracting 
Bessel beams, illustrating good agreement with the theoretical prediction. We find that while the global OAM is zero, the 
local OAM spectrum changes radially across the beam, and can be made to oscillate from positive to negative values by 
a suitable choice of the parameters making up the superposition, making it an ideal tool in the field of optical trapping 
and tweezing.  
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