# **Multi-Spectral Camera Development**

4<sup>th</sup> Biennial Conference

Presented by Mark Holloway 10 October 2012



# **Applications of the Multi-Spectral Camera**



### **Fused image**

• Beeden Gaeneln Baunel, Bleer Infrared (IR)



# **Applications of the Multi-Spectral Camera**



# **Engineering the Concept Demonstrator**



www.csir.co.za

© CSIR 2012 Slide 4

# **Refining the requirement**



### Original requirement (selected examples)

- 6 Spectral bands plus laser range finder
- High Definition (HD) video format
- Synchronised image capture
- Configurable mounts positioner and laboratory
- Radiometric and geometric calibration
- Fiber optic data transmission



### Proposed system (selected examples)

- 4 Spectral bands
- 1.4 Megapixel sensor, HD capable optics
- Synchronised image capture
- General purpose mount
- Rigid transform for image registration
- Standard Gigabit Ethernet data transmission



BUDGE

# **Concept Development – Sensor units**



### System architecture

- Consists of 4 similar sensor units
- Mounted on a single mechanical mount
- 12x Optical zoom with 1.4 Megapixel industrial GigE camera
- 4 spectral bands Red, Green, Blue and Near Infrared
- Filter cartridge of optical filters









# **Concept Development – Control and Support**



### System architecture

- Operates on GNU/Linux operating system
- 8 Tb of data storage
- Dual monitor display, one for GUI and one for images
- Sensor unit power supply and signal distribution enclosure





# **Multi-Disciplinary Team**

Documentation and Acceptance Test Procedure (ATP)

**Gladys Sonko** 

**Electronics and Embedded software** 

Deán Aucamp, Marietjie Blignaut, Herman Visagie

### **GUI and Image Processing**

Bernardt Duvenhage, Nelia Lombard

**Opto-Mechanics and Packaging** 

Warren Cowley, Mark Holloway, Ipeleng Mathebula

**Test and Evaluation** 

**Bertus Theron** 









# Hardware evaluation - COTS lens

### **Evaluation rational**

Data rabeasts for paralised price of the manufacturer's data-sheet



#### GRAFLEX MOTORIZED ZOOM LENS SELECTION CHART

Graflex Motorized, Ruggedized Zoom Lenses have a long history of quality, durability, performance and have been used in many high profile rulitary programs including airborne gimbala, surreillance systems and weapon fire control systems. Graflex is always open to customization of any of it's lenses including enclosures, special mounts, inclusion of various parts such as boresight compensation, motors, brackets, auto/manual iris, RS232/RS422 digital control, etc., in order to meet the most difficult expectations in the most severe environmental conditions.

| Zoore        | Rating     |          | LPinen |      | CCD    | HFOV (Degrees)                |                             | Mechanical Length @ Focus |           | Other Mechanical |            |                   |
|--------------|------------|----------|--------|------|--------|-------------------------------|-----------------------------|---------------------------|-----------|------------------|------------|-------------------|
| <b>Jutio</b> | EFL (mm)   | f Number | WA     | Tale | Format | Wide                          | Tala                        | Infinity (cord)           | Neur (mm) | Wide (mm)        | Higt (rom) | Wtikal            |
| 10X          | 12.0-120.0 | 1.8-2.2  | 226    | 181  | 10*    | 10.4                          | 1.0                         | 123.5                     | 127.6     | 70.0             | 79.5       | CAS<br>(Recomment |
| 108          | 18.0-180.0 | 27-3.3   | 239    | 152  | 10.00  | 25.0<br>16.2<br>16.2          | 2.0                         | 128.8                     | 132.9     | 70.0             | 79.5       | (Rectana)         |
| 10X          | 24.0-240.0 | 3,6-4,4  | *      | 161  | 19.9   | 28.5<br>26.5<br>16.2          | 1.0<br>2.1<br>1.00<br>1.10  | 130.0                     | 134,1     | 70.0             | 79.5       | Pic Case          |
| 12X          | 15.0-180.0 | 19       | 675    | 383  | 20.00  | 901<br>40.7<br>14.09<br>10.10 | 8.07<br>5.8<br>2.04<br>3.42 | 227.5                     | 233.5     | 137              | 134        | 137               |





© CSIR 2012 Slide 9

# Hardware Design – Sensor Unit



### Key design elements

- Integration of COTS hardware
- Environmental protection
  - Dust
  - Water splash
  - Sun exposure
- Spectral filter cartridge
- Cable looms and routing
- Kinematic mount
- Designed for upgrade path



# Hardware Design – Power Supply and Control signals



### Key design elements

- Ethernet to 4 channel RS422 serial comms
- External video frame synchronisation
- System power supply



# **Progress Reporting**

UNCLASSFIED



#### **Problem Areas**

Optical Window The optical windows have been ordered, but will require wave-bord measurement when received.

#### Possible Solutions to Problem Area

Optical Window

Possible re-work, final aizing and if required, Anti-Reflection (AR) coating may be required

#### 3rd Progress Report dated 22 June 2012

#### **Project Highlights**

#### 1. Mechanical Design

Design of the lens to tripodiPan and Till Unit (PTU), hereafter referred to as the MCS base assembly, shown in Figure 4, has been completed. Figure 5 shows the MCS assembly, consisting of the camera housings and MCS base assembly as a unit.

Suitable transport cause for the imaging components and computer hardware have been selected. The foam profiles for the transport cases have modelled in concept and will be finalised once the power supply enclosure design is complete







UNCLASSIFIED

Figure 5: MCS Assembly

#### Mechanical Manufacture

Manufacture of the lans interface components is complete. Conformance of the parts to the manufacture drawings has been verified. A test fitting of the lens interfaces assembly has confirmed fit and function Figure 5 shows the manufacture batch of lens interface components and a set of components required fo the assembly. The surface treatment of these components will commence once all of the parts for the MCS assembly have been received.



#### Figure 6: Lens Interface Components

Page 5 of 9

Project No: GEOLCCD. Project Name: Multi-spectral Carvera System Concept Demonstrator UNCLASSIFIED

### Client feedback

- Managing potential risks and offering solutions
- Status of task progress



www.csir.co.za

© CSIR 2012 Slide 12

# **Hardware Manufacture**



www.csir.co.za

© CSIR 2012 Slide 13

## **Hardware Manufacture**



# **System Integration – Sensor Unit**









Integration process

- Each sub-assembly is integrated and the build data recorded for configuration purposes
- Each fully assembled system is set-up and verified on the OTEL Day / Night resolution test bench



www.csir.co.za

© CSIR 2012 Slide 15









# **Software - Graphical User Interface (GUI)**



### **GUI** functionality

- Single and global lens control
- Camera setting controls
- Image view selection

- External sync control and system status
- Selectable recording and snap
- Image fusion selection
- Live / playback view controls



# **Software - Image Processing - Computational Alignment**



### Image registration

- Basic 2 point homography
- Manual feature selection for alignment
- No lens distortion, near field or perspective correction

www.csir.co.za

© CSIR 2012 Slide 17

# **Software - Image Processing - GUI**



### Image presentation

- Pixel brightness map based bandpass shader (filter dependent)
- Histogram stretching for optimal fused image exposure



# **The Multi-Spectral Camera System**











www.csir.co.za

Slide 19

# **Support Documentation**

### **Configuration Control**

- System design booked into eB
  - Documents
  - Software version control and source code
  - Electronics design
  - Opto-Mechanical and mechanical design

| Iphical Structure for: 6720-MCS-00000-01.00 - MULTI-SPECTRAL<br>MERA SYSTEM (PRODUCT ASSEMBLY) | Printed by RAILEETH           |
|------------------------------------------------------------------------------------------------|-------------------------------|
| 5720-MC5-00000 Ver: 01.00 Qtv: 1 (F)                                                           |                               |
| M.E.TI-SPECTRAL CAMERA SYSTEM                                                                  |                               |
| CADRO - 6720-MCS-00000 ADRO Rev. F - MULTI-SPECTRAL CAMERA SYSTEM ASSEN                        | ABLY DRAWING                  |
| CORD-1030 MCS 40000 CORG Rev 1 - MECHANICAL DETAIL DRAWING FOR THE M                           | AUTI-SPECTRIAL CAMERA EVISTER |
| PPL - 6720-MCO-00800 (D1.00) PL Revol - MLLTI-SPECTRAL CAMERA SYSTEM                           |                               |
| CATP - 8720-MOD-00001 ATP Rev.1 - MULTI-SPECTRAL CAMERA DISTEM ADDEPTAR                        | NCE TEST PROCEDURE            |
| CATE - 6720-MCS-80001 ATE Rec1 - MULTI-SPECTRAL CAMERA SYSTEM ACCEPTA                          | NCE TEDT RESULTS              |
| CURS - 6720-MCS-00001 URS Rev:1 - MULTI-SPECTRAL CAMERA SYSTEM USER RE                         | SUPEMENTS SPECIFICATION       |
| 6720-MCS-10000 Ver: 01.00 Qty: 1 (F)                                                           |                               |
| RED CAMERA UNIT                                                                                |                               |
| ADRIS- 8720-MCS-1000E ADRO Rev 1 - RED CAMERA ASSEMBLY DRAWING                                 |                               |
| MML - 5720 MCG-10000 MHL Rev - RED CAMERA UNIT                                                 |                               |
| PL - 8726-MCG-10000 [01.00] PL Rev 01 - RED CAMERA UNIT                                        |                               |
| 25:6720-MCS-T1000 Ver: 01.00 Qty: 1 (P)                                                        |                               |
| MANTA G-145B-BL                                                                                |                               |
| 2 PL - 6720-MCG-11000 [St.00] PL Rev 01 - MAWTA G-1458-8L                                      |                               |
| 31: 6720-MCS-11100 Ver: Gty: 1 (P)                                                             |                               |
| MANTA G-145B-BL CONTROLLER CARD                                                                |                               |
| 31-6720-MC5-11200 Ver: Qty: 1 (P)                                                              |                               |
| MANTA G-1450-EL SENSOR                                                                         |                               |
|                                                                                                |                               |

 Acceptance Test Procedure (ATP) for system conformance verification, performed both as a factory and customer procedure

| REQ.1.7.2 There is evidence that the Sensor Unit enclosure<br>meets the IP54 protection rating (enclosure design<br>methodology). |                                                                                                              |                                                |               |          | <ul> <li>Inspect design drawings and enclosures for evidence that<br/>enclosures meet IPS4 rating.</li> </ul> |                                                                                                                                       |      |      |            |            |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------|----------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------|------|------------|------------|--|--|
| REQ 1.7.3                                                                                                                         | REQ.1.7.3 The Sensor Unit account of the Sensor Unit account of the Sensor Unit account of the Sensor Sensor |                                                |               |          |                                                                                                               | <ul> <li>Demonstrate accessionly to an international the Sensor Unit<br/>enclosure by opening (and closing) the filter cap</li> </ul> |      |      |            |            |  |  |
| REQ 1                                                                                                                             | Each Sensor U                                                                                                | Each Sensor Unit enclosure has a label with an |               |          |                                                                                                               | Inspect each Sensor Unit for an identifier/label.                                                                                     |      |      |            |            |  |  |
|                                                                                                                                   | appropriate unique identifier                                                                                |                                                |               |          | Sensor Unit                                                                                                   |                                                                                                                                       |      |      | Ident      | fior'Label |  |  |
| <b>(</b>                                                                                                                          |                                                                                                              |                                                |               |          | 1                                                                                                             |                                                                                                                                       | SU 1 | SU 1 |            |            |  |  |
|                                                                                                                                   |                                                                                                              |                                                |               |          | 2 SU 2                                                                                                        |                                                                                                                                       |      |      |            |            |  |  |
|                                                                                                                                   |                                                                                                              |                                                |               |          | 3 SU3<br>4 SU4                                                                                                |                                                                                                                                       |      |      |            |            |  |  |
|                                                                                                                                   |                                                                                                              |                                                |               |          |                                                                                                               |                                                                                                                                       |      |      |            |            |  |  |
|                                                                                                                                   |                                                                                                              |                                                |               |          |                                                                                                               |                                                                                                                                       |      |      |            |            |  |  |
| Requirement ID                                                                                                                    |                                                                                                              | 160                                            | sq.1: 5en     | SER OTHE |                                                                                                               |                                                                                                                                       |      |      |            |            |  |  |
| Compliance Status:                                                                                                                |                                                                                                              | All                                            | units comply. |          |                                                                                                               |                                                                                                                                       |      |      |            |            |  |  |
| est Operator(a)                                                                                                                   |                                                                                                              | π.                                             | MRH .         | Signatu  | 78                                                                                                            |                                                                                                                                       |      | 5.   | MB         | Signature  |  |  |
|                                                                                                                                   |                                                                                                              | 2.                                             | BD            | Signutu  |                                                                                                               |                                                                                                                                       |      | 6    | GS         | Signature: |  |  |
|                                                                                                                                   |                                                                                                              | З.                                             | NL.           | Signatu  | Fú                                                                                                            |                                                                                                                                       | 7    |      | Signaturo: |            |  |  |
|                                                                                                                                   |                                                                                                              | 4.                                             | DA            | Signatu  | н                                                                                                             |                                                                                                                                       |      | 8.   |            | Signature: |  |  |
| late of Test                                                                                                                      | te of Test: 07 September 2012                                                                                |                                                |               |          |                                                                                                               |                                                                                                                                       |      |      |            |            |  |  |



# **Benefits and Application**

# Impact in the client environment

Providing capability and skills not available in-house to the client

- Image processing framework
- Design and integration of the Multi-Spectral Camera technology demonstrator
- Provide a purpose built, versatile solution through intelligent integration of Commercial Of The Shelf (COTS) and custom hardware according to the client requirement
- Providing the value for money system which the client could not find internationally

# Applications

- Ground target interogation
- Camouflage uniforms / vehicles
- Background characterisation
- Aircraft / decoys



# Thank you

