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New exact solutions of equations of longitudinal vibration of conical and exponential rod are 

obtained for the Rayleigh-Love model. These solutions are used as reference results for 

checking accuracy of the method of lines. It is shown that the method of lines generates solu-

tions, which are very close to those that are predicted by the exact theory. It is also shown 

that the accuracy of the method of lines is improved with increasing the number of intervals 

on the rod. Reliability of numerical methods is very important for obtaining approximate so-

lutions of physical and technical problems. In the present paper we consider the Rayleigh-

Love model of longitudinal vibrations of rods with conical and exponential cross-sections. It 

is shown that exact solution of the problem of longitudinal vibration of the conical rod is ob-

tained in Legendre spherical functions and the corresponding solution for the rod of exponen-

tial cross-section is expressed in the Gauss hypergeometric functions. General solution of 

these problems is expressed in terms of the Green function. For numerical solution of the 

problem we use the method of lines. By means of this method the partial differential equa-
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tions describing the dynamics of the Rayleigh-Love rod are reduced to a system of ordinary 

differential equations. For checking of accuracy of the numerical solution we chose special 

initial conditions, namely we assume that initial longitudinal displacements of the rod are 

proportional to one of eigenfunction of the system and initial velocities are zero. In this case 

vibrations of every point of the rod are harmonic and their amplitudes are equal to the initial 

displacements. Periods of these vibrations, obtained by the method of lines are estimated and 

compared with the theoretically predicted eigenvalues of the rod, thus giving us estimations 

of accuracy of the numerical procedures. 

1. Introduction 

Reliability of numerical methods is very important for obtaining approximate solutions of 

physical and technical problems. That is why it is necessary to test these solutions whenever it is 

possible using exact solutions, obtained for some special cases. In the present paper we consider the 

Rayleigh-Love model [1] of longitudinal vibrations of rods with conical and exponential cross-

sections. It is shown that exact solution of the problem of longitudinal vibration of the conical rod is 

obtained in Legendre spherical functions and the corresponding solution for the rod of exponential 

cross-section is expressed in the Gauss hypergeometric functions. For numerical solution of the 

problem we use the method of lines [2].  

2. Exact solution of equations of the conical rod 

Let us consider a rod of length l  and assume that its physical parameters such as mass density 

( )ρ , modulus of elasticity ( )E  and Poisson ratio ( )η are constant, but radius of cross-section is 

variable and depends on longitudinal coordinate ( )x  of the rod: ( )r r x= . In this case area of cross-

section of the rod ( )( )S S x=  and its polar moment of inertia ( )( )p pI I x=  are also variable. In the 

case of circular cross-section ( ) ( )2S x r xπ=  and ( ) ( )4 2pI x r xπ= . Equation of longitudinal vi-

bration [1] for longitudinal displacement ( ),u x t  is as follows: 

 

( )
( )

( )
( )

( )
( )

( )
2 3

2

2 2

, , ,
,p

u x t u x t u x t
S x I x E S x F x t

t x t x x x
ρ ρη

 ∂ ∂ ∂∂ ∂  
− − =   ∂ ∂ ∂ ∂ ∂ ∂  

        (1) 

 

Let us consider a steady-state vibration ( ) ( ), i tu x t U x e ω= ⋅  ( 2 1i = − ). In this case the corre-

sponding to (1) homogeneous equation is: 

( ) ( ) ( )
( )

( )
( )2 2 0p

dU x dU xd d
S x U x I x E S x

dx dx dx dx
ρω η

    
− + =    

    
  (2) 

If the generatrix of conical surface of the rod is described by equation ( ) ( )pr x k x x kx= − = , 

where px  is coordinate of the pole of the cone, px x x= − , then ( ) 2 2S x k xπ= , ( ) 4 4 2pI x k xπ=  

and equation (2) is rewritten as follows: 

( ) ( ) ( ) ( )
( )

2 2 22
2 2

2

2 1 2
1 0

xd U x dU x
x U x

dx x dx c

µ ω
µ

−  
− + + = 

 
       (3) 
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where c E ρ= - speed of wave propagation in cylindrical rod in accordance with the classi-

cal theory, and 
2

k

c

η ω
µ =  is the wavenumber of the conical rod which has dimension 1m− . 

Introducing new dimensionless variable z xµ= , considering new function ( )
z

V z U
µ

 
=  

 
 

( )W z

z
=  we transform (3) to equation: 

( ) ( ) ( )
( ) ( )

2
2

2
1 2 1 0

d W z dW z
z z W z

dz dz
σ σ− − + + =    (4) 

where 
( )

2

1 9 2

2 4 k
σ

η
= − + + . Equation (4) is the Legendre equation which has solution  

( ) ( ) ( )1 2W z C P z C Q zσ σ= +       (5) 

where ( )P zσ , ( )Q zσ  are Legendre functions of the first and second kind and 1,2C  are arbi-

trary constants. In original variables solution of the problem of the Rayleigh-Love longitudinal vi-

bration of the conical rod is rewritten as follows: 

( )
( ) ( )

1 2
p p

p p

P x x Q x xC C
U x

x x x x

σ σµ µ

µ µ

   − −   = +
− −

    (6) 

3. Exact solution of equations of the exponential rod 

Let us now consider the Rayleigh-Love rod with the exponential generatrix so that radius of 

its cross-section is ( ) xr x k eα ⋅= ⋅ . In this case area of cross-section is ( ) 22 xS x k e απ=  and polar 

moment of inertia ( )
44

2

x

p

k e
I x

απ
= . In this case equation (2) is transformed to the following form: 

( ) ( ) ( ) ( )
( )

22
2 2

2
1 2 1 2 0x xd U x dU x

e e U x
dx dx c

α α ω
χ α χ  

− + − + = 
 

       (7) 

where 

2
1

2

k

c

η ω
χ  

=  
 

. Exact solution of equation (7) could be obtained by means of it trans-

formation to the Gauss hypergeometric equation in two steps. At the first step we make transforma-

tion ( ) ( ) xU x V x eβ= , where β  is constant, which will be specially selected further. After this 

transformation equation (7) is rewritten as 

( ) ( )
( ) ( )

( )

( ) ( )

2
2 2

2

2

2 2

1 2 2

4 2 0

x x

x

d V x dV x
e e

dx dx

e V x
c

α α

α

χ α β α β χ

ω
β α β χ β αβ

 − + + − + 

    
+ − + + + + =   

    

        (8) 

At this stage we make a choice of β  so that ( )
22 2 / 0cβ αβ ω+ + = . Hence, 

2

1,2 1 1
c

ω
β α

α

   = − ± −  
   

 and we make an arbitrary choice of the sign, so we assume 
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( )
2

, 1 1
c

ω
β β α ω α

α

   = = − + −  
   

     (9) 

At the second step we change variable x z→ so that 
2 xz e αχ=  and introduce function 

( )
1
ln

2

z
W z V

α µ

  
=   

  
. In the new variables equation (10) is represented as follows: 

( )
( ) ( )

( )
2

2
1 2 3 1 0

4

d W z dW z
z z z W z

dz dz

β β β β

α α α α

      
− + + − + − − =            

        (10) 

where β  is calculated by formula (9). Equation (10) could be rewritten in the standard Gauss 

hypergeometric equation form: 

( )
( )

( )
( )

( )
2

2
1 1 0

d W z dW z
z z c a b z ab W z

dz dz
− + − + + − ⋅ =      (11) 

where
2

1
1 1

2 2
a

c

β ω

α α

   = = − + −  
   

,
2

1
2 3 1
2 2

b
c

β ω

α α

   = + = + −  
   

 and 
2

1 1 1c
c

β ω

α α

   = + = + −  
   

. 

Solution of equation (11) is  

( ) ( ) ( )1

1 2 1 2 2 1, ; ; 1, 1; 2 ;cW z C F a b c z C z F b c a c c z−= ⋅ + ⋅ ⋅ − + − + −    (12) 

where ( )2 1 , ; ;F a b c z  is the Gauss hypergeometric function with parameters a , b , c  and ar-

gument z  and 1,2C  are arbitrary constants. 

In the original variables solution (12) could be rewritten as follows: 

 

( )

2

2

2 2 21 1
2

1 2 1

21 1

2 2 1

1 1
1 1 , 3 1 ; 1 1 ;

2 2

1 1
3 1 , 1 1

2 2

x
c x

x
c

U x C e F e
c c c

C e F
c c

ω
α

α α

ω
α

α

ω ω ω
µ

α α α

ω ω

α α

 
  − − − ⋅ 

  
 

 
  − + − ⋅ 

  
 

                 = ⋅ ⋅ − + − + − + − ⋅     
                 

  −    + ⋅ ⋅ − − + −  
     

2 2

2
; 1 1 ;

xe
c

αω
µ

α

         − − ⋅  
         

 (13) 

where 1 1C C=  and 1

2 1

cC Cχ −= ⋅  are new arbitrary constants. 

4. Computational scheme of the method of lines for the rod with vari-
able cross-section 

Let us return to equation (1) and rewrite it as follows: 

( )
( ) ( ) ( )

( )
( )

( ) ( )
( )

( )
( )

2 3 4
2

2 2 2 2

2

2

, , ,

, ,
,

p

p

I xu x t u x t u x t
S x I x

t x t x t x

S x u x t u x t
E S x F x t

x x x

ρ ρη
∂ ∂ ∂ ∂

− + 
∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂
− + = 

∂ ∂ ∂ 

         (14) 

Next we divide the rod in 1N +  equal intervals, so that 0 0x = , 1Nx l+ = , and compose an ap-

proximate finite difference scheme for x – differentiation at an arbitrary inner point kx , 

( )1,2, ,k N= � : 

1 1

2
k

k k

x x

u uu

x x
+ −

=

−∂
≈

∂ ⋅ ∆
,  

2

1 1 1

2 2

2

k

k k k

x x

u u uu

x x
− + +

=

− ⋅ +∂
≈

∂ ∆
       (15) 

where 
1

l
x

N
∆ =

+
 is length of the intervals of the rod. 
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Substituting (15) in (14) and regrouping terms we obtain the system of N  ordinary differen-

tial equations: 
( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 1 2 2 1

1 1

3 4 4 3 4

1 1

1 2

2

k k k k k k k k

k k k k k k k k k

J J u J u J J u

J J u J u J J u f t

− +

− −

   − − + + − +   

     = − − − + + +     

�� �� ��

   (16) 

where ( )
2

1

2
k

k

k

dI
J

S x

η ⋅
=

⋅ ⋅ ∆
, ( )

2
2

2

k
k

k

I
J

S x

η ⋅
=

⋅ ∆
, ( )3

2
k

k

k

E dS
J

S xρ

⋅
=

⋅ ⋅ ⋅ ∆
, ( )4

2k

E
J

xρ
=

⋅∆
, ( )k kS S x= , 

( )k p kI I x= , 
( )

k

k

x x

dS x
dS

dx
=

= , 
( )

k

p

k

x x

dI x
dI

dx
=

= ,  ( )k p kI I x=  and ( ) ( )
1

,k k

k

f t F t x
Sρ

=
⋅

. 

For the conical rod ( )
2

2

k k pS k x xπ= −  (remember that px  is the coordinate of the pole of the 

cone), ( )22k k pdS k x xπ= − , ( )
4

40.5k k pI k x xπ= − , ( )
3

42k k pdI k x xπ= − , 

( ) ( )2 2

1 k p

k

k x x
J

x

η ⋅ ⋅ −
=

∆
, ( ) ( )

2
2 2

2

22

k p

k

k x x
J

x

η ⋅ −
=

⋅ ∆
, ( )

( )
3

k

k p

E
J

x x xρ

⋅
=

⋅ − ⋅ ∆
 and ( )4

2k

E
J

xρ
=

⋅∆
. 

For the exponential rod 
22 kx

kS k e απ= , 
222 kx

kdS k e ααπ= , 
440.5 kx

kI k e απ= , 

442 kx
kdI k e ααπ= , ( )

22 2
1

kx

k

k e
J

x

αη α⋅ ⋅ ⋅
=

∆
, ( )

22 2
2

22

kx

k

k e
J

x

αη ⋅ ⋅
=

⋅∆
, ( )3

k

E
J

x

α

ρ

⋅
=

⋅∆
 and ( )4

2k

E
J

xρ
=

⋅∆
. 

Unknowns ( )0 ,0u u t=  and ( )1 ,Nu u t l+ =  are defined from the boundary conditions. For ex-

ample, for fixed ends 0 1 0Nu u += =  and 0 1 0Nu u += =�� �� . For free ends 
0

0
x

u

x =

∂
=

∂
 and (or) 

0
x l

u

x =

∂
=

∂
. Derivatives at the end points are approximated as follows [ ]: 

0 1 2

0

3 4

2x

u u uu

x x=

− + −∂
≈

∂ ⋅∆
,  1 14 3

2
N N N

x l

u u uu

x x
− +

=

− +∂
≈

∂ ⋅∆
   (17) 

and hence, for free boundary conditions 1 2
0

4

3

u u
u

−
=  (for 

0

0
x

u

x =

∂
=

∂
, and hence, 

1 2
0

4

3

u u
u

−
=
�� ��

�� ) and (or) 1
1

4

3
N N

N

u u
u −

+

−
=  (for 0

x l

u

x =

∂
=

∂
, and hence, 1

1

4

3
N N

N

u u
u −

+

−
=
�� ��

�� ). For 

different boundary conditions the corresponding values 0u , 1Nu +  and 0u�� , 1Nu +
��  could be estimated 

similarly. 

5. Examples 

For the conical Rayleigh-Love rod with fixed ends ( ) ( )( )0 0U U l= =  we obtain the follow-

ing characteristic system of equations (see (6)): 

( )
( ) ( )

( )

( )

( )

( )

2 2

det 0

2 2

p p

p p

p p

p p

k k
P x Q x

c c

x x
D

k k
P l x Q l x

c c

l x l x

σ σ

σ σ

η ω η ω

ω
η ω η ω

   
− −      

− −
= =

   
− −      

− −

       (18) 
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From this equation we calculate eigenvalues nω  and eigenfunctions: 

( )
( ) ( )

( )

2 2 2 2

2

n n n n
p p p p

n
n

p p

k k k k
P x x Q x P x Q x x

c c c c
U x

k
x x Q x

c

σ σ σ σ

σ

η ω η ω η ω η ω

η ω

       
− ⋅ − − − ⋅ −              =

 
− ⋅ −  

  (19) 

Let us consider the conical rod with slope 0.1k = . Its left end is fixed and located at 0 0x =  

m, right end is also fixed and located at 1 1Nx l+ = = m. The pole of the rod is located at 0.5px = −  

m. Modulus of elasticity of the rod is 9100 10E = ⋅  Pa, mass density 38.5 10ρ = ⋅  kg/m
3
 and Pois-

son ratio is 0.33η ≈  (for calculation the Poisson ratio was taken with eight digits after coma as 

0.33296357η =  because at this value 
( )

6

2

1 9 2
42 1.161 10

2 4 k
σ

η

−= − + + ≈ + ⋅  is very close to in-

teger value 42σ = , which substantially simplified calculations of the Legendre functions ( )P zσ  

and ( )Q zσ ). Simulation of the problem was performed in MATHCAD14 which has the built-in 

function ( ),Leg xσ  for calculation of ( )P zσ  with integer σ . Function ( )Q zσ  with integer σ  cal-

culated as follows
4, 5

: 

( ) ( ) ( ) ( )1

1

1 1 1
ln

2 1
q q

q

z
Q z P z P z P z

z q

σ

σ σ σ− −
=

 + 
= −   

−   
∑  

Distribution of eigenvalues of the problem (equation (18)) is shown in Fig. 1 (solid line) 

where it is compared with the eigenvalues distribution of the rod with the same geometric and 

physical properties but considered in the frames of the classical theory (dotted line).The eigenvalues 

considered in the frames of the Rayleigh-Love theory have the limiting point which in this case is 

approximately equal to 15.438 kHz. Eigenfunctions corresponding to the first five eigenvalues are 

shown in Fig. 2. These eigenfunctions were plotted using exact solution (6).  

 

5 10
3

× 1 10
4

× 1.510
4

×

10−

0

10

13.563

10−

log Dω( )( )

log sinω
ρ

E
⋅ lL⋅

















1.710
4

×100 ω 2π( )
1−

⋅                  
0 0.2 0.4 0.6 0.8

1−

0

1

1

0.749−

U1 x( )

U2 x( )

U3 x( )

U4 x( )

U5 x( )

10 x  
    Figure 1. Eigenvalues of the Rayleigh Love   Figure 2. First five eigenfunctions of 

    (solid red line) and classical (dotted blue line)   the Rayleigh-Love conical rod. 

    conical rods.  
 

Let us consider free vibrations of the Rayleigh-Love conical rod at ( ), 0F x t = ,  correspond-

ing to initial conditions ( ) ( )
0

,
t

u x t g x
=

= , 
( )

0

,
0

t

u x t

t
=

∂
=

∂
. The analysis was performed by means 

of expressions (20) -  (21) and by means of the method of lines in which the conical rod was divided 

in 1 101N + =  equal intervals and numerical integration of the system of 100N =  ordinary differ-

ential equations was performed by the Adams-backward differentiation formula method with toler-

ance 1510− . All solutions gave the similar results which are shown in Fig. 3 – 6. In Fig. 3 we as-

sumed that initial condition is proportional to the first eigenfunction ( ) ( )3

110g x U x−=  (see Fig. 2), 
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the time integration was performed in interval [ ]∈ ⋅ 10, 2t T  seconds, where 1 12 /T π ω=   and ω1  is 

the first eigenvalue. Time interval ⋅ 12 T  is subdivided into 1000 intervals. The Fourier analysis of 

the time realization shown that absolute difference between the exact eigenvalue and eigenvalue 

calculated by the method of lines is 1 0.069f∆ =  Hz which corresponds to 

( ) 3

1 1 100% 4 10 %f f −∆ ⋅ = ⋅ . ( ) 2

2 2 100% 1.6 10 %f f −∆ ⋅ = ⋅ . For 1 201N + =  intervals the results of 

solution of the system of 200N =  ordinary differential equation are 1 0.017f∆ =  Hz and 

( ) 3

1 1 100% 1.0 10 %f f −∆ ⋅ = ⋅ . In Fig. 4 the initial condition were taken proportional to the second 

eigenfunction ( ) ( )3

210g x U x−=  (Fig. 2), the time integration was performed in interval 

[ ]∈ ⋅ 20, 2t T  seconds, where 
π

ω
=2

2

2
T   and ω2  is the second eigenvalue. Results of the Fourier 

analysis of the time realization shown that absolute difference between the exact eigenvalue and 

eigenvalue calculated by the method of lines is 2 0.54f∆ =  Hz which corresponds to 

( ) 2

2 2 100% 1.6 10 %f f −∆ ⋅ = ⋅ . For 1 201N + =  intervals the results of solution of the system of 

200N =  ordinary differential equation are 2 0.135f∆ =  Hz and ( ) 3

2 2 100% 4 10 %f f −∆ ⋅ = ⋅ . 

 

       
Figure 3. Free vibrations of the Rayleigh-     Figure 4. Free vibrations of the Rayleigh- 

Love conical rod at the first mode.      Love conical rod at the second mode. 

 

In Fig. 5 the initial condition were taken proportional to the second eigenfunc-

tion ( ) ( )3

310g x U x−=  (Fig. 2), the time integration was performed in the time interval [ ]∈ ⋅ 30, 2t T  

seconds, where 
π

ω
=3

3

2
T   and ω3  is the third eigenvalue. Results of the Fourier analysis of the time 

realization shown that absolute difference between the exact eigenvalue and eigenvalue calculated 

by the method of lines is 3 1.75f∆ =  Hz which corresponds to ( ) 2

3 3 100% 3.5 10 %f f −∆ ⋅ = ⋅ . For 

1 201N + =  intervals the results of solution of the system of 200N =  ordinary differential equa-

tion are 3 0.437f∆ =  Hz and ( ) 3

3 3 100% 9 10 %f f −∆ ⋅ = ⋅ . In Fig. 6 the initial condition were taken 

proportional to the second eigenfunction ( ) ( )3

410g x U x−=  (Fig. 2), the time integration was per-

formed in the time interval [ ]∈ ⋅ 40, 2t T  seconds, where 
π

ω
=4

4

2
T   and ω4  is the fourth eigenvalue. 

Results of the Fourier analysis of the time realization shown that absolute difference between the 



18
th

 International Congress on Sound and Vibration, Rio de Janeiro, Brazil, 10-14 July 2011 

 

 

8 

exact eigenvalue and eigenvalue calculated by the method of lines is 4 3.92f∆ =  Hz which corre-

sponds to ( ) 2

4 4 100% 6 10 %f f −∆ ⋅ = ⋅ . For 1 201N + =  intervals the results of solution of the sys-

tem of 200N =  ordinary differential equation are 4 0.975f∆ =  Hz and 

( ) 2

4 4 100% 1.5 10 %f f −∆ ⋅ = ⋅ . 

One can see that the results of numerical simulation by the method of lines are very close to 

the theoretically predicted results. Accuracy of estimations is increasing with increasing of the 

number of intervals of the rod’s length. Hence, we can conclude that the method of line is a reliable 

numerical method of simulation of partial differential equations with mixed time-spatial derivatives. 

 

 

  
Figure 5. Free vibrations of the Rayleigh-     Figure 6. Free vibrations of the Rayleigh- 

Love conical rod at the third mode.      Love conical rod at the fourth mode. 

6. Conclusions 

Two exact solutions of equations of motion were derived for the case of longitudinal vibra-

tions of the Rayleigh-Love rod. The first exact solution was obtained for the conical rod and ex-

pressed in the Legendre functions. The second exact solution was obtained for the exponential rod 

and expressed in the Gauss hypergeometric functions. The general solutions of the problem are 

formulated in terms of two alternative Green functions. The computational scheme of the method of 

lines was formulated for the case of the Rayleigh-Love rod with variable cross-section. Solutions 

obtained by the method of lines for the conical rod were compared with the exact solutions of the 

problem. It was shown that the method of lines produces results which are very close to the corre-

sponding exact solutions. It was also shown that the accuracy of the method of lines is increasing 

with increasing of number of intervals on the rod. The conclusion was formulated that the method 

of lines generates reliable and accurate results for partial differential equations with mixed time-

spatial derivatives. 
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