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Many of wave propagation problems describing by hyperbolic equations could be formulated 

in terms of the variational principles. In the paper we demonstrate how to derive the systems 

of ordinary differential equations of the method of lines directly from the Lagrangians of the 

corresponding variational formulations. The discussed method has several advantages in 

comparison with the traditional methods of deriving of the initial problems from the initial-

boundary problems for partial differential equations. First, in Lagrangians we use a finite dif-

ference representation of the spatial derivatives of lower order than in equations. For exam-

ple, in the wave equations we need to represent the second partial derivative of displacements 

by its finite difference but in the corresponding Lagrangian we use the finite difference repre-

sentation of the first partial derivative. In the equations of longitudinal vibration of the 

Rayleigh-Bishop bar as well as in the equations of lateral vibration of the Euler-Bernoulli 

beam we need to use a finite difference representation of the fourth order partial derivatives 

of displacements, but in the Lagrangians we need a finite difference representation of the 

second order partial derivatives. The second advantage of the variational approach to the 

method of lines is connected with the fact that number of terms in Lagrangians is less than in 

the corresponding equations. For example, in the equation of vibration of the Rayleigh-

Bishop bar with variable parameters there are eight terms including spatial partial derivatives 

of displacement of the first, second, third and fourth order and first and second partial deriva-

tives of geometrical and physical parameters. In the corresponding Lagrangian there are four 

terms including first and second spatial partial derivatives of displacement, derivatives of 

combinations of geometrical and physical parameters are absent. Some limitations of the 

method are discussed in the paper. 
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1. Introduction 

The method of lines is a simple and reliable method of numerical analysis of parabolic and 

hyperbolic problems of mathematical physics [1,2]. By means of this method mixed initial-

boundary problems described by partial differential equations are transformed into systems of ordi-

nary differential equations with initial conditions. This reduction is obtained by means of applica-

tion of particular finite difference schemes to the spatial derivatives. Many of the wave propagation 

problems describing by the hyperbolic equations could be formulated in terms of the variational 

principles. In the present paper we demonstrate how to derive the systems of ordinary differential 

equations of the method of lines directly from the Lagrangians of the corresponding variational 

formulations of the wave propagation problems. The discussed method has several obvious advan-

tages in comparison with the traditional methods of deriving of the initial problems of systems for 

ordinary differential equations from the initial-boundary problems for partial differential equations. 

First, in Lagrangians we need to use a finite difference representation of the spatial derivatives of 

lower order than in equations. For example, in the wave equations describing longitudinal vibration 

of bars, torsional vibration of rods, etc., we need to represent the second partial derivative of dis-

placements by its finite difference but in the corresponding Lagrangian we need to use the finite 

difference representation of the first partial derivative of displacements. In the equations of longitu-

dinal vibration of the Rayleigh-Bishop bar as well as in the equations of lateral vibration of the 

Euler-Bernoulli beam we need to use a finite difference representation of the fourth order partial 

derivatives of displacements, but in the corresponding Lagrangians we need a finite difference rep-

resentation of the second order partial derivatives of displacements. The second advantage of the 

variational approach to the method of lines is connected with number of terms in equations and the 

corresponding Lagrangians. As a rule, number of terms in Lagrangians is substantially less than in 

the corresponding equations. For example, in the equation of vibration of the Rayleigh-Bishop bar 

with variable parameters there are eight terms including spatial partial derivatives of displacement 

of the first, second, third and fourth order and first and second partial derivatives of combinations of 

geometrical and physical parameters. In the corresponding Lagrangian there are four terms includ-

ing first and second spatial partial derivatives of displacement and derivatives of combinations of 

geometrical and physical parameters are absent. Despite the obvious advantages of the variational 

formulation of the method of lines there are some limitations of its practical application which are 

also discussed in the paper.  

2. Standard formulation by the method of lines 

We have the following finite difference representations of first order derivative: 

 

( )
( ) ( ) ( ) ( )1 1

, 1 1
, ,

m

m m m m

x x

u t x
u t x u t x u t u t

x h h
+ +

=

∂
≈ − = −     ∂

  (1) 

and  

( )
( ) ( ) ( ) ( )1 1 1 1

, 1 1
, ,

2 2
m

m m m m

x x

u t x
u t x u t x u t u t

x h h
+ − + +

=

∂
≈ − = −     ∂

 (2) 

 

where 
1 1m m m mh x x x x+ −= − = − , 0,1, 2, , , 1m N N= +… . 

 

Representation (2) is more accurate in comparison with (1) because its accuracy is 

( )3
,O h u t x′′′ ⋅   (for (1) the error has order ( )2

,O h u t x′′ ⋅  ). 

For the second order derivative: 
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( )
( ) ( ) ( )

( ) ( ) ( )

2

1 12 2

1 12

, 1
, 2 , ,

1
2

m

m m m

x x

m m m

u t x
u t x u t x u t x

x h

u t u t u t
h

− +

=

− +

∂
≈ − +  ∂

= − +  

   (3) 

Estimation of error of this finite difference representation has order ( )4
,

IVO h u t x ⋅  ). 

Let us consider the wave equation and show how to realize the method of lines. The wave 

equation describing longitudinal vibrations ( ),u u t x=  of a bar of constant cross-section is as fol-

lows: 

( ) ( )
( )

2 2

2 2

, ,
,

u t x u t x
E F t x

t x
ρ

∂ ∂
− =

∂ ∂
     (4) 

where ρ  is mass density and E  is modulus of elasticity of the bar, ( ),F t x  is the exciting 

force.  

Let us assume that the bar is fixed at both left and right ends ( ) ( )0 1
, 0 , 0Nu t x u t x l+= = = = . 

Its initial conditions are ( ) ( )0,u t x g x= =  and 
( )

( )
0

,

t

du t x
h x

dt
=

= . Hence, it is necessary to define 

motion of the rod in points kx x= , ( )1,2, ,k N= … , i.e. find ( ) ( ),k ku t u t x x= = . To do this we use 

the finite difference approximation of the second spatial derivatives (3): 

 

( )
( ) ( ) ( )

2

1 12 2

, 1
2

k

k k k

x x

u t x
u t u t u t

x h
− +

=

∂
≈ − +  ∂

   (5) 

 

and obtain the following system of ordinary differential equations: 

 

( )
( ) ( ) ( ) ( )

2 2

1 12 2
2k

k k k k

d u t c
u t u t u t f t

d t h
− +− − + =      (6) 

where 
E

c
ρ

= is the speed of propagation of elastic wave over the bar and 

( ) ( )
1

,k kf t F t x x
ρ

= = . If we add initial conditions ( )0k ku t g= =  and 
( )

0

k
k

t

du t
h

dt
=

=  to the system 

of ordinary differential equations (3.5) the initial problem will be  formulated and could be solved 

by one of the available numerical methods (Runge-Kutta, Adams, etc.). 

Explicit form of the system (3.5) is as follows: 

 

( )
( ) ( ) ( )

2 2

1

1 2 12 2
2

d u t c
u t u t f t

d t h
− − + =   , 

( )
( ) ( ) ( ) ( )

2 2

2

1 2 3 22 2
2

d u t c
u t u t u t f t

d t h
− − + =   , 

…………………  ,     (7) 

( )
( ) ( ) ( ) ( )

2 2

1

2 1 12 2
2N

N N N N

d u t c
u t u t u t f t

d t h
−

− − −− − + =   , 
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( )
( ) ( ) ( )

2 2

12 2
2N

N N N

d u t c
u t u t f t

d t h
−− − =   . 

This system of equations with initial conditions: ( )0k ku t g= = , 
( )

0

k
k

t

du t
h

dt
=

= , 

( )1,2, ,k N= …  could be simply programmed and solved. 

3. Variational formulation of the method of lines 

The described method represents the classical approach to the method of line. It is based on 

discretization of spatial derivatives of a partial differential equation and obtaining a system of ordi-

nary differential equations. Let us describe an alternative method, the so-called method of lines 

based on the variational approach. We know that the corresponding Lagrangian of the abovemen-

tioned problem is: 

( ) ( )
( ) ( )

( ) ( )
2 2

0 0

, ,1
, , ,

2

l l u t x u t x
L L t t x dx A EA AF t x u t x dx

t x
ρ
    ∂ ∂ 

= = Λ = − + ⋅    
∂ ∂     

∫ ∫  (8) 

Equation (4) is obtained from Lagrangian (8) by means of the following Euler-Lagrange equa-

tion: 

( ) ( ) ( ), , ,
0

t x t x t x

t u x u u

   ∂ Λ ∂ Λ ∂ Λ∂ ∂
+ − =   ′∂ ∂ ∂ ∂ ∂   �

   (9) 

Let us first make finite difference discretization (3.1a) of the first partial derivative in the ex-

pression for the Lagrangian density: 

( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ){ } ( )

2 2

2 2

12

, ,
, , ,

2

2

m m
m m m

m m m m m m

du t x x du t x xA
t x x E F t x x u t x x

d t d x

A E
u t u t u t F t u t t

h

ρ

ρ +

    = = 
Λ = = − + = ⋅ =    

     

≈ − − + ⋅ ≈ Λ      �

 (10) 

Using, as before, the fixed ends boundary conditions ( ( ) ( )0 1
0Nu t u t+= = ) we obtain the fol-

lowing explicit expressions for the partial Lagrangians: 

( ) ( ) 2

0 12
2

EA
t u t

h
Λ ≈ −    , 

( ) ( ) ( ) ( ) ( ) ( ){ }2 2

1 1 2 1 1 12
2

A E
t u t u t u t F t u t

h
ρΛ ≈ − − + ⋅      � , 

…………………  , 

( ) ( ) ( ) ( ) ( ) ( ){ }2 2

12
2

k k k k k k

A E
t u t u t u t F t u t

h
ρ +Λ ≈ − − + ⋅      � ,  (11) 

…………………  , 

( ) ( ) ( ) ( ) ( ) ( ){ }2 2

1 1 1 1 12
2

N N N N N N

A E
t u t u t u t F t u t

h
ρ− − − − −Λ ≈ − − + ⋅      � , 

( ) ( ) ( ) ( ) ( ){ }2 2

2
2

N N N N N

A E
t u t u t F t u t

h
ρΛ ≈ − + ⋅      � , 

( ) ( ){ }21 2
2

N N

A E
t u t

h
+Λ ≈ −    . 

Using a simplest quadrature formula, namely the rectangle rule, for numerical calculation of 

integral (8) we obtain approximately: 
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( ) ( ) ( ) ( ) ( )
( )2

0 1

0

,
,

l

N

t x
L L t t x dx h t t t O h

x

 ∂ Λ
= = Λ = ⋅ Λ + Λ + Λ + ⋅     ∂ 

∫ …   (12) 

Substituting (11) in (12) we obtain the following approximate Lagrangian: 

 

( ) ( ) ( )

( ) ( )

2 22 2 2 2 2

1 2 1 2 1 1

1 1 2 2 1 2 1 2

2 2

, , ; , ,

N N N N

N N N N

Ah EA
L u u u u u u u u u

h

A h F u F u F u L u u u u u u

ρ
−

 ≈ + + − + − + − + 

+ ⋅ ⋅ ⋅ + ⋅ + ⋅ =

� � �… …

� � �… … …

  (13) 

Hence, equations of this approximate model are given by the following Euler-Lagrange equa-

tions: 

 ( )0, 1, 2, ,
k k

d L L
k N

dt u u

 ∂ ∂
− = = 

∂ ∂ 
…

�
    (14) 

For example, 

( )1 2 1 1

1 1

1 : 2 0
d L L EA

k Ahu u u hAF
dt u u h

ρ
 ∂ ∂

= − = − − − = 
∂ ∂ 

��
�

, 

( )2 3 2 1 2

2 2

2 : 2 0
d L L EA

k Ahu u u u hAF
dt u u h

ρ
 ∂ ∂

= − = − − + − = 
∂ ∂ 

��
�

, 

…………………  ,     (15) 

( )1 1 2 1

1 1

1 : 2 0N N N N N

N N

d L L EA
k N Ahu u u u hAF

dt u u h
ρ − − − −

− −

 ∂ ∂
= − − = − − + − = 

∂ ∂ 
��

�
, 

( )1: 2 0N N N N

N N

d L L EA
k N Ahu u u hAF

dt u u h
ρ −

 ∂ ∂
= − = − − + − = 

∂ ∂ 
��

�
. 

 

It is obvious that systems of equations (15) and (7) are identical. 

4. Lumped mass-spring representation 

System (15) give us an opportunity to show an equivalent lumped mass representation of 

problem (4). It is represented in Fig.  1. In this figure we assume that M Ahρ=  is mass of the 

lumped mass element, 
EA

K
h

=  is stiffness of the lumped spring element, ( ) ( )k kF t AhF t=�  are the 

discrete analogs of the distributed exciting force and ( )ku t  are the displacements of the correspond-

ing lumped masses.Let us proof that the lumped parameters mechanical system shown in Fig. 1 is 

described by system of equations (15). To do this we write the kinetic, potential energies, work of 

external forces and the Lagrangian of the lumped system (Fig. 1): 

Kinetic energy of the system is: 

( ) ( ) ( ) ( ){ }2 2 2

1 2
2

N

M
K t u t u t u t= + + +          � � �…    (16) 

Strain energy of the system is: 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 2 2 2

1 2 1 1
2

N N N

K
P t u t u t u t u t u t u t−= + − + + − +              …   (17) 

Work of external forces is: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 N NW t F t u t F t u t F t u t= ⋅ + ⋅ + + ⋅� � �…    (18) 
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Figure 1. Equivalent lumped mass-spring representation of the distributed system 

 

Lagrangian of the system is: 

( ) ( ) ( ) ( )

( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ) ( ){ }

2 2 2

1 2

2 2 2 2

1 2 1 1

1 1 2 2

1

2

2

N

N N N

N N

L t K t P t W t

M u t u t u t

K u t u t u t u t u t u t

F t u t F t u t F t u t

−

= − +

 + + +           
 

= − + − + + − +               
 

+ ⋅ + ⋅ + + ⋅  

� � �…

…

� � �…

  (19) 

Keeping in mind that M Ahρ= , 
EA

K
h

=  and ( ) ( )k kF t AhF t=�  we conclude that Lagran-

gians (19) and (13) are the same. Coincidence of the Lagrangians means that the equations of mo-

tion are the same. Hence, the variational approach helps to compose discrete analogues of the dis-

tributed systems. 

5. Discussions and Conclusions 

Let us consider advantages and possible limitations of the variational approach to the method 

of lines in comparison with the traditional one.  

It is a remarkable fact that composition of two approximate numerical methods in the varia-

tional approach, namely the rectangle integration rule with accuracy 
( )2 ,t x

O h
x

 ∂ Λ
⋅ 

∂ 
 and first 

derivative calculation with accuracy 
( )2

2

2

,u t x
O h

x

 ∂
⋅ 

∂ 
 , gives us the same result as application of 

the finite difference scheme of accuracy 
( )4

4

4

,u t x
O h

x

 ∂
⋅ 

∂ 
 to calculation of the second derivative in 

the standard method of lines. It means that we can deal with the derivatives of lower order in the 

variational approach which is the first obvious advantage of the described method. 

In the example of application of the variational method we considered the simplest case of 

longitudinal vibrations of a bar with constant parameters considered in the frames of classical the-

ory. Hence, numbers of terms in the Lagrangian density and in the equation were the same. If we 

assume now that geometrical (area of cross-section ( )A A x= ) and physical parameters (mass den-

M  M  M  

( )1
F t�  ( )2

F t�  ( )NF t�  

( )1
u t  ( )2

u t  ( )Nu t  

K
 

K
 

K K
 

K
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sity ( )xρ ρ=  and modulus of elasticity ( )E E x= ) are variable the equation of motion is as follows 

(compare with (4)): 

( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( )

( )
2 2

2 2

, , ,
,

E x A xu t x u t x u t x
x A x E x A x F t x

t x x x
ρ

∂ ∂ ∂ ∂ − − =
∂ ∂ ∂ ∂

  (20) 

and hence, we have the four-terms equation. Moreover, we also need to calculate derivative 

( ) ( )E x A x

x

∂  
∂

 of product of the variable parameters. It can give additional numerical errors of cal-

culation especially if these parameters are given by tables or drawings. Keep in mind that in this 

case the number of terms in the Lagrangian density is still equals to three and no differentiations of 

the geometrical and physical parameters are needed. This is a serious second advantage of the 

variational approach to the method of lines. 

Let us consider how the abovementioned first and second advantages are realized in the mod-

els which need calculation of derivatives of order higher than two. As examples we consider the 

Rayleigh-Love and Rayleigh-Bishop models of longitudinal vibration of bars with variable geomet-

rical (area of cross-section ( )A A x= , polar moment of inertia ( )p pI I x= ) and physical (mass den-

sity ( )xρ ρ= , modulus of elasticity ( )E E x= , shear modulus ( )G G x=  and Poisson’s ratio 

( )xη η=   parameters. For the sake of simplicity we consider the situation of free vibration of the 

bars. 

In the Rayleigh-Love model the Lagrangian is as follows: 

( )

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( )

2 2

2
2

0
2

, ,

1

2 ,

l

R L

p

u t x u t x
x A x E x A x

t x
L t dx

u t x
x x I x

t x

ρ

ρ η

−

    ∂ ∂
 −   

∂ ∂    
=  

  ∂
+   

∂ ∂  

∫   (21) 

Hence, there are three terms in the Lagrangian density and the variational approach to the 

method of lines needs a finite difference representation of the first partial derivative 
( ),u t x

x

∂

∂
. 

Corresponding equation is: 

( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 2

2 2

24 3

2

2 2 2

, , ,

, ,
0

p

p

E x A xu t x u t x u t x
x A x E x A x

t x x x

x x I xu t x u t x
x x I x

t x x t x

ρ

ρ η
ρ η

∂ ∂ ∂ ∂ − −
∂ ∂ ∂ ∂

 ∂∂ ∂ − − =
∂ ∂ ∂ ∂ ∂

  (22) 

Hence, there are five terms in this equation. In the traditional approach to the method of lines 

formulation it is necessary to use finite difference representation of both first and second derivatives 

(
( ),u t x

x

∂

∂
 and 

( )2

2

,u t x

x

∂

∂
). Moreover it is necessary to calculate derivatives of products of the geo-

metrical and physical parameters 
( ) ( )E x A x

x

∂  
∂

 and 
( ) ( ) ( )2

px x I x

x

ρ η ∂  
∂

 (there are no differen-

tiations of the parameters in the Lagrangian density (21)). 

 

In the Rayleigh-Bishop model the Lagrangian is as follows: 
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( )

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

2 2

2 2
2 2

0
2 2

2

, ,

1

2 , ,

l

R B

p p

u t x u t x
x A x E x A x

t x
L t dx

u t x u t x
x x I x G x x I x

t x x

ρ

ρ η η

−

    ∂ ∂
 −   

∂ ∂    
=  

    ∂ ∂
+ −    

∂ ∂ ∂    

∫  (23) 

Hence, there are four terms in the Lagrangian density and the variational approach to the 

method of lines needs a finite difference representation of the first and second partial derivatives 

( ),u t x

x

∂

∂
 and 

( )2

2

,u t x

x

∂

∂
. 

 

Corresponding equation is: 

( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 2

2 2

24 3

2

2 2 2

24 3

2

4 3

, , ,
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,
0

pG x x I x u t x

x x

η ∂ ∂ + =
∂ ∂

           (24) 

Hence, there are eight terms in this equation. In the traditional approach to the method of lines 

formulation it is necessary to use finite difference representation of the first, second, third and 

fourth derivatives (
( ),u t x

x

∂

∂
,

( )2

2

,u t x

x

∂

∂
,

( )3

3

,u t x

x

∂

∂
 and 

( )4

4

,u t x

x

∂

∂
). Moreover it is necessary to cal-

culate derivatives of products of the geometrical and physical parameters 
( ) ( )E x A x

x

∂  
∂

, 

( ) ( ) ( )2

px x I x

x

ρ η ∂  
∂

, 
( ) ( ) ( )2

pG x x I x

x

η ∂  
∂

 and 
( ) ( ) ( )2 2

2

pG x x I x

x

η ∂  
∂

 . 

The third advantage of the variational approach to the method of lines is obvious in the case 

of the vibration analysis of a stepped structure. In this case it is necessary to decompose the struc-

ture into several relatively smooth sections, consider the system of partial differential equations 

corresponding to each section, make finite difference discretization of each equation and formulate 

continuity conditions (both displacements and, if necessary, combinations of displacements and 

strains). This is a very tedious and awkward procedure. Vice versa, in the variational approach it is 

possible to exploit the additivity of the Lagrangian and consider only the continuity of displace-

ments at junctions of the neighbour sections). 

REFERENCES 

1. W. E. Schiesser, The Numerical Method of Lines: Integration of Partial Differential 

 Equations, Academic Press, San Diego, (1991). 
2. W.E. Schiesser and G. W. Griffiths, A Compendium of Partial Differential Equation Models: 

Method of Lines Analysis with Matlab, Cambridge University Press, (2009). 

 


