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Abstract 
 

The accurate classification and mapping of individual trees at species level in the savanna 

ecosystem can provide numerous benefits for the managerial authorities.  Such benefits include 

the mapping of economically useful tree species, which are a key source of food production and 

fuel wood for the local communities, and of problematic alien invasive and bush encroaching 

species, which can threaten the integrity of the environment and livelihoods of the local 

communities.  Species level mapping is particularly challenging in African savannas which are 

complex, heterogeneous, and open environments with high intra-species spectral variability due to 

differences in geology, topography, rainfall, herbivory and human impacts within relatively short 

distances.  Savanna vegetation are also highly irregular in canopy and crown shape, height and 

other structural dimensions with a combination of open grassland patches and dense woody 

thicket - a stark contrast to the more homogeneous forest vegetation.  This study classified eight 

common savanna tree species in the Greater Kruger National Park region, South Africa, using a 

combination of hyperspectral and Light Detection and Ranging (LiDAR)-derived structural 

parameters, in the form of seven predictor datasets, in an automated Random Forest modelling 

approach.  The most important predictors, which were found to play an important role in the 

different classification models and contributed to the success of the hybrid dataset model when 

combined, were species tree height; NDVI; the chlorophyll b wavelength (466nm) and a selection of 

raw, continuum removed and Spectral Angle Mapper (SAM) bands.  It was also concluded that the 

hybrid predictor dataset Random Forest model yielded the highest classification accuracy and 
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prediction success for the eight savanna tree species with an overall classification accuracy of 

87.68% and KHAT value of 0.843. 

Key words: savanna tree species, spectral variability, tree height, Random Forest, predictor datasets 

1. Introduction 
 

Numerous studies have readily dealt with the classification of plant functional groups, like the 

mapping of broadleaf and fine-leaf forest trees (Kooistra, In. press) or mangrove types (Yingchin et 

al., 2006), but fewer studies have intimately tackled the classification and mapping of trees at 

species level (Hestir et al., 2008, Asner et al., 2008 & Sobhan, 2007).  This is especially the case in 

African savannas which are complex, heterogeneous, and open environments with high intra-species 

spectral variability due to differences in geology (e.g. granite and gabbro), topography, rainfall, 

herbivory and human impacts (e.g. fire, resource harvesting such as fuel wood or foliage browsing) 

within relatively short distances (Cho et al., 2009 & Cho et al., 2010).  Unlike more stable boreal and 

tropical forests, savannas are highly dynamic and are in a constant state of flux in which cyclical 

successions between the dominance of woody and grassy vegetation are evident (according to 

patch dynamics theory in Meyer et al., 2007).  The accurate mapping of individual trees at 

species level in the savanna ecosystem can provide numerous benefits for the managerial 

authorities, especially for economically useful trees, which are a key source of food production 

and fuel wood for the local communities, and problematic alien invasive and bush encroaching 

species, which can threaten the integrity of the environment and livelihoods of the local 

communities.  The Marula Tree (Sclerocarya birrea), for example, plays an important role as 

non-timber forest products (NTFPs) for the local community enterprises in the communal 

rangelands who utilise the Marula fruit for beer brewing in cultural and especially trading 

activities (Shackleton and Shackleton, 2003).  Joubert (2007), on the other hand, described the 

‘plague’ of bush encroaching and alien invasive species in the Kruger National Park.   

 

The classification of tree species falls within the realm of possibility for remote sensing but in order 

to capture the complex inter- and intraspecies spectral variability resulting from genetic patrimony 

and various environmental and physical factors (weather, seasonality, geology and edaphic 

conditions; such as the influence of gabbro versus granite substrates on savanna vegetation; and 

natural phenological changes such as deciduous versus evergreen species during the savanna dry 

season – Hestir et al., 2008, Lees & Ritman, 1991 and Tong et al., 2004), the spectral resolution of a 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

3 

 

sensor must be high with numerous, contiguous bands along with a high canopy-scale spatial 

resolution.  These requirements are best met by high resolution hyperspectral sensors.  

Classification studies from Cho et al. (2010) and Cho et al. (2011) have shed some light on the use of 

spectral band configurations and particular significant bands of hyperspectral imagery in assisting 

successful savanna tree species classification.  Cho et al. (2010) made use of a band redundancy 

minimisation procedure, known as the Band Add-on procedure, to select and identify the most 

useful hyperspectral bands for species discrimination using spectral angle mapper (SAM) 

classifier. They concluded that a total of 31 bands (which occupied a combination of blue, red 

edge, near-infrared and chemical spectral bands) out of the original 72 bands were found to be 

the most spectrally significant.    Furthermore, Cho et al. (2011) resampled a hyperspectral 

dataset using the spectral band configuration of Worldview-2 (traditional spectral regions of 

red, green, blue and near-infrared plus yellow and red-edge spectral regions) to classify savanna 

species and achieved higher classification accuracies than the traditional spectral regions 

(typically available on multispectral sensors such as SPOT, IKONOS).  

 

 Although the use of spectra alone provided good results in these studies, it is evident from 

various structural remote sensing studies (Kim, 2007; Bork & Su, 2007; Geerling et al., In. press and 

Asner et al., 2008) that structural information (especially tree height) plays important roles in 

assisting or being solely utilised in vegetation cover and tree species level classification and mapping.   

Bork & Su (2007), for example, integrated LiDAR data in the mapping process by detecting the 

differences in vegetation height and then implementing vertical height ‘thresholds’ for the 

adequate height separation of the different vegetation communities.  Geerling et al. (In press) 

combined image spectroscopy and LiDAR data, by data fusion at the pixel level, to improve the 

classification of floodplain vegetation types.  Since savanna vegetation are also highly irregular 

in canopy and crown shape, height and other structural dimensions with a combination of open 

grassland patches and dense woody thicket (a stark contrast to the more homogeneous forest 

vegetation), these structural vegetation parameters should not be ignored.  Furthermore, 

structural variables may help to reduce spectral confusion, for instance when particular tree 

species possesses spectral properties similar to the underlying grass layer (as was the case for 

Acacia nigrescens in Cho et al., 2011). The potential importance of the simplest structural variable, 

the tree height, can be clearly illustrated in the histogram graph in figure 1 which describes the 

distribution of various savanna tree species height values (from sampled field data).  The trend 

illustrates that certain species share distinct height ranges to that of other species.  Acacia gerrardi 
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and Dichrostachys cinerea, for example, both possessed a tree height range between 0 and 6m while 

Berchemia discolor possessed a distinctly taller range between 8 and 12m.  This distinguishable 

difference in the different species’ height ranges could clearly help potential classification 

opportunities.   

  

Insert Figure 1 

 

An integrated approach, which has the ability to combine structural and spectral variables into an 

automated classification procedure, may help to overcome the high intra-species spectral 

variability of savanna tree species (Cho et al., 2009 and Cho et al., 2010), while taking advantage 

of the significant inter-species structural differences.  These requirements can be met by the 

implementation of a Decision Tree approach, with the most commonly used approach being the 

Classification and Regression Trees (CART).  Traditional parametric classification methods, e.g. 

Maximum Likelihood (MAXLIKE), are affected by the ‘Hughes Phenomenon’ which arises in high 

dimensionality data when the training dataset size is not large enough to adequately estimate 

the covariance matrices (Cartijo & De la Blanca, 1996).  In hyperspectral classification studies, 

acquiring the sufficient number of training data that exceeds the total number of spectral bands, 

required for the MAXLIKE classifier, is an impractical feat especially in highly, spectrally variable 

environments.   

 

CART is a non-parametric model which constructs important rule sets by iteratively subsetting 

the target dataset, according to defined thresholds of various important explanatory variables, 

into smaller homogeneous groups (Ismail et al., 2010; Prasad et al., 2006).  This single decision 

tree approach recursively ‘mines’ and groups the target data until an end node for classification or 

a defined class is reached.  CART classification approaches have proven successful in the species 

level classification and mapping of tropical forest canopies (Affendi et al., 2009) and invasive 

aquatic vegetation (Hestir et al., 2008).  However, according to Ismail et al. (2010) and Prasad et 

al. (2006), CART models are sensitive to small changes in the training dataset and have been 

identified as being occasionally unstable as they are prone to data overfitting.  Other non-

parametric classifiers such as K-nearest neighbour (kNN), Support Vector Machines (SVM) and 

artificial neural networks (ANN) were also not considered.  ANN and SVM techniques are too 

computer intensive and time consuming due to the level of complexity and customisation that is 
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required. It is also difficult to determine the optimal K value for the KNN classifier (Joseph, 

2005).   

 

The emergence of the Random Forest (RF) approach was seen as an improvement over the 

CART approach as concepts such as multiple (100’s) decision trees, bootstrap aggregation 

(bagging) and internal cross-validation were introduced which led to improved results, ease of 

use and overcoming of the issue of over-fitting (Grossmann et al., 2010; Ismail et al., 2010). RF 

constructs hundreds of decision tree models (hence ‘forest) using randomised subsets (hence 

‘random’) of target data and explanatory variables to build each tree (Grossmann et al., 2010).  

These multiple classification trees are then voted upon by plurality, to ascertain the correct 

classification (Lawrence et al., 2006; Ismail et al., 2010).  The RF approach has been successfully 

implemented in the mapping of invasive plant species (Lawrence et al., 2006), the mapping of 

forested ecological systems (Grossmann et al, 2010) and the modelling of the potential 

distribution of pine forest susceptible to wasp infestation (Ismail et al., 2010).  In a predictive 

vegetation mapping study by Prasad et al. (2006), RF outperformed other classification and 

regression tree techniques such as CART, MARS (Multivariate Adaptive Regression Splines) and 

other bagging trees (BT).  RF was thus considered as the most applicable approach for the 

classification of various savanna tree species in such a heterogeneous environment. 

    

This study aimed to classify eight common savanna tree species in the Greater Kruger National Park 

region, South Africa, using spectral and structural remote sensing information in an automated 

Random Forest modelling approach.  These species were Acacia gerrardii / Dichrostachys cinerea 

(AG/DC), Acacia nigrescens (AN), Berchemia discolor (BD), Combretum species (COM), 

Pterocarpus rotundifolius (PR), Spirostachys africana (SA), Sclerocarya birrea (SB) and Terminalia 

sericea (TS).  Based on the assumption that tree height is an important addition to the 

classification dogma of savanna tree species, the objective of this study was to investigate the 

influence of tree height on savanna tree species level classification beyond the impact of spectra 

alone.  The research was made possible by the availability of an integrated airborne hyperspectral 

and LiDAR sensor dataset collected by the Carnegie Airborne Observatory (CAO).  For this 

investigation, seven predictor datasets; consisting of spectral, structural and a combination of 

spectral and structural information at the species level; were subjected to Random Forest modelling 

and compared.  The following scientific questions were posed for investigation. 
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 Which particular explanatory variable (predictor) or suite of explanatory variables, used in 

the Random Forest model, contributed the most towards savanna tree species classification 

success? 

 Which Random Forest model yielded the highest accuracy results for classifying the 8 

common savanna tree species when utilising spectral, structural and a combination of 

spectral and structural predictor datasets in the modelling process? 

 

2. Materials and Methodology 

2.1 Study Area  
 

The study area is located within the broad savanna biome, which occupies over a third of the 

area of Southern Africa, and is distinguished by the coexistence of a grassy ground layer and a 

prominent upper layer of woody plants (Rutherford & Westfall, 1986).  Regionally, savannas 

have a long dry winter and a wet summer with an annual precipitation varying between 235 and 

1000mm.  This rainfall range, together with grazing pressures and fire, govern the vegetation 

structure present in this biome.  Various vegetation types; particularly Clay Thornbush, Mixed 

Bushveld and Sweet and Sour Lowveld Bushveld; are supported in this general savanna 

environment (Rutherford & Westfall, 1986).   

 

 The study area under investigation (figure 2) is located in the southern portion of the Greater 

Kruger National Park region in Mpumalanga, South Africa, and consists of two broad study 

regions or land use types.  These are the Sabi Sands Wildtuin, which is a combination of 

concession and privately owned conserved land, and the Bushbuckridge Municipality District, 

which includes communal rangelands that are utilised by the livestock ranching, harvesting and 

farming activities of neighbouring informal communities.  The Sabi Sands Wildtuin is 

approximately 54 000 hectares and is situated at 24°50‟S and 31°30‟E towards the western 

border of the central Kruger National Park (Ben-Shahar, 1991).  The entire Bushbuckridge region 

is approximately 260 000 hectares in area and extends into the southernmost portion of the 

Limpopo Province.  The region supports two broad savanna vegetation types: Lowveld Sour 

Bushveld (in the wetter western region) and Lowveld Mixed Bushveld (in the drier east) which 

make up part of the Granite Lowveld Vegetation Unit described in Mucina & Rutherford (Eds.) 
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(2006).  The terrain in both study regions is gently undulating with catena geomorphological 

sequences of crests, slopes and valleys with gabbro intrusions persisting in the Sabi Sands region 

and granite soil types dominating most of Bushbuckridge.  Tall shrubland with few trees to 

moderately dense low woodland vegetation dominate these crests and slopes with dense 

thicket to open savannas dominating the valleys (Mucina & Rutherford, Eds. 2006).  In the west, 

near the Drakensberg escarpment, the mean annual rainfall is approximately 1200mm and 

decreases to 550mm in the flatter interior to the east (Shackleton, 2000).  Most of the rainfall 

falls in summer between October and April.  The mean annual temperature for the region is 

22°C. 

 

Insert Figure 2 

 

2.2 Hyperspectral, LiDAR, and field datasets 
 

At the end of May 2008 an integrated hyperspectral and LiDAR dataset was acquired for 

35000ha over the study area (figure 2) with the Carnegie Airborne Observatory (CAO) Alpha 

system. The CAO Alpha system consist of three integrated sub-systems (i) a high fidelity Compact 

Airborne Spectrographic Imager (CASI-1500), (ii) a waveform LiDAR (wLiDAR) capable of operating 

simultaneously in discrete-return and waveform modes and (iii) a GPS-IMU system allowing for an 

accurate registration and projection of the hyperspectral and LiDAR data. The dataset included i) 

1.1 m resolution hyperspectral images consisting of 72 bands (from 384.8 nm to 1054.3 nm, 

bandwidth) and ii) raw LiDAR point clouds consisting of up to four ranges or returns per laser 

shot (at least one per pixel). For more information on the CAO system specifications, the reader 

will refer to Asner et al. (2007).  

 

The hyperspectral images were converted from raw digital number (DN) measures to relative 

surface reflectance measures.  Apparent surface reflectance was derived from the radiance data 

using an automated atmospheric correction model, ACORN 5LiBatch (Imspec LLC, Palmdale, CA). 

Inputs to the atmospheric correction algorithm included surface elevation (captured from the 

LiDAR), aircraft altitude (from the GPS-IMU system), solar and viewing geometry, and estimated 

visibility (in km).  The code used a MODTRAN look-up table to correct for Rayleigh scattering and 

aerosols.  Water vapour was estimated directly from the 940 nm water vapour feature in the 

radiance data (Asner et al, 2007).  For the LiDAR data, the GPS-IMU data were combined with 
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the laser ranging data to determine the 3-D location of the laser returns.  From the laser point 

cloud data, a physical model was used to estimate surface and ground models (Digital Surface 

Model including the canopy surface and Digital Ground Model). Canopy height models (CHM) 

were computed by subtracting the DSM from the DEM. 

 

For the field preparation, snap shot images of the hyperspectral imagery were compiled at a 

resolution in which individual tree canopies were clearly visible. Within these snap shot images, 

prominent tree canopies were marked with a point shapefile for navigation (via GPS) and 

identification once in the field.  These marked canopies were chosen based on their ease of 

accessibility and their geographical representation and coverage across the study area.  The pre-

selected tree canopies were visited during a field visit in May 2010.  Other trees and species of 

interest (e.g. bush encroaching species), which were too small to be clearly visible during the 

canopy pre-selection process, were also encountered in the field and demarcated on the image 

snap shots.  This was conducted in order to ascertain an appropriate level of species diversity 

within the modelling data since some of the pre-selected canopies may over-represent a certain 

few species.  This over-representation was due to the tall tree height (and thus tall tree species) 

bias in the canopy pre-selection process as larger trees were easily visible and easier to navigate 

to in the field than smaller trees.      

 

2.3 Data Preparation 
 

The pre-selected and field-demarcated tree canopies were processed by overlaying these points 

over the hyperspectral and LiDAR height images to create the tree species spectral and 

structural libraries that were used in the analysis. Spectral and structural height data were 

collected from 8 common savanna tree species found in the L456 study area.  These species 

were Acacia gerrardii / Dichrostachys cinerea (AG/DC), Acacia nigrescens (AN), Berchemia 

discolor (BD), Combretum species (COM), Pterocarpus rotundifolius (PR), Spirostachys africana 

(SA), Sclerocarya birrea (SB) and Terminalia sericea (TS).  Species such as Combretum 

apiculatum, Combretum collinum and Combretum hereroense were grouped together in the 

Combretum species class while Acacia gerrardii and Dichrostachys cinerea were also grouped 

together under a single class because these species share very similar spectral and structural 

characteristics and traits.  The associated ecological and social importance of these species was 
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briefly addressed in table 1.  The spectra, which contained representative pixels (i.e. pixels 

encompassing complete canopies and which minimized as much of the expected ground 

spectral contamination as possible) for the 8 different tree species, and the structural height 

parameter, were extracted using the Region of Interest (ROI) tool in ENVI 4.7 remote sensing 

software.  From the hyperspectral imagery, ROIs were created to cover each of the tree species 

canopies from the field data which were compiled into a general ROI list.  These same ROIs were 

overlaid over the LiDAR imagery to extract the corresponding tree height parameter.  The 

recorded number of canopies sampled and the total number of pixels per species, from which 

the spectral and structural information were extracted, are summarised in the table 2.  In table 

2, it is important to note a particular anomalous value for the mean height of Pterocarpus 

rotundifolius (0.126m) which was attributed to the limitation of the LiDAR sensor in detecting 

this small tree species.  

 

Insert Table 1 

Insert Table 2 

 

2.4 Random Forest Predictor Datasets 
 

 An ensemble of seven datasets of predictors, which incorporated the tree species’ spectral 

and/or structural data, was investigated individually in the Random Forest modelling procedure 

to ascertain which variable(s) drive or enhance the classification and differentiability of the 

target tree species.  These seven main predictor datasets; including their descriptions, 

wavelengths and associated references are summarised in table 3.  The various predictors were 

chosen for various reasons.  Apart from investigating the importance of tree species height in 

this study, two particular predictor datasets (Indices and Nutrient and Leaf Mass) were 

considered, which made use of particular spectral vegetation indices and spectral bands (table 

3) to best exploit the primary and secondary plant chemical compound differences in the 

savanna vegetation.  Since the CAO hyperspectral imagery were taken during a dry rainfall 

period of May 2008, these differences could be significant both within and between different 

tree species.  Selected bands from a Spectral Angle Mapper (SAM) approach, previously applied 

by Cho et al. (2010), were also modelled as a separate predictor dataset.  Cho et al. (2010) 

utilized a Band Add-On mathematical procedure to select and identify the most appropriate 
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bands for species discrimination.  The Band Add-On algorithm selects the bands that maximises 

inter-species SAM and starts off by selecting the two bands which have the highest average 

SAM, among all pair-wise combinations. It then adds the next consecutive important bands until 

no significant bands are left (Cho et al, 2010).  These selected bands were found to improve 

savanna tree species discrimination in comparison to the implementation of all available bands 

in the entire dataset and were thus considered for this study.  The raw spectral reflectance data 

from the CAO hyperspectral imagery were considered as a baseline predictor dataset in which 

all 72 bands of the collected species’ spectral endmembers were fed into the Random Forest 

model.  This 72 band raw dataset was then subjected to a continuum removed transformation 

to create a new predictor dataset.  As for the SAM approach this transformation was done to 

enhance the absorption features of the mean reference spectral values evident in the spectral 

profiles and to minimize the differences caused by the variability of solar illumination at each 

pixel-crown position (Odagawa & Okada, In. press).  This transformation would also contribute 

to minimize any effects arising from any possible Bi-directional Reflectance Distribution 

Function (BRDF) effect in the imagery.  Finally, the most important predictors were identified 

within each datasets of predictors and combined in a hybrid approach in an attempt to improve 

overall classification results.   

 

Insert Table 3 

 

2.5 Random Forest Model Background, Methods and Validation  
 
Random Forest, developed by Leo Breiman and Adele Cutler, is a type of data mining technology 

which combines information from a collection of virtually grown decision trees (Salford Systems, 

2004).  This collection or ‘forest’ of decision trees are grown from user-defined target and eligible 

predictor data via bootstrap sampling, where only randomly iterated two third’s of the original 

training data is used for each tree, and the random selection of splitting variables, used to split the 

nodes in the tree construction.   The ‘forest’ of decision trees is then grown out to its maximum 

possible size (defined by the user) and is left unpruned (Salford Systems, 2004).  These individual 

trees are then combined through a weighted voting process to determine the most effective model.  

Similarly to other decision tree techniques, such as CART, Random Forest automatically selects the 

most significant predictors from a suite of eligible candidates and are insensitive to missing data 

values but unlike other decision tree and data mining methods, it is not prone to model over-fitting 
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(as each tree is grown independently) and possesses built-in self validation via the implementation 

of an ‘Out-of-Bag’ dataset (to be elaborated upon later) (Salford Systems, 2004).    

 

The Random Forest modelling was performed in the Random Forest integrated module of the 

Salford Predictive Modeller Builder 6.6 software package (Salford Systems, 2004).  The different 

datasets of the predictor types were inputted separately into the Random Forest dialogue and the 

various model settings were adjusted accordingly.  The class weights were ‘balanced’ for all 

instances which meant that the small classes were ‘up-weighted’ to equal the size of the largest 

target class.  Species classes such as Acacia nigrescens and Sclerocarya birrea contain much larger 

sample sizes than for instances Berchemia discolor so a balancing of classes is required to reduce 

possible bias.  According to Ismail et al. (2010) and Prasad et al. (2006), there are two main tuning 

parameters required in a Random Forest - the number of trees to be built in the ‘forest’ and the 

number of possible splitting variables/predictors considered for each node in the trees.  For this 

study, the number of trees to be built was kept at the default number of 500 trees while a standard 

rule of thumb, the squared root of the total number of predictors, was implemented to determine 

the appropriate number of possible predictors considered for each node.  Researchers have 

reported that these default values and the rule of thumb often produce acceptable results (Liaw and 

Wiener, 2002 cited in Ismail et al., 2010; Salford Systems, 2004; Dahinden, 2006).   

 

Since Random Forest makes use of an internal Out-of-bag (OOB) sampling procedure, which 

calculates an unbiased and reliable error rate, an independent validation dataset was not 

necessary for this study (Lawrence et al., 2006; Prasad et al., 2006).  During this OOB sampling 

procedure, approximately a third of the randomly selected samples, which would be excluded 

from each bootstrapped sample in the random forest construction, would be reserved as an 

internal test dataset for the Random Forest model validation (Ismail et al., 2010).  The reliability 

of using this OOB dataset and its resulting estimates of accuracy was supported by the accuracy 

assessment comparisons of a separate test and OOB datasets in the Lawrence et al. (2006) study 

and was also successfully documented in other studies (Prasad et al., 2006; Furlanello et al., 

2003; Grossmann et al., 2010).  Once the Random Forest models have been executed, various 

results per predictor dataset were available but only the most informative results are presented. 

 

Under the Random Forest summary reports variable importance, misclassification and 

prediction success were chosen for presentation in this study.  Variable importance is evaluated 
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based on the degradation of the prediction if the data for the particular predictors were 

interchanged randomly (Prasad et al., 2006).  This is important for ascertaining which 

predictor(s) are driving the differences between the different classifications.  Hence, it helps in 

improving the understanding of which predictor(s) are most suitable for modelling by identifying 

the smallest number of predictors that possess the best discriminatory potential (Ismail et al., 

2010).  The Gini Index was considered to ascertain the most important predictors (i.e. the scores 

greater than 80).  In the Gini Index the most important predictor(s) receive a score of 100 while 

the remaining less significant predictor(s) receive a decreasing score (Salford Systems, 2004).  

The Gini Index score of 80 and greater was chosen as the authors’ interpretation of which 

predictors were considered valuable and qualified for incorporation into the hybrid dataset 

classification model.  Misclassification and prediction success both indicate the overall 

effectiveness of the Random Forest model in terms of classification accuracy assessment.  A 

confusion matrix was created while overall, and species specific user’s and producer’s accuracies 

were computed.  The producer’s accuracy indicates the percentage of spectra for each species 

class that have been correctly classified while the user’s accuracy indicates the probability that a 

spectra classified into a given species class actually represents that class on the ground (Baldi 

and Paruelo, 2008).  The confusion matrix was created by comparing the modelled data against 

the internal test OOB sample data. 

   

A Kappa statistic (KHAT) was also calculated, complementing the overall classification accuracy, 

to ascertain the most accurate Random Forest model while the Gini Index variable importance 

values were reviewed to determine the most significant predictor(s).  The Kappa statistic 

evaluates the pairwise agreement among a set of classes while correcting for expected chance 

agreement (Carletta, 1996; Prasad et al., 2006). The values range from -1, which indicates 

complete disagreement between classes, to +1, which indicates a perfect agreement (Prasad et 

al., 2006).  This statistic is a powerful technique in its capacity to compare the results from 

multiple confusion matrices (Congalton, 1991).  The formula for KHAT (formula 1) and 

accompanying explanation is included below: 

 

KHAT =                                                                       (1) 
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Where  is the number of rows in the confusion matrix,  is number of observations in row  and 

column ,  and  are the totals of row  and column  respectively and N is the total number 

of observations (Congalton, 1991).  

 

Finally, a hybrid dataset of predictors was created by obtaining the most important predictors 

(i.e. Gini Index score of greater than 80) from the seven modelled predictor datasets in order to 

attempt to achieve a superior Random Forest model and classification accuracy assessment than 

the results of the different predictor types separately.  These important predictors which 

created the hybrid dataset are displayed in table 4 in the results section. 

3. Results 
 

3.1 Predictor Importance 

 

Insert Table 4 
 

From the Gini Index Score results in table 4, tree height; NDVI; chlorophyll b wavelength and 

selected raw (mostly in the blue region around chlorophyll b), continuum removed (mostly in the red 

region) and SAM (mostly blue and red) wavelengths contributed the most to the classification 

prediction success when all the different Random Forest models were executed.  From the modelled 

results of the hybrid dataset, the tree species height predictor was by far the most valuable 

predictor (Gini Index score of 100) in contributing to the classification prediction success.  The 

second most significant predictor was the continuum removed transformed band 30 (658.8nm) 

which only achieved a Gini Index score of 65.84. 

 

3.2 Modelled Prediction Success 

 

Insert Table 5 

 

The summary results in table 5 illustrate the classification accuracies for the Random Forest models 

of the different predictor datasets and the encompassing hybrid dataset.  In this table, the overall 

classification accuracies and the KHAT statistics remain mostly comparable to one another for the 

different models.  Amongst the seven separate predictor dataset results, the Random Forest model 
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combining the predictors tree height and vegetation spectral indices (Ht + Indices) yielded the 

highest overall classification accuracy of 82.38%, KHAT of 0.776 and the least number of 

misclassified pixels (708) than the other models.  The use of the tree height variable only in the 

Random Forest modelling yielded by far the lowest classification accuracy (overall accuracy of 

31.90% and KHAT of 0.186) while the raw bands produced the highest accuracy amongst the strictly 

spectral datasets (overall accuracy of 80.29% and KHAT of 0.755).  However, the hybrid dataset 

yielded the highest classification accuracy results with an overall classification of 87.68%, a KHAT of 

0.843 and only 495 misclassified pixels. 

 

Insert Table 6 

  

The confusion matrix resulting from the hybrid dataset modelling is presented in table 6.  All 8 tree 

species classes were classified at a very high producer’s accuracies with the lowest being 78.27% for 

Combretum species.  Terminalia sericea yielded the highest producer’s accuracy (97.26%) within the 

sample population.  The user’s accuracy, on the other hand, complemented most of the species with 

high performing producer’s accuracy with only a few exceptions.  Berchemia discolor was the most 

problematic species, in the dataset, with the lowest user’s accuracy of 35.29% (confusion with 

Spirostachys africana and Sclerocarya birrea) which starkly contrasted with its 94.74% producer’s 

accuracy.  Sclerocarya birrea was the most largely represented species class on the ground (97.91%).  

The remaining species displayed moderate (> 60%) to high (> 80%) user’s accuracies.  

 

4. Discussion 
 

From the Gini Index variable importance results (table 4), the significant spectral bands (from the 

raw, CRT and SAM bands) were found to have originated from the visible wavelength spectrum with 

the available infrared wavelengths playing a lesser role in assisting the Random Forest classification.  

This observation coincided with the results in the Cho et al. (2010) study which concluded that the 

most significant bands for savanna tree species discrimination originated from the red-edge and blue 

region.  Due to the limited spectral range of the CAO sensor (384.8 to 1054.3nm), the complete 

Infrared region (including Shortwave Infrared) could not be fully tested and assessed in this study.  

Amongst the four spectral vegetation indices used in the Indices predictor dataset, it was conclusive 

that NDVI was scored as the most important vegetation index by the Gini value (100).  However, in 

the context of the spectral indices and height dataset results, it was the tree height predictor which 
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was considered more important, in the classification model, than any of the spectral indices.  This 

trend is further supported in the hybrid dataset, which is a combination of all the significant 

predictors from all the modelled dataset results.  In the hybrid dataset, the tree height predictor also 

was the most important predictor (100 Gini Index score) in the study, which was followed by the 

continuum removed transformed band 30 with a Gini Index score of 65.84.  The significant 

difference in Gini Index score between the highest and the second highest scoring predictors could 

illustrate a sense of dominance of the tree height predictor over other spectral predictors in the 

Random Forest classification process.  However, the inclusion of these spectral predictors 

(particularly CRT band 30), although low in Gini Index score and significance, largely contributed to 

the overall success of the model and prevented the model from obtaining much poorer results as 

was the case when tree height alone was implemented as a single predictor dataset (31.90% overall 

accuracy).   

 

From the classification results (table 5); the vegetation indices and tree height combined dataset (Ht 

+ Indices) yielded the highest classification results (82.38%; KHAT of 0.776) when compared to the 

remaining 6 separate predictor datasets.  When the tree height predictor was combined with the 

most significant spectral predictors from the separate predictor datasets (NDVI, chlorophyll b 

wavelength and selected raw, CRT and SAM wavelengths) into a hybrid dataset, the highest 

classification accuracy and prediction success results (87.68%; KHAT of 0.843) were achieved in this 

study.  It is clear from both these results that the incorporation of spectral information and 

structural information proved to be more useful in species level classification than the use of 

spectral (highest accuracies achieved by raw bands predictor dataset – 80.29%; KHAT of 0.755) or 

structural information (31.90%; KHAT of 0.186) alone.  In fact, it should be noted that if the Gini 

values indicate that the most important predictor is the tree height (this predictor always has the 

highest index when used in one dataset) the classification results show that the spectral data host 

the most important information, but these are significantly improved by the addition of this 

structural parameter.  From corresponding confusion matrix results (table 6), majority of the species 

obtained producer’s and user’s accuracies that ranged from reasonable (>60%) to excellent (>90%) 

with Berchemia discolor being the only exception.  Although achieving a producer’s accuracy greater 

than 90%, the user’s accuracy was dismally low (approximately 35%).  The plausible reason for the 

poor representation of this species class at ground level could be due to the lack of a sufficient 

number of sampled tree canopies and related pixels (only 3 canopies containing 57 pixels were 

sampled in the field) needed for the Random Forest classification.  An increase in the sampled data 

for Berchemia discolor most likely would improve the species’ currently low user’s accuracy.  Besides 
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the Berchemia discolor species class, the remaining seven savanna tree species would produce very 

reliable and accurate species distribution maps which would prove invaluable for both communal 

and protected savanna rangeland management practices.  Overall, these results exceeded the 

authors’ expectations with overall classification accuracies exceeding those achieved in previous tree 

species classification efforts in South African savannas (Cho et al., 2010 and Cho et al., 2011) and in 

other related ecosystems such as the shrubby American rangelands (Lawrence et al., 2006).  The 

limited existence of other savannas tree species mapping studies, in the academic literature, makes 

it difficult to place these results in suitable context but will, hopefully, encourage the emergence of 

other future studies.    

 

Despite the success of the modelled classification results and the robustness of the Random Forest 

approach displayed in this study, Random Forest is still considered to be a ‘black-box’ approach due 

mainly to the fact that the user cannot separately analyse and view the individual decision trees 

created in the ‘forest’ and to the minimal number of user-defined model settings (Prasad et al., 

2006).  As a result, implementing the optimal decision tree design in remote sensing mapping 

software (e.g. ENVI) would be very challenging for the user wishing in putting this classification 

model into practice.  Investigating alternative scripting and programming related approaches could 

circumvent this issue but this is beyond the scope of this study.  Classification accuracies, although 

very good for the hybrid dataset, could be improved by implementing the probability cut-off 

adaptation (bias adjustment) approach which improves the cross-validated error rate for unbalanced 

datasets, as implemented and proven successful in Dahinden (2006) and Grossmann et al. (2010).  

Also instead of the traditional Gini Index variable importance measure, other successfully 

implemented techniques such as the sequential reverse and forward variable selection method 

(Grossmann et al., 2010) or the backward and recursive variable selection method (Ismail et al., 

2010) could be implemented for possibly improved results.  These alternative variable selection 

methods could prove effective especially when dealing with datasets which have many explanatory 

variables that have very similar importance measures (Jiang et al., 2004 cited in Ismail et al., 2010).  

The incorporation of other more complex LiDAR-derived structural parameters in the modelling 

process, such as for instance  canopy volume, canopy height and tree fractional cover obtained by a 

higher resolution waveform footprint, can be investigated further.  

5. Conclusions 
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By readdressing the scientific questions, posed in the introduction of this study, it can be concluded 

that the hybrid dataset Random Forest model yielded the highest classification accuracy and 

prediction success for the 8 savanna tree species with an overall classification accuracy of 87.68% 

and KHAT value of 0.843.  The most important predictors, which played an important role in the 

different classification models and contributed to the success of the hybrid dataset model when 

combined, were species tree height; NDVI; the chlorophyll b wavelength (466nm) and a selection of 

raw, continuum removed and SAM bands (see table 4 for the entire list of significant predictors).  

However, according to the Gini Index variable importance and classification results, it was clear that 

LiDAR-derived tree species height was the most dominant and influential predictor in ensuring 

classification success but since on its own it yielded the lowest overall classification results, it can 

only be concluded that tree height significantly improves savanna tree species level classification 

accuracies only when combined with other significant spectral predictors.   
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Figure 1: Histogram of the common tree species’ height distribution obtained from a selected field sample  

Figure 2: Study area map of the Greater Kruger National Park with focus on the L456 study region 
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Table 1: Attribute information of the common savanna tree species under analysis 

Scientific Name Common Name Code Attributes 

Acacia gerrardii Red Thorn AG Shrub to medium sized tree. Erect branches and a flattened crown 

      Bark is grey to blackish and rough. Younger branches are reddish and hairy 

      Thorns are in short pairs. Leaves are tiny and clustered on prominent woody 

      

cushions. Fruit are sickle-shaped, hairy pods. Thorny bush encroaching species. Bark 
contains constricting tannin chemicals used for medicinal purposes and the inner bark 
is used to create twine.  

Acacia nigrescens Knob Thorn AN Medium to large tree up to 30m. Common in arid bushveld  

      Bark is brown to black and covered with persistent thorn-tipped knobs 

      Thorns are in hooked pairs and almost black. Leaves are twice-compound, 

      
leathery and hairless. Fruit are straight, olive to black pods. Timber is very hard and is 
thus used for making posts and mine props and can be used for flooring material. 

Berchemia discolor Brown Ivory BD Generally large tree up to 20m. Usually on river banks and on termitaria. 

      Pale green covered in brown lenticels when young. Bark is dark grey and  

      roughly fissured. Leaves are simple and slightly ovate or elliptic. Side veins 

      

form a distinctive herringbone pattern. Not as prevalent as other species.  Date-like 
fruit are harvested as local food produce. An excellent timber species for pole and 
furniture making. 

Combretum species Bushwillow species COM Small to medium sized tree. Widespread across savanna. Range from single stemmed 

      to multi-stemmed trees. Bark ranges from pale to dark blackish/brownish grey.  

      Leaves range from oval with rounded apex to oblong and broadly ovate. 

      Leaves are also dull to glossy green and slighter paler below 

      Fruits are 4-winged and have distinct colouring patterns (reddish/brownish) and vary 

      

in size from very small to distinctly large. Very common savanna tree species family 
which is highly abundant in the study region. Good for charcoal production and 
possesses numerous medicinal properties (treats certain snakebite and dysentery) 

Dichrostachys cinerea Sickle-bush DC Shrub or small rounded tree, often encroaching if veld is mismanaged. Branching 

      low down and bark is rough with fissures. Side twigs are modified to form spines 

      Small leaves clustered on spines/side shoots. Fruit occurs distinctively as a curled 

      and twisted mass of brown pods. Hardy and pervasive bush encroaching species which 
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impedes cattle and local movements. 

Pterocarpus rotundifolius Round-leaved Bloodwood PR Large, rounded, woody shrub or tree. Often forming dense colonies. Usually multi- 

      stemmed with grey young bark. Leaflets are large and rounded with distinguishing 

      
parallel side veins. Active bush encroaching species. Good for apiculture due to the 
rich pollen and nectar sources and plays a role in soil erosion control. 

Sclerocarya birrea Marula SB Common in SA savannas especially on sandy frost free soils 

      Large and dominant tree (up to 20m). Protected tree species in SA 

      Leaves are compound, dark green above and paler below 

      
Separate male and female trees. Has a large ovoid tasty fruit.  Fruit is utilised in local 
brewery industry for small scale distribution and for cultural purposes 

Spirostachys africana Tamboti SA Large erect tree with round canopy and common on brackish flats and along seasonal 

      streams and rivers.  Occur in dense stands. Bark is very dark with cracks in rectangular 

      blocks. White latex is present. Leaves are simple and ovate. Have small glands  

      

present on top of the petiole at the base. Fruit is a 3-lobed capsule with brown seeds. 
Prominently utilised in the woodcraft industry for furniture and/or sculptures tailored 
towards tourism 

Terminalia sericea Silver Cluster-leaf TS Small to medium sized tree with rounded crown to characteristically flat-topped 

      Upright stem with reddish-brown to purplish-brown branches. Often bearing small 

      rounded woody galls. Leaves are crowded at the branch ends. Foliage have a distinct 

      
blue-grey colour at a distance. Although being a known bush encroaching species, it is 
primarily utilised as fuel wood to satisfy the energy requirements of local communities 

Sources: Schmidt et al. (2007), Shackleton & Shackleton 
(2003) and Shackleton et al. (2005)   

 



Table 2: Total number of recorded canopies, tree pixels sampled, and tree heigh statictics (from LiDAR) of the tree 

sample 

Species # of canopies total # of pixels Mean Ht (m) Stdev Ht (m) 

AG_DC 48 304 1.494 1.633 

AN 58 792 8.748 2.580 

BD 3 57 9.852 1.002 

COM 71 451 3.407 3.453 

PR 20 133 0.126 0.163 

SA 36 619 6.561 3.222 

SB 73 1590 8.732 1.972 

TS 22 73 3.118 1.141 
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Table 3: Seven Predictor datasets that were modelled in RF including their description, formulae or wavelengths used, and associated references 

Predictor Dataset Description Formulae / Wavelengths used (nm) References  

Height Tree height of individual tree species (recorded in metres)     

Indices Four main Vegetation Spectral Indices were selected:     

  Carotenoid Reflectance Index (CRI) λ800(1/λ520 - 1/λ550) Gitelson et al. (2002) 

  Photochemical Reflectance Index (PRI) (λ531 - λ570)/(λ531 + λ570) Gamon et al. (1992) 

  Normalized Difference Vegetation Index (NDVI) (λ800 – λ678)/(λ800.5 + λ678) Rouse et al. (1973) 

  Red Edge NDVI (RE) (λ750 - λ705)/(λ750 + λ705) Gitelson et al. (1994) 

Height + Tree species' height data and Vegetation Spectral Indices     

Indices (CRI, PRI, NDVI & RE) combined in a single dataset     

Raw Bands Spectral reflectance data of the 72 raw bands of the CAO  384.8; 394.3; 403.7; 413.1; 422.6; 432;  

  hyperspectral sensor 441.4; 450.9; 460.3; 469.7; 479.2; 488.6;  

    498.1; 507.5; 517; 526.4; 535.9; 545.3;  

    554.8; 564.2; 573.7; 583.1; 592.6; 602;   

    611.5; 620.9; 630.4; 639.9; 649.3; 658.8;   

    668.2; 677.7; 687.1; 696.6; 706; 715.5;   

    724.9; 734.4; 743.8; 753.3; 762.7; 772.1;   

    781.6; 791; 800.5; 809.9; 819.3; 828.8;   

    838.2; 847.6; 857; 866.5; 875.9; 885.3;   

    894.7; 904.1; 913.5; 922.9; 932.3; 941.7;   

    951.1; 960.5; 969.9; 979.3; 988.7; 998.1;   

    1007.4; 1016.8; 1026.2; 1035.6; 1044.9;   

    1054.3   

Continuum Spectral reflectance data in the continuum removed  Scr = (S / C)                             Mutanga & Skidmore 

Removed transformed format (72 transformed bands) where (2003) 

Transformed  Scr = Continuum-removed spectra   

(CRT) Bands Utilized the built-in function in the spectral profile S = Original spectrum (λ)   

  viewer in ENVI 4.7 C = Continuum curve (λ)   

Spectral Angle Spectrally significant bands (31 bands) selected from  706; 762.7; 696.6; 668.2; 677.7; 687.1 Cho et al. (2010) 
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Mapper (SAM) mathematical Band Add-On procedure 715.5; 724.9; 734.4; 743.8; 753.3; 384.8;    

Selected Bands It selects bands which have highest average SAM 394.3; 403.7; 413.1; 422.6; 913.5; 819.3;   

  among all pairwise comparisons and keeps adding on 828.8; 838.2; 847.6; 857; 866.5; 875.9;   

  the next consecutive bands until none are left 885.3; 894.7; 904.1; 1016.8; 922.9;    

    932.3;  941.7   

Nutrient & Selected bands representing leaf nutrients (e.g. 466 (Chlorophyll b) Cho et al. (2007) 

Leaf Mass chlorophyll) and leaf mass (e.g. LAI) 695 (Total chlorophyll)   

(N+LM) Bands Associated with green biomass 725 (Total chlorophyll, leaf mass)   

    740 (Leaf mass & LAI)   

    786 (Leaf mass)   

    846 (Leaf mass, LAI, chlorophyll)   

 



Table 4: The Gini Index Score summary table and the most significant predictors in each predictor dataset (score of >80*) 

Predictor Dataset Important Variables/Predictors Gini Index Score 

Height Height 100 

Indices NDVI 100 

Height + Indices Height 100 

  NDVI 84.06 

Raw Bands B8 (450.9nm) 100 

  B35 (706nm) 97.35 

  B9 (460.3nm) 91.93 

  B10 (469.7nm) 90.82 

  B11 (479.2nm) 89.3 

  B7 (441.4nm) 87.36 

  B14 (507.5nm) 86.54 

  B6 (432nm) 82.1 

CRT Bands B30 (658.8nm) 100 

  B32 (677.7nm) 99.95 

  B31 (668.2nm) 96.66 

  B10 (469.7nm) 94.29 

  B33 (687.1nm) 92.92 

  B12 (488.6nm) 89.07 

  B39 (743.8nm) 88.61 

  B29 (649.3nm) 86.15 

  B11 (479.2m) 82.91 

SAM Bands B10 (706nm) 100 

  B4 (413.1nm) 95.91 

  B5 (422.6nm) 92.15 

  B6 (668.2nm) 87.79 

  B7 (677.7nm) 83.34 

N+LM Bands B1 (466nm) 100 

Hybrid  
 

Height 
CRT Band 30 (658.8nm) 

100 
65.84 

B = Bands; * With exception to the hybrid predictor dataset 
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Table 5: Modelled prediction success summarized results for all predictor datasets 

Predictor Dataset Classification Accuracy (%) KHAT Statistic* Pixels Misclassified 

Ht 31.90 0.1861 2737 

Indices 67.85 0.6118 1292 

Ht + Indices 82.38 0.776 708 

Raw Bands 80.29 0.7547 792 

CRT Bands 78.10 0.7287 880 

SAM Bands 75.47 0.699 986 

N+LM Bands 73.40 0.6746 1069 

Hybrid 87.68 0.8425 495 

 * Cohen's Unweighted Kappa (Cohen, 1960 cited in Congalton, 1991) 
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Table 6: Confusion matrix displaying the classification accuracies obtained by the hybrid dataset RF modelling 

 

Hybrid Field→ Producer's User's AG/DC AN BD COM PR SA SB TS 

Classified↓  Total Class Accuracy (%) Accuracy (%) N=355 N=862 N=153 N=423 N=166 N=607 N=1337 N=116 

AG/DC 304 90.79 77.75 276 0 2 8 16 1 1 0 

AN 792 96.59 88.75 5 765 2 2 0 0 15 3 

BD 57 94.74 35.29 1 0 54 0 0 1 1 0 

COM 451 78.27 83.45 22 16 3 353 31 10 9 7 

PR 133 87.97 70.48 12 0 0 4 117 0 0 0 

SA 619 93.54 95.39 6 0 22 8 0 579 2 2 

SB 1590 82.33 97.91 32 81 70 47 2 16 1309 33 

TS 73 97.26 61.21 1 0 0 1 0 0 0 71 
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