Advances in the Testing and Evaluation of Airborne Radar through Realtime Simulation of Synthetic Clutter

Presenter: Jurgen Strydom
Systems Engineer & Signal Analyst
Experimental EW Systems, CSIR

Email: jjstrydom@csir.co.za

Co-authors: Jacques Cilliers, CSIR

48th AOC Conference 2011
Washington, DC, USA
November 2011
Synopsys of presentation objectives

- Short overview of the CSIR and its history in Radar
- Current state of clutter simulation technology on the CSIR 4th generation DRFM platform and its place in the radar environment simulation domain
- Technological advancements and challenges in the simulation of clutter for an airborne radar platform is discussed
Where we are from: South Africa
CSIR Mandate
in the national interest,
directed,
multidisciplinary research,
technological innovation,
industrial and scientific development,
contributing to improved quality of life

CSIR Research Impact Areas

Health

Energy

Natural Environment

Defence & Security

Built Environment

Industry
CSIR DPSS provides strategic capabilities, technological concept solutions, decision support, development of concepts of operation and the congruent with the DoD’s operational needs as expected at some future date.

Industry supplies the kit, often dictated by the specifications derived from CSIR DPSS work.
Radar History Highlights

Radar Technology Development Projects

JB1 JB51 Cactus Nimbus Fynkyk Meccano ORT MECORT

Angola border war 1966-1989
Digital Radio Frequency Memory History

<table>
<thead>
<tr>
<th>Year</th>
<th>Technology</th>
<th>IBW</th>
</tr>
</thead>
<tbody>
<tr>
<td>199x</td>
<td>1st Gen</td>
<td>400 MHz</td>
</tr>
<tr>
<td>1999</td>
<td>2nd Gen</td>
<td>500 MHz</td>
</tr>
<tr>
<td>2004</td>
<td>3rd Gen</td>
<td>800 MHz</td>
</tr>
<tr>
<td>2007</td>
<td>4th Gen</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>Complex targets</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Clutter</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>5th Gen</td>
<td>2 GHz</td>
</tr>
</tbody>
</table>

© CSIR 2011 Slide 7
Radar Environment Simulation

Where does clutter simulation fit?

Radar Environment Simulation
 - Target Simulation
 - Point targets
 - Multi scatterer targets
 - Electronic Attack
 - Jamming
 - Target Environment
 - Clutter
Radar Clutter context

Ideal case:

Reality:
Radar Clutter context

- Radar antenna pattern
- Sidelobes
- Intersection with surface
- Mainlobe
- Range Resolution
- Target
- Ground clutter patch
- Clutter Statistics
 - PDF
 - Bandwidth
The Problem:

- Clutter returns interfere with the object of interest (target)
- The performance in clutter is a critical aspect of the radar
- Real world testing of a radar against all types of clutter for all possible types of scenarios is costly and difficult to re-create
- Software simulation cannot take all the finer details of the complete design and implemented system into account
- Severely limited with software simulation if you are required to verify a radar purchased from a 3rd party
Radar Clutter context

The Solution:

- Hardware in the loop simulation on DRFM based hardware
- Statistical modelling of clutter, NOT recorded data
- Playback of recorded data is radar and configuration dependent
Radar Clutter context

Advantages of this approach:

• Cost effective
• Test many different scenarios relatively quickly
• Repeatability of experiment with the same parameters
• DRFM approach to Hardware in the loop simulation is radar independent
Considerations for high fidelity clutter generation

- Clutter Radar Cross Section (RCS)
- Number of discrete scatterers
- Spatial extent of clutter
- Velocity extent of clutter (Doppler spectrum)
- Wavelength dependence
- Amplitude distribution
- Spatial correlation
- Polarization properties
Synthetic Clutter Simulation

CSIR approach:

Record accurate data as part of the development cycle for a Synthetic clutter simulator

Figure on left: Data captured with the measurement radar of the CSIR
Synthetic Ground Clutter: Range Doppler map comparison

Measured clutter with CSIR radar

Synthetic Ground Clutter
What has been achieved thus far:

- **Correlated** ground clutter (Rayleigh, Weibull, Log-Normal)
- Stationary platform
- Gaussian approximation to clutter bandwidth
- 2 million+ independent clutter scatterers in a range line
- 500 MHz instantaneous bandwidth
- Input pulse lengths from 50 ns up to 300 us
- PRF from 0.8 kHz to 300 kHz

- Synthetic Clutter Simulation System covers large number of radar systems
Current research:

• Clutter for a moving airborne platform

The Challenge:

• For stationary radar platforms the mainlobe is sufficient
• For moving airborne radar platforms the mainlobe is not the only contributing factor to the radar range Doppler map
• Antenna sidelobes of the radar becomes a large contributing factor
Synthetic Clutter Simulation

Mainlobe only scenario

From: N. Levanon, Radar Principles
Synthetic Clutter Simulation

From: G. Morris and L. Harkness, Airborne Pulsed Doppler Radar
Synthetic Clutter Simulation

Recorded Data Airborne Range Doppler map

Data from:

DENEL DYNAMICS

www.csir.co.za
Building the airborne radar Range Doppler map:

- It is relatively easy to adapt the mainbeam of the stationary ground based platform to the moving airborne platform case

- Apply a Doppler offset that corresponds to the look direction and range of the intersection with the surface

- Airborne platform (because of its movement) spends less time looking at the same patch of ground, thus less correlation between pulses, which results in a wider bandwidth
Synthetic Clutter Simulation

Spectrum of mainbeam

- Gaussian Doppler power spectrum
- Simple to implement

Spectrum of sidelobes

- Jakes Doppler power spectrum
- Computationally expensive to implement
Sidelobe simulation
Simulated range Doppler map with the DRFM sidelobe clutter algorithm
Synthetic Clutter Simulation

Technological tradeoffs:

- Bandwidth spectral shaping quality
- Fidelity of clutter (number / update frequency, of clutter samples)
- Complexity of statistical distribution shape
 - Rayleigh (least complex)
 - Weibull (medium complexity)
 - Log-Normal (medium complexity)
 - K-Distribution (most complex)

- More DRFMs in same system means more resources available
Synthetic Clutter Simulation

Challenges:

- Difficult to split a single scenario over multiple DRFMs
- "High" latency and "low" transfer rate between separate DRFM systems (relative to on chip)
- This bottleneck makes it difficult to sync clutter scatterers
Possible Solution:

- Mainlobe / Sidelobe is an ideal split for the use of multiple DRFM s
- Statistics of mainlobe is different and uncorrelated to that of the sidelobe
- Thus one can get away with minimum sync of scatterers
Future of Synthetic clutter

- **Trend in capability:** Integrated systems combining all aspects of simulation
- Electro Magnetic (EM) modelling and advanced scenario control that feeds into the hardware in the loop radar environment simulation (RES)
- EM modelling drives complex scatterers for targets
- Advanced scenario control updates the RES
The End

Special thanks:

Airborne radar data provided by:

For further questions or comments please visit us at booth 1307 at the exhibition

Or contact me at - jjstrydom@csir.co.za