Sustainable Use of Oil Sands for Geotechnical Construction and Road Building

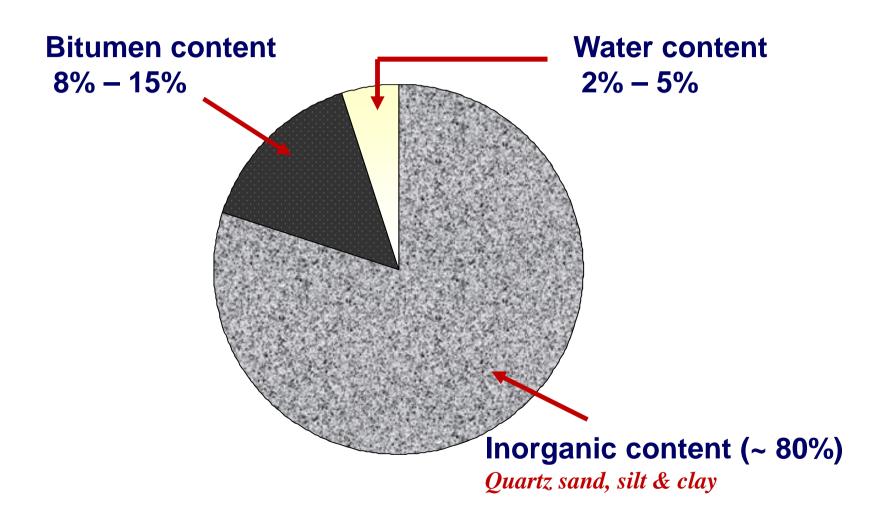
International Symposium on Testing and Specification of Recycled Materials for Sustainable Geotechnical Construction

2-4 February 2011 Baltimore, MD USA

Joseph Anochie-Boateng CSIR, South Africa

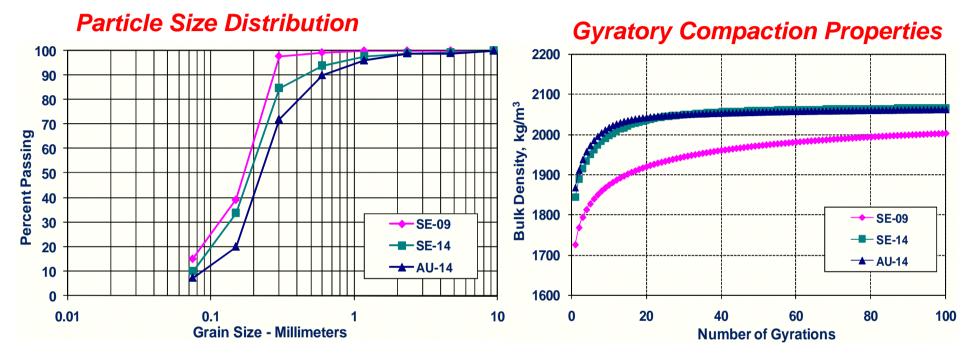
Erol Tutumluer University of Illinois, USA

What are Oil Sands..?


- Oil sand is a generic name given to naturally occurring deposits of bituminous sand materials
- Oil sands are rich in bitumen content to the extent that they are mined and processed for crude oil
- The largest and most thoroughly studied oil sand deposits are located in Canada, United States and Venezuela. The Alberta Province in Canada has the world's largest deposit

Typical In-situ Properties of Oil Sands

Oil Sand Open Pit Mining Activities


Background of Study

- Oil sands are natural bituminous materials, which can be sustainable and environmentally friendly in geotechnical construction as they require minimal energy in the preparation for road building
- Oil sands can be used as aggregates for road construction to help mitigate aggregate depletion of the environment
- Oil sand tailings (by products of bitumen extraction process) can be used for geotechnical applications
- However, to date no standard test procedure/methods exist to characterize behaviour of oil sand materials for geotechnical construction and road building

Oil Sand Materials Used For This Study

- Oil sand materials were obtained from Saskatchewan Province in Canada
- Suncor Energy Inc. provided two samples; one low grade and one high grade samples (SE-09 & SE-14)
- Syncrude Canada Ltd provided one high grade sample from their Aurora mining field (AU-14)
- Samples were shipped to the University of Illinois
 Advanced Transportation Research Laboratory
 (ATREL)

Physical Properties of the Three Oil Sand Materials Studied

Oil Sand Physical properties (ASTM D 2216, AASHTO T308)

Oil sand ID	Water content, %	Bitumen content, %	Number of gyrations	Bulk density, kg/m³
SE-09	1.4	8.5	100	2,000
SE-14	3.2	13.3	40	2,050
AU-14	2.2	14.5	25	2,050

Sample Preparation For Laboratory Testing

Oil Sand in Loose State

Gyratory Compacted – Modulus/Deformation Tests

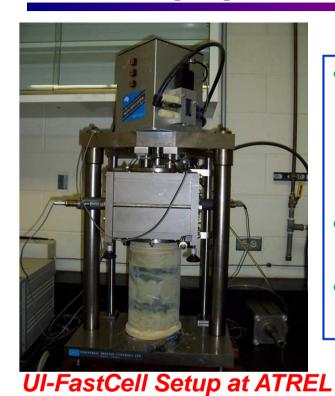
Prismatic specimens cut from gyratory compacted specimens – Direct Shear Test

Standard Proctor Compacted -Shear Test

Proposed Test Procedures for Oil Sands

- 1. Test Procedure for Determining Bulk Modulus of Oil Sand Materials
- 2. Test Procedure for Determining Shear Strength Parameters of Oil Sand Materials
- 3. Repeated Load Testing for Determining Resilient Modulus and Permanent Deformation of Oil Sand Materials
- 4. Pure Shear Test Procedure for Determining Shear Modulus of Oil Sand Materials
- 5. Test Procedure for Determining Dynamic (Complex)
 Modulus of Oil Sand Materials

Field Loading Conditions on Oil Sand Materials

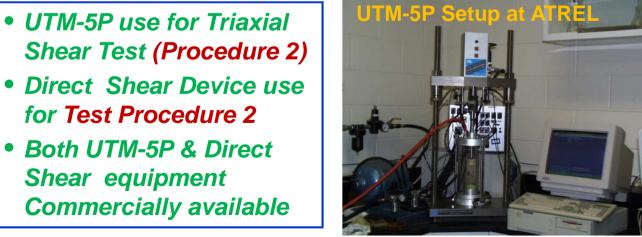

Trucks and Shovels loading conditions

Equipment	Vertical Pressure	Confining Pressure	Speed Range
CAT 797 Truck	800 kPa	250 – 300 kPa	13 – 42 mph
P&H 4100 Shovel	220 kPa	70 kPa	0.52 – 2.8 mph

Field loading temperatures

- Max summer and winter temperatures = +40°C and -40°C
- Actual temperature used for field studies = 28°C (Oil sands become softer/problematic)

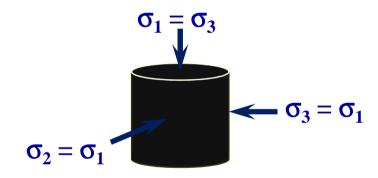
Test Equipment

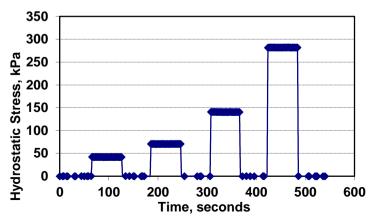

- Both UI-FastCell & RaTT Cell are used for Test Procedures 1, 3, 4 & 5 (Modulus & **Deformation Tests**)
- RaTT Cell Commercially available
- UI-FastCell mainly for research at the moment

RaTT Cell Setup at ATREL

- UTM-5P use for Triaxial
- for Test Procedure 2
- Both UTM-5P & Direct Shear equipment

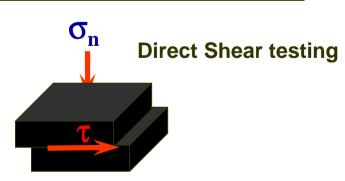
Hydrostatic Compression Test Procedure


Material Property: Bulk modulus K


- Pulsed wave shape with 60-second loading and 60-second unloading was applied on the test specimens
- Replicate samples were tested at test temperatures of 20°C and 30°C

Loading Conditions

$$\begin{array}{l} (\sigma_1 = \sigma_3 = 0 \rightarrow 41.4 \text{ kPa} \rightarrow 0 \rightarrow 69 \text{ kPa} \rightarrow 0 \rightarrow 138 \text{ kPa} \rightarrow 0 \rightarrow 276 \text{ kPa} \rightarrow 0) \end{array}$$


Direct Shear Test Procedure*

Material Properties: Friction angle ϕ and Cohesion c

- Square prismatic specimens (100 mm x 30 mm thick)
- Shearing rate of 1% strain/min or 1 mm/min
- Replicate specimens tested for each oil sand sample at test temperatures of 20°C and 30°C

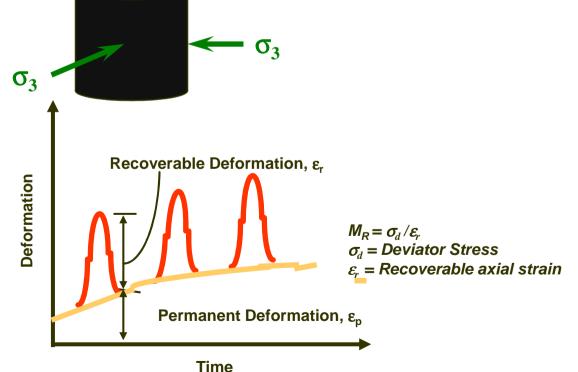
Applied Normal Stress Levels (KPa)					
Test #1	Test #2	Test #3	Test #4	Test #5	Test # 6
20.7	41.4	69.0	138.0	276.0	552.0

^{*} Direct Shear Preferred to Triaxial shear Test for Oil Sand Materials

Repeated Load Test Procedure

Material Properties: Resilient Modulus M_R and Permanent Deformation ε_p

 $\sigma_{\rm d}$


 $\sigma_3 = 41.4$, 138 and 276 kPa

 $\sigma_{\rm d}$ = 41.4, 138 and 276 kPa

Two Test Temperatures (20°C and 30°C) and Two Load Pulse Durations (0.1-sec, 0.5-sec)

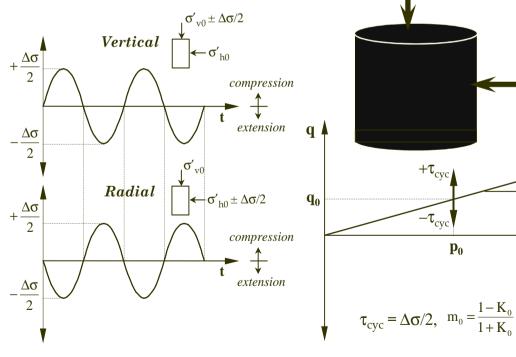
UI-FastCell Setup

Pure Shear Test Procedure

Material Property: Shear Modulus G

Loading Conditions

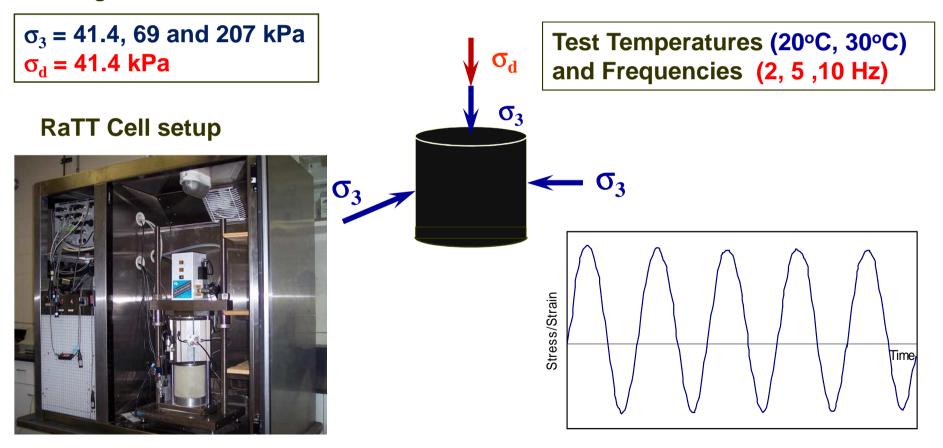
 $\sigma_3 = 41.4, 69, 138 \text{ kPa}$


 $\tau_{\rm cyc}$ = 20.7, 41.4, 69, 138 kPa to max σ_3

Two Test Temperatures (20°c & 30°c) and Loading Frequencies (2 and 10 Hz)

 σ_3 +/- τ_{cyc}

RaTT Cell setup



Dynamic (Complex) Modulus Test Procedure

Material Properties: *Dynamic modulus and Phase Angle (|E^*| and \delta)*

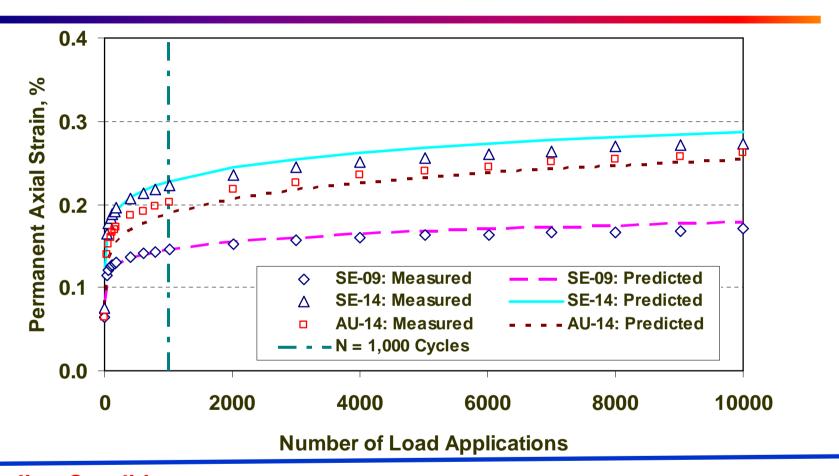
Loading conditions

Material Characterization Models Developed for the Oil Sands

Stiffness/Modulus models

Material Property	Model	R ²	RMSE
Bulk Modulus K	$K = 17.8 \times \sigma^{0.441} w_{\rm b}^{-0.585} T^{-0.607}$	0.93	0.049
Shear modulus G	$G = 57.8 \times \theta^{2.029} \tau^{-1.614} w_b^{-1.059} T^{-1.183}$	0.87	0.147
Dynamic modulus E*	$ E^* = 204.2 \times \theta^{1.712} w_b^{-1.882} T^{-1.930}$	0.90	0.161
Resilient modulus M _R	$M_{\rm R} = 33.1 \times \theta^{0.690} w_{\rm b}^{-0.464} T^{-0.533}$	0.88	0.074

Sinkage / Permanent deformation model


$$\varepsilon_{\rm p} = 1.389 \times 10^{-3} N^{0.186} \left(\frac{\sigma_{\rm l}}{\sigma_{\rm d}} \right)^{1.875} \sigma_{\rm d}^{0.386} w_{\rm b}^{0.650} T^{0.661}$$
 $R^2 = 0.93 \ RMSE = 0.185$

Material Characterization Models Developed for the Oil Sands

Shear Strength Models at Two Temperatures

Temperature = 20°C	Temperature = 30°C
SE - 09: $\tau_{\text{max}} = 0.82\sigma_{\text{n}} + 6.2$	SE - 09: $\tau_{\text{max}} = 0.65\sigma_{\text{n}} + 17.6$
SE -14: $\tau_{\text{max}} = 0.72\sigma_{\text{n}} + 15.2$	SE -14: $\tau_{\text{max}} = 0.59\sigma_{\text{n}} + 29.5$
AU -14: $\tau_{\text{max}} = 0.63\sigma_{\text{n}} + 22.9$	AU -14: $\tau_{\text{max}} = 0.55\sigma_{\text{n}} + 31.3$

Permanent Deformation Model Validation

Loading Conditions:

- Stress states: $\sigma_d = \sigma_3 = 138 \text{ kPa}$ (20 psi)
- Load pulse duration = 0.1 sec.
- Number of load applications = 10,000
- Test temperature = 20°C

Two replicate specimens of each oil sand material were used for Lab validation

Conclusions

- There is a need to establish test procedures/methods and material characterization models for oil sand materials
- This study has provide a platform and opportunity to establish standard ASTM laboratory test protocols for the sustainable use of oil sand deposits as temporary and permanent roads materials in mine fields
- Reasonable material characterization and performance models have been developed to properly characterize field behavior of oil sand materials under both static and dynamic loading conditions

Acknowledgements

- Dr Liqun Chi and Dr Xia Kaming of Caterpillar Inc,
 Technical Services Division, Peoria, IL
- Professor Emeritus Sam Carpenter of University of Illinois at Urbana-Champaign

End of Presentation – Questions..?

janochieboateng@csir.co.za tutumlue@illinois.edu