Copyright © 2011 American Scientific Publishers

Electron Spin Resonance Study of α-Cr$_2$O$_3$ and Cr$_2$O$_3$·nH$_2$O Quasi-Spherical Nanoparticles

S. Khamlich 1,2,3, V. V. Srinivasu 4, O. Nemraoui 1, R. McCrindle 2, N. Cingo 3,5, and M. Maaza 1,2,3

1Nano-Sciences Laboratories, Materials Research Department, iThemba LABS, National Research Foundation, 7129, South Africa

2Department of Chemistry, Tshwane University of Technology, Private Bag X 680, Pretoria, 0001, South Africa

3The African Laser Centre, CSIR campus, P. O. Box 395, Pretoria, 0001, South Africa

4Department of Physics, University of South Africa, P.O. Box 392, Pretoria 0003, South Africa

5The National Laser Centre, CSIR, PO Box 395, Pretoria, 0001, South Africa

*Authors to whom correspondence should be addressed.

ABSTRACT

The quasi-spherical nanoparticles of hydrated Cr$_2$O$_3$·nH$_2$O, and crystalline α-Cr$_2$O$_3$, have been synthesized by reduction of the first row (3d) transition metal complex of K$_2$Cr$_2$O$_7$. The temperature dependence of electron spin resonance (ESR) spectrum was studied in terms of g-factor, line width and intensity. ESR of both Cr$_2$O$_3$·nH$_2$O and α-Cr$_2$O$_3$ has been studied at X-band (9.61 GHz) in the temperature range of 292–420K. An anomalous thermal hysteresis was observed in the ESR intensity and linewidth (ΔH_{pp} of Cr$_2$O$_3$·nH$_2$O. This study shows that there could be a dominant water loss/gain during the heating-cooling cycles which is influencing the thermal relaxation time of Cr$_2$O$_3$·nH$_2$O. A similar hysteresis was observed in the differential scanning calorimetry (DSC) data which correlates well with that of ESR indicating possible surface dehydration/rehydration of Cr$_2$O$_3$·nH$_2$O nanoparticles during the heating–cooling cycles of ESR measurements.