Organic Process Research & Development 2011, 15, 258–265

An Integrated Chemo-enzymatic Route for Preparation of β -Thymidine, a Key Intermediate in the Preparation of Antiretrovirals

Gregory E. R. Gordon,[†] Moira L. Bode,^{*,†} Daniel F. Visser,[†] M. Jerry Lepuru,[†] Jacob G. Zeevaart,[†] Nasheen Ragubeer,[†] Molala Ratsaka,[†] David R. Walwyn,[‡] and Dean Brady[†]

[†] CSIR Biosciences, Ardeer Road, Modderfontein, South Africa 1645

⁺ ARVIR Technologies (Pty) Ltd. Postnet Suite 300, PriVate Bag X30500, Houghton, South Africa 2041

ABSTRACT:

A chemo-enzymatic method for production of β -thymidine, an intermediate in the synthesis of antiretrovirals, is described. Guanosine and thymine were converted by means of enzymatic transglycosylation to yield 5-methyluridine (5-MU), which was reproducibly synthesised at a 10-20-L scale in 85% yield at a final product concentration of ~80 g ·L-1. A downstream processing (DSP) protocol was designed to remove reaction components interfering with the subsequent synthetic step. The crystallised 5-MU produced in the biocatalytic reaction was found to behave similarly to commercially available 5-MU, and the integration of the initial biocatalytic and subsequent three-step chemical process to β -thymidine was successfully demonstrated at bench scale.