
A Comparative Study of Fingerprint Thinning
Algorithms

N.P. Khanyile
University of KwaZulu-Natal

Faculty of Engineering;
Council for Scientific and Industrial Research

Telephone: (012) 841–3372
Email: PKhanyile@csir.co.za

J.R. Tapamo
University of KwaZulu-Natal

Faculty of Engineering
Email: tapamoj@ukzn.ac.za

E. Dube
Council for Scientific and Industrial Research

Email: EDube@csir.co.za

Abstract—Thinning plays a very important role in the prepro-
cessing phase of automatic fingerprint recognition/identification
systems. The performance of minutiae extraction relies heavily
on the quality of skeletons used. A good fingerprint thinning
algorithm can depress image noise and promote the robustness
of the minutiae extraction algorithm which helps improve the
overall performance of the system. Many thinning algorithms
have been devised and applied to a wide range of applications
including, Optical Character Recognition (OCR), biological cell
structures and fingerprint patterns. With so many thinning
algorithms available, deciding which one is appropriate for a
particular application has become very difficult. In an effort to
assist fingerprint biometrics developers choose an appropriate
thinning algorithm, a study was taken to compare performance
of four different thinning algorithms. These four algorithms are
implemented and their performance evaluated and compared.
The algorithms are compared in terms of the quality of the
skeletons they produce (i.e. connectivity and spurious branches)
as well as the time complexity associated with each algorithm.
Results show that faster algorithms have difficulty preserving
connectivity. Zhang and Suen’s algorithm gives the least pro-
cessing time, while Guo and Hall’s algorithm produces the best
skeleton quality.

I. INTRODUCTION

Thinning is a process of extracting a skeleton from an object
in a digital image. A skeleton of an image can be thought
of as a one-pixel thick line through the middle of an object
which preserves the topology of that object. Thinning is a
fundamental preprocessing step in many image processing and
pattern recognition algorithms [1]. Thinned images (skeletons)
are easier to process and they reduce processing time for
the subsequent operations. Many thinning algorithms have
been developed in the past three decades [1]-[10]. Two major
approaches of thinning digital patterns can be categorized
into iterative boundary removal algorithms and non-iterative
distance transformation algorithms (Fig. 1).

Iterative boundary removal algorithms delete pixels on the
boundary of a pattern repeatedly until only unit pixel-width
thinned image remains. Non-iterative distance transformation
algorithms are not appropriate for general applications since
they are not robust, especially for patterns with highly variable
stroke directions and thicknesses. Thinning based on iterative
boundary removal can be divided into sequential and parallel
algorithms [2].

Fig. 1. Classification of thinning algorithms

In sequential algorithms, the pixels are examined for
deletion in a fixed sequence in each iteration, and the deletion
of pixel p in the nth iteration depends on all operations
performed so far, i.e. on the results of (n − 1)th iteration;
as well as on the current pixel in the nth iteration. In a
parallel algorithm,the deletion of pixels in the nth iteration
depends only in the results of the nth iteration; therefore, all
pixels are examined independently in the parallel manner in
each iteration [3]. The behavior of a thinning algorithm is
determined by its structuring element. Structuring elements
are policies which define the situations at which foreground
pixels will be set to background and hence deleted. Thinning
is used in but not limited to applications that process
handwritten and printed characters, fingerprints and palm
prints, chromosomes and biological cell structures, and circuit
diagrams.
Generally, fingerprint recognition systems work by matching
minutiae extracted from probe data, to reference minutiae
and it consists of the following stages: fingerprint acquisition,
image pre-processing (fingerprint segmentation, enhancement,
and orientation field estimation), fingerprint classification,
minutiae detection and matching [4]. Fingerprint thinning
is an important image enhancement processing step in an
Automatic Fingerprint Identification System (AFIS). It plays
an equally significant role with fingerprint classification and
enhancement in practical AFIS. It can significantly improve
the recognition performance of an AFIS [5].

Binary image thinning has been studied extensively in
literature. While some researchers have developed sequential

algorithms [6]–[9], the main focus is in parallel thinning
algorithms [2], [10]–[13], which are efficient and fast. Raju
and Xu [14] in their study of parallel thinning algorithms
compared Zhang-Suen, Guo-Hall and One Pass Thinning
Algorithm (OPTA) for character recognition. They found that
Guo-Hall outperformed the two other algorithms in terms of
skeleton quality. While OPTA is faster than the other two
algorithms, its skeleton quality is not as good compared
to those of the other two algorithms. Gupta and Kaur [3]
compared Zhang-Suen, Abdulla et al and a multipass iterative
boundary removal algorithm based on [15], [16]. They found
that the mutlipass algorithm produced better results than
Zhang-Suen and Adbulla et al with regards to connectivity
and spurious branches of numerical patterns.
This paper compares the application of four fingerprint
thinning algorithms (Zhang-Suen’s [17], Guo-Hall’s [1],
Abdulla et al’s [10] and Hall’s [18] algorithm) on fingerprints
based on iterative boundary removal. These algorithms were
implemented, their performance was evaluated and compared
based on skeleton quality.

The rest of the paper is organized as follows: section 2
presents some preliminary concepts that will be used through-
out the paper. Section 3 is devoted to the evaluation and
comparison of results obtained and section 4 evaluates and
compares their performance. Section 5 concludes the paper,
and Section 6 discusses future works.

II. PRELIMINARY CONCEPTS

Given N,M and g three positive integers, a gray scale
image could be defined as

I = {(i, j, xij)|0 ≤ i ≤ N−1∧0 ≤ j ≤M−1∧0 ≤ xij ≤ g−1}
(1)

where i, j, xij is a pixel of the image I , with (i, j) being the
position of the pixel and xij being its gray value. More often
the pixel (i, j, xij) is represented by (i, j), which we will
adopt in this paper. A special case where g = 2 defines a
binary image. An image is physically represented by a matrix,
where entries are gray levels of the image. A binary image
consists of only black and white pixel values. It typically
represents an image in a more compact way, with obviously a
lost of information. In this paper, a black pixel is represented
by a pixel value of 1, and a white pixel is represented by a
pixel value of 0.

A neighbor of a pixel is any pixel that is at a distance
1 in any direction from the pixel in question. Assume that
the neighbors of the pixel (i, j) are (i − 1, j), (i − 1, j + 1),
(i − 1, j − 1), (i, j + 1), (i, j − 1), (i + 1, j), (i + 1, j + 1),
and (i + 1, j − 1), as shown in Fig. 2.

Connectivity is determined by the number of pixels con-
nected to other pixels. By connected pixels we mean pixels that
are neighbors. The algorithms discussed in this paper make use
of 4-connectivity and 8-connectivity.

Fig. 2. 3x3 window showing the 8-neighborhood of a pixel (i, j)

Pixels are 4-connected if they are connected to every horizon-
tal and vertical neighbor. This relationship is better illustrated
by a diagram, view Fig 3.

Fig. 3. 4-connectivity

Pixels are 8-connected if they are connected to every hori-
zontal, vertical and diagonal neighbor. For a better illustration
of 8-connectivity, view Fig 4.

Fig. 4. 8-connectivity

For an input binary image, let the object to be thinned be
represented by a set S, and the background and holes in the
image be represented by a set S̄.

III. THINNING ALGORITHMS

A. Zhang-Suen

In Zhang-Suen’s algorithm, a binary image is represented
as a matrix IT where each pixel value IT(i,j) is either 1 or
0. The object/pattern to be thinned consists of those pixels
valued 1. Each stroke in the pattern is more than one pixel
thick. Iterative transformations are applied to the matrix
pixel by pixel, based on values of a small set of neighboring
pixels shown in Fig. 2. This method removes all the contour
points of the picture except those that belong to the skeleton
[17]. Fully parallel thinning algorithms which are restricted
to operators with 3x3 support have difficulty preserving the
connectivity of an image [1]. To preserve connectivity most
parallel algorithms divide each iteration two subiterations [1],
[10], [17], [18].

1. Algorithm:
1: while points are deleted do
2: for all pixels p(i, j) do
3: if (a) 2 ≤ B(P1) ≤ 6

(b) A(P1) = 1
(c) Apply one of the following

1. P2 × P4 × P6 = 0 in odd iterations
2. P2 × P4 × P8 = 0 in even iterations

(d) Apply one of the following
1. P4 × P6 × P8 = 0 in odd iterations
2. P2 × P6 × P8 = 0 in even iterations

then
4: Delete pixel p(i, j)
5: end if
6: end for
7: end while
where A(P1) is the number of 0 to 1 transitions in a

clockwise direction from P9 back to itself, and B(P1) (2)
is the number of non-zero neighbors of P1

B(P1) =

9∑
i=2

Pi (2)

If any of the conditions is not satisfied, P1 is not deleted
from the image.
Conditions 3(c) and 3(d) of the first subiteration remove only
the south-east boundary points and north-west corner points
which do not belong to an ideal skeleton. Condition 3(a)
preservers the end-points of a skeleton line and condition 3(b)
prevents deletion of points that lie between the end-point of
a skeleton line [17]. This algorithm has been criticized by
[19] for its failure to eliminate noise and preserve some of
the structures such as patterns which have been reduced to
2x2 squares which are eventually completely eroded. The next
algorithm discussed modifies this algorithm [17] to preserve
connectivity in all images and produce thinner results.

B. Guo-Hall

In this algorithm [1] conductivities of S&S̄ (defined in
section 2) are defined with 8- connectivity and 4-connectivity
respectively in an effort to avoid connectivity paradoxes.
Thinned objects should be a curve or a union of curves which
are referred to as medial curves. A set of pixels G, is curve-like
if most of the pixels of G have exactly two 8-neighbors in G
and a few pixels in G are end-points (with one 8-neighbors in
G) or branch points (more than two 8-neighbors in G) [1]. This
algorithm modifies the two-subiteration algorithm presented in
[17] and improved in [19] to preserve connectivity properties
and produce thinner results. The algorithm uses operators with
a 3x3 support as defined in Fig. 2. C(P1) is defined as the
number of distinct 8-connected components of 1s in P1’s
8-neighborhood. B(P1) is defined as the number of 1s in
P1’s neighborhood (1). Symbols ¯ , ∧ and ∨ refer to logical
complement, AND and OR, respectively; and the reserve +
and • for arithmetic addition and multiplication respectively
[1]. A variable N(P1), defined in (3) helps with the detection

of end-points as well as achieving thinner results [1].

N(P1) = MIN [N1(P1), N2(P1)] (3)

where

N1(P1) = (P9∨P2)+(P3∨P4)+(P5∨P6)+(P7∨P8) (4)

and

N2(P1) = (P2∨P3)+(P4∨P5)+(P6∨P7)+(P8∨P9) (5)

N1(P1) and N2(P1) each break the ordered set of
P1’s neighboring pixels into four pairs of adjoining pixels
and count the number of pairs which contain one or two 1s [1].

2. Algorithm:
1: while points are deleted do
2: for all pixels p(i, j) do
3: if (a) C(P1) = 1;

(b) 2 ≤ N(P1) ≤ 3;
(c)Apply one of the following:
1. (P2 ∨ P3 ∨ P̄5) ∨ P4 = 0 in odd iterations
2. (P6 ∨ P7 ∨ P̄9) ∧ P8 = 0 in even iterations

then
4: Delete pixel p(i, j)
5: end if
6: end for
7: end while
Condition 3(a) is necessary for preservation of local con-

nectivity when P1 is deleted and avoids deletion of pixels in
the middle of medial curves. C(P1) allows some of the 1s in
the middle of two-width diagonal lines to be deleted which in
[17], [19] were preserved [1]. The variable N(P1) provides an
end-point check replacing B(P1) which is used in [17], [19].
When B(P1) = 1, P1 is an obvious end-point and N(P1) = 1.
But when B(P1) = 2, P1 may or may not be an end-point. The
definition of N(P1) allows end-points to be preserved while
deleting many redundant pixel in the middle of the curve [1].

C. Abdulla et al

The first attempt to solve the problem of amplification of
noise and the production of non-unitary skeletons incurred
by [17], was made by Abdulla et al [10] for extracting
skeletons of characters. Abdulla et al proposed a modified
algorithm [10] based on [17] which achieves unitary skeletons.
Deciding whether or not a pixel is skeletal depends on its
8-neighborhood. Thus, a window of 3x3 pixels shown in
Fig. 2 is used. It is a two-subiteration algorithm. In the first
iteration, the skeleton in scanned horizontally by the 3x4
pixel window shown in Fig. 5. Any two points which are
horizontally adjacent to each other and horizontally isolated
from other pixels are detected. With P1 and P4 representing
these points, apply the following test to check whether one of
them is redundant [10].
In the second iteration the skeleton is scanned vertically by the
4x3 pixel window shown in Fig. 6. Any two points which are
vertically adjacent to each other and vertically isolated from

other points are deleted. With P1 and P6 representing these
points, apply the following tests to check whether one of them
is redundant [10].

Fig. 5. 3x4 pixel window

3. Algorithm:
1: while points are deleted do
2: for all pixels p(i, j) do
3: Iteration 1 :
4: if (a) SP 1.1 ∧ P6 = 1OR

(b) SP 1.2 ∧ P2 = 1OR
(c) [(P2∧ P̄3)∨ (P3)∧ P̄2∨ P̄9]∧ [(P̄5)∧P6)∨

(P5 ∧ P̄6 ∧ P7]
then

5: Delete pixel P1

6: where SP1.1 = P3∨P2∨P9, SP1.2 = P6∨P5∨P7

and (¯), ∨, ∧ are complement, logical OR and
logical AND respectively.

7: end if
8: if P1 is not redundant

then
9: if (P̄3 ∧ P10) ∨ (P̄5 ∧ P12)

then
10: Delete P4

11: end if
12: end if
13: Iteration 2 :
14: if (a) SP 2.1 ∧ P4 = 1OR

(b) SP 2.2 ∧ P8 = 1OR
(c) [(P8 ∧ P̄7) ∨ (P7) ∧ P̄8 ∨ P̄9] ∧ [(P̄4) ∧ P5) ∨

(P5 ∧ P̄4 ∧ P3]
then

15: Delete pixel P1

16: where SP2.1 = P9∨P8∨P7, SP2.2 = P3∨P4∨P5

and (¯), ∨, ∧ are complement, logical OR and
logical AND respectively.

17: end if
18: if P1 is not redundant

then
19: if (P̄7 ∧ P12) ∨ (P̄5 ∧ P10)

then
20: Delete P6

21: end if
22: end if
23: end for
24: end while

Fig. 6. 4x3 pixel window

D. Hall

Fully parallel thinning algorithms can have difficulty
preserving connectivity of an image and researchers have

attempted to overcome this problem by partially serializing
their algorithms by breaking a given iteration of their
algorithm into distinct subiterations, or by partitioning the
image space into distinct subfields [18]. The algorithm
proposed in [18] functions by first identifying in parallel
all deletable pixels and then in parallel deleting all of
those deletable pixels except certain pixels which must
be maintained to preserve connectivity in an image. The
algorithm works as follows:

4. Algorithm:
1: while points are deleted do
2: for all pixels p(i, j) do
3: Determine the deletability of pixel p(i, j)
4: if (a) 1 < B(P1) < 7;

(b) P1’s 8-neighborhood contains exactly one 4-
connected component (connected set) of 1s.
then

5: p(i, j) is deletable
6: end if
7: end for
8: for all pixels p(i, j) do
9: if (a) P2 = P6 = 1 and P4 is deletable

(b) P4 = P8 = 1 and P6 is deletable
(c) P4, P5, P6 are deletable

then
10: Do not delete pixel p(i, j)
11: end if
12: end for
13: end while

Condition 4(b) guarantees that local connectivity is not
disrupted by removal of P1 alone. Conditions 4(a) and 4(b)
together guarantee that P1 is 4-connected to S̄ (defined in
section 2) and condition 4(a) alone attempts to preserve end-
points of thin lines. Condition 8(a) preserves pixels in a
vertical two-width rectangle, condition 8(b) preserves pixels in
a horizontal two-width rectangle , and 8(c) preserves a pixel
in a 2x2 square [18].

IV. PERFORMANCE EVALUATION AND COMPARISON

The four thinning algorithms were applied to thin five
fingerprint images shown in Fig. 7. Input images are filtered
binary images with the following sizes:

1) input image 1: 276x408 pixels
2) input image 2: 408x480 pixels
3) input image 3: 264x264 pixels
4) input image 4: 336x336 pixels
5) input image 5: 420x600 pixels
Performance is evaluated in terms of connectivity, spurious

branches, convergence to unit width and data reduction effi-
ciency/computational cost.

A. Connectivity

Connectivity preservation of a fingerprint pattern is crucial
in AFISs, as disconnected patterns produce false minutiae.

Fig. 7. Input images

Patterns often loose their topology features if they become
disconnected.

B. Spurious Branches

Like disconnectivity, spurious branches lead to false minu-
tiae. Although post processing operations for spurious branch
removal exist, it is usually not the preferred approach since
the extra post processing operations add extra complexity.

C. Convergence to unit width

A perfect skeleton must be unitary. If a skeleton Sm does
not contain any one of the patterns Qk (for k = 1 to 4) given
in Fig 8 , it is unitary [20].
To measure width of the resulting skeleton, Jang and Chin
[20] introduced a measure mt to compute the width of the
extracted skeleton. mt is defined as:

mt = 1− Area[∪1≤k≤4SmQk]

Area[Sm]
(6)

where Area[•] is the operation that counts the number of 1-
pixels. This measures a non-negative value less than or equal
to 1, with mt = 1 if Sm is a perfect unit-width skeleton [20].

Fig. 8. Templates used to examine the width of the converged skeleton

D. Computational Cost

A fingerprint recognition system can only be realized when
it is fast and efficient. Thorough and efficient preprocessing
techniques lead to more efficient and accurate systems be-
cause they improve the minutiae extraction algorithm which

minimizes the number of false minutiae points, thus improving
quality and speed of matching.
A measure to evaluate both the data reduction efficiency and
the computational cost was defined by Jang and Chin as

md = min[1,
Area[S]−Area[Sm]

n×Area[S]
] (7)

where n is the number of parallel operations required to
converge and S is the original input image. This measure has
a value between 0 and 1; a large value indicates high efficiency.

E. Experimental Results and Comparison

Fig 10-14 show skeletons of the 5 test images resulting from
the 4 thinning algorithms and Table 1 shows the results of the
two measures mt & md (Eq 6 & Eq 7 respectively) for each
skeleton.

TABLE I
EXPERIMENTAL RESULTS: mt & md READINGS

Quality Measure
Image Algorithm mt md

1 (a) Abdulla et.al 0.996 0.117
(b) Guo-Hall 0.998 0.062
(c) Hall 0.991 0.083
(d) Zhang-Suen 0.698 0.129

2 (a) Abdulla et.al 0.974 0.120
(b) Guo-Hall 0.997 0.065
(c) Hall 0.988 0.085
(d) Zhang-Suen 0.790 0.137

3 (a) Abdulla et.al 0.997 0.122
(b) Guo-Hall 0.998 0.061
(c) Hall 0.999 0.084
(d) Zhang-Suen 0.864 0.130

4 (a) Abdulla et.al 0.978 0.105
(b) Guo-Hall 0.993 0.056
(c) Hall 0.993 0.079
(d) Zhang-Suen 0.747 0.115

5 (a) Abdulla et.al 0.985 0.118
(b) Guo-Hall 0.997 0.064
(c) Hall 0.993 0.085
(d) Zhang-Suen 0.695 0.134

The table has been graphed below (Fig 9) for a better
illustration.

Fig. 9. mt and md readings

Experimental results show that Zhang-Sue’s algorithm
effectively thins the image, but creates undesirable artifacts.
The resulting skeletons (Figures 11(d), 12(d), 13(d), 14(d)
and 15(d)) are non-unitary, giving an average value of
mt = 0.698 (lowest amongst the four algorithms and some
images have gaps between edges, in particular there is an
entire ridge missing from the skeleton in Fig. 11 (d). This is
due to the fact that end-points are detected by A(P1) = 1.
This condition works in many cases, but not for 2-pixel
thick diagonal lines because in such cases A(P1) = 2. In
this case end-points are deleted as they satisfy all the the
deletion conditions in the algorithm. One way around this
was discussed by Raju and Xu [14] on their study of parallel
thinning algorithms. In order to obtain 1-pixel thick skeleton
and avoid deleting diagonal lines, some additional conditions
are added to the Zhang-Suen algorithm.
In odd iterations, when A(P1) = 2, the following conditions
are checked:
1) P4× P6 = 1 and P9 = 0 or
2) P4× P2 = 1 and P̄3× P̄7× P̄8 = 1

In even iterations, when A(P1) = 2, the following
conditions are checked:
1’) P2× P8 = 1 and P5 = 0 or
2’) P6× P8 = 1 and P̄3× P̄4× P̄7 = 1

The resulting skeleton is not perfect, but it is significantly
better than the skeleton produced by the original algorithm.
This is shown by the minutiae points detected (Fig. 10)
after introducing the conditions mentioned above. It can be
observed from Fig. 10 that after adding the extra conditions,
the quality of the skeleton improves. Zhang-Suen’s algorithm
is the most efficient of the four algorithms, giving an average
of md = 0.235. The algorithm fairly maintains connectivity
and does not produce spurious branches.

Fig. 10. Skeleton produce by Zhand-Suen’s algorithm compared to modified
version

In [10] Abdulla et al stated that their algorithm produces
unitary skeletons and in that manner it is not affected by
noise, nor does it amplify it. Although the algorithm works
on characters [10], it does not work so well for fingerprint
patterns.

Fig. 11. (a) Skeleton produced by Adbulla et al’s algorithm from image 1;
(b) Skeleton produced by Guo-Hall’s algorithm from image 1; (c) Skeleton
produced by Hall’s algorithm from image 1 ; (d) Skeleton produced by Zhang-
Suen’s algorithm from image 1

Figures 11(a), 12(a), 13(a), 14(a) and 15(a) show that extra
noise has been added to the skeleton. Even with its high value
of mt = 0.986 on average and a data reduction efficiency
value of md = 0.116 , Abdulla’s algorithm fails to maintain
connectivity and produces clusters of spurious branches.

Like Zhang-Sue’s, Hall’s algorithm [18] effectively thins the
fingerprint pattern and unlike [17] it preservers all connectivity
and does not leave gaps. Figures 11(c), 12(c), 13(c), 14(c)
and 15(c) show the skeletons produced by this algorithm. The
average one-pixel width measure is mt = 0.993, which means
the algorithm produces fairly unitary skeletons. The major
concern with this algorithm [18] for fingerprint patterns is
the amount of spurious branches in the resulting skeletons.
Fingerprint recognition relies heavily on minutiae extraction
and spurious skeletons often lead to false minutiae detection
and hence depress the performance of the system.

Fig. 12. (a) Skeleton produced by Adbulla et al’s algorithm from image 2
; (b) Skeleton produced by Guo-Hall’s algorithm from image 2; (c) Skeleton
produced by Hall’s algorithm from image 2 ; (d) Skeleton produced by Zhang-
Suen’s algorithm from image 2

However, post processing algorithms can be applied to
eliminate spurious branches and smooth skeletons [21]–[23].
This approach is not recommended because Hall’s algorithm
is not efficient, giving an average of md = 0.083, adding extra
operations required for removing spurious branches would
worsen the efficiency of this algorithm which might not be
ideal for real time applications.

Lastly [1] gives the best results. The skeletons are non-
spurious and preserve connectivity (see Figures 11(b), 12(b),
13(b), 14(b) and 15(b)), thin and no ridges are missing. Minu-
tiae features are clear and there is no apparent noise. Guo-Hall
is better than Zhang-Suen at detecting end-points. N(P1) is

Fig. 13. (a) Skeleton produced by Adbulla et al’s algorithm from image 3;
(b) Skeleton produced by Guo-Hall’s algorithm from image 3; (c) Skeleton
produced by Hall’s algorithm from image 3 ; (d) Skeleton produced by Zhang-
Suen’s algorithm from image 3

able to detect end-points whether or not they have one or two
8-neighbors. 2-pixel thick diagonal lines are not deleted. It
produces fairly unitary skeletons, with mt = 0.997 on average.
The only concern with this algorithm is its data reduction
efficiency. The algorithm gave a value of md = 0.062, the
lowest amongst the four algorithms.

Fig. 14. (a) Skeleton produced by Adbulla et al’s algorithm from image 4;
(b) Skeleton produced by Guo-Hall’s algorithm from image 4 ; (c) Skeleton
produced by Hall’s algorithm from image 4 ; (d) Skeleton produced by Zhang-
Suen’s algorithm from image 4

Fig. 15. (a) Skeleton produced by Adbulla et al’s algorithm from image 5 ;
(b) Skeleton produced by Guo-Hall’s algorithm from image 5 ; (c) Skeleton
produced by Hall’s algorithm from image 5 ; (d) Skeleton produced by Zhang-
Suen’s algorithm from image 5

V. CONCLUSION

There are many thinning algorithms available, and all have
their own advantages and disadvantages. The choice of the
thinning algorithm should depend on the application, as not all
thinning algorithms will be suitable for a certain application.
As with most computing systems, a trade off usually has to
be made between accuracy and execution time. Fast parallel
thinning algorithms often suffer from loss of connectivity,
as shown earlier with Zhang-Suen’s algorithm. The choice
should depend on the nature of the application at hand. For
example an application for an airport boarding gate, would
have to trade accuracy for execution time, whereas a high
security location or a transaction between business needs to
ensure high accuracy, and can trade the execution time. This
paper has shown Guo-Hall’s thinning algorithm works best for
fingerprint pattern. Even with the short-comings Zhang-Suen’s
algorithm is still the most used thinning algorithm in literature
for pattern recognition applications. Most algorithms modify
Zhang-Suen’s algorithm either to address the connectivity
issue or to adapt it for specific application.

VI. FUTURE WORK

Zhang-Suen, Gua-Hall and Hall algorithms are promising
and we will investigate them further. To improve efficiency,
new distributed algorithms based on these three will be
developed. For Zhang-Suen’s algorithm, the most important
step will be to try and eliminate the artifacts, and for Hall’s
algorithm, the last step will be to apply post-processing
techniques to remove spurious branches after distributing the
processing.

REFERENCES

[1] Z. Guo and R. Hall, “Parallel thinning with two-subiteration algorithms,”
Communications of the ACM, vol. 32, pp. 359–373, Mar 1989.

[2] N. Han, C. La, and P. Rhee, “An effecient fully parallel thinning
algorithm,” Proceedings of the Fourth International IEEE Conference
on Document Analysis and Recognition, vol. 01, pp. 137–141, 1997.

[3] R. Gupta and R. Kaur, “Skeletonization algorithm for numerical pat-
terns,” International Jornal of Signal Processing, Image Processing and
Pattern Recognition, vol. 01, pp. 63–72, Dec 2008.

[4] A. Saleh, A. Eldin, and A. Wahdan, “A modified thinning algorithm for
fingerprint identification systems,” International Conference on Com-
puter Engineering & Systems, pp. 371–376, Dec 2009.

[5] L. Ji, Z. Yi, L. Shang, and X. Pu, “Binary fingerprint image thinning
using template-based pcnns,” IEEE transactions on systems, man, and
cybernetics -part B: Cybernetics, vol. 37, pp. 1407–1413, Oct 2007.

[6] C. Arcelli and G. Baja, “A thinning algorithm based on prominence
detection,” Pattern Recognition, pp. 225–235, 1981.

[7] P. Kardos, G. Nemeth, and K. Palagyi, “An order-indepandent sequential
thinning algrithm,” pp. 162–175, 2009.

[8] H. Pu, J. Chen, and Y. Zhang, “Fingerprint thinning algorithm based
onn mathematical morphology,” The Eighth International Journal on
Eletriconic Measurements and Instruments, vol. 01, pp. 618–621, 2007.

[9] R. Zhou, C. Quek, and G. Ng, “A novel single-pass thinning algorithm
and an effective set of performance criteria,” Pattern Recogntion Letters
16, pp. 1267–1275, 1995.

[10] W. Abdulla, A. Saleh, and A. Morad, “A preprocessing algorithm for
hand-written character recognition,” Pattern Recognition Letters 7, pp.
13–18, 1988.

[11] L. Haung, G. Wan, and C. Liu, “An improved parallel thinning
algorithm,” Proceedings of the Seventh International Conference on
Document Analysis and Recognition, vol. 01, pp. 780–783, Dec 2003.

[12] H. Lingga, S. Sudiro, and E. Wibowo, “Hardware implementation of
fingerprint image thinning algorithm in fpga device,” IEEE International
Conference on Networking and Information Technology, pp. 187–191,
2010.

[13] H. Xu, Y. Qu, and F. Zhao, “Fpga based parallel thinning for binary
fingerprint image,” IEEE Chinese Conference on Pattern Recognition,
pp. 1–4, Nov 2009.

[14] G. Raju and Y. Xu, “Study of parallel thinning algorithms,” IEEE
International Conference on Systems, Man, and Cybernetics, vol. 01,
pp. 661–666, Dec 1991.

[15] M. Ahmed and R. Ward, “A rotational invariant rule-based skeletoniza-
tion algorithm for character recognition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 24, pp. 1672–1678, Jan 2003.

[16] M. Girgis, A. Sewisy, and R. Mansour, “Employing generic algorithms
for precise fingerprint matching based on line extraction,” GVIP Journal,
vol. 07, pp. 51–59, 2007.

[17] T. Zhang and C. Suen, “A fast parallel algorithm for thinning digital
patterns,” Communications of the ACM, vol. 27, pp. 236–239, Mar 1984.

[18] R. Hall, “Fast parallel thinning algorithms: Parallel speed and connec-
tivity preservation,” Communications of the ACM, vol. 32, pp. 124–129,
Jan 1989.

[19] H. Lü and P. Wang, “A comment on ’a fast parallel algorithm for
thinning digital patterns’,” Communications of the ACM, vol. 29, pp.
239–242, Mar 1986.

[20] B. Jang and T. Chin, “One-pass parallel thinning: Analysis, properties,
and quantitative evaluation,” IEEE Transactions On Pattern Analysis And
Mechine Intelligence, pp. 1129–1140, 1992.

[21] E. Virginia, “Fingerprint thinning algorithm,” IEEE AES Systems Mag-
azine, pp. 28–30, Sep 2003.

[22] E. Nel, J. Preez, and B. Herbst, A Pseudo-Skeletonization Algorithm for
Static Handwritten Scripts. Springer-Verlag, 2009, vol. 01.

[23] D. Goldman and N. Bourbakis, “Well-shaped skeletons and fast com-
putation of the (3,4) distance transform,” Journal of Electric Imaging,
vol. 11, pp. 404–413, Jul 2002.

