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Outline

Warning: this is a theory paper

• Context
• Background
• Some of the CFD background
• Computational background

• Theoretical background
• In the relative frame, in order to investigate relative 

size of terms,
• Continuity equation
• Momentum equation
• Energy equation

Outline II

• Dimensionless constants
• A question: longitudonal independence in 

rockets?
• Some illustrations
• Conclusions
• Further work
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Context

• Engineering tools useless without…
• Engineering judgment which is based on…
• Understanding
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Objectives: overall

• A formal framework for arbitrary manoeuvre
• CFD modelling of arbitrary manoeuvre
• Characterise dynamic loads in arbitrary 

manoeuvre

Objectives: specific
• Include acceleration terms r and ω in relative 

(body) frame formulation 
• Include energy equation
• Find dimensionless numbers that are useful 
• And thereby build the next step in the 

programme
Note: can only characterise linear behaviour in this 

way; nonlinear behaviour needs models
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Background

• Batchelor, Greenspan, Landau and Lifshitz
• Directed largely at understanding atmospheric 

flows and waves

• Axial turbines
• Rothalpy and constant ω behaviour

• Flight dynamics

• The aims: bring this old news into CFD of 
arbitrary manoeuvres

© CSIR  2011                        www.csir.co.za



19/03/2012

2

CFD background

• Moving grids:
- Chimera overset grids
- Arbitrary Lagrangian Eulerian, ALE
- Constant rotation ω: turbines and compressors
- Small perturbations: aeroelasticity
- Small perturbations: dynamic derivatives
- Relative frame terms:

• Roohani and Skews 2007…2011

• In the inertial frame:
- Inoue et al.
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Theory Background to present work

• Transformation between frames moving with 
constant relative velocity is trivial: Galilean
- Transformation between frames with relative 

acceleration is subject of present programme

• Löfgren
- General formulation of transforms in 4-space 

between inertial and relative frames
- Invariants in transformation

• Forsberg
- Löfgren’s formulation to simpler formulation
- Numerical implications of inertial and relative

frames
- Stability and convergence in inertial and relative

frames

• Forsberg et al. 2009
- Implementation, validation and test cases
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The parameters

Σ inertial frame: 
absolute

• Position vector of 
fluid element

• Fluid velocity

• Position of O´
Velocity of O´

• Rotation vector of 
Σ´ relative to Σ

• Rotational 
transform

Σ ´́́́ body frame: 
relative

• ρ and p invariant 

• is velocity of Σ´
relative to Σ seen in 
Σ´

• is acceleration of 
origin of Σ´ seen in Σ

• is fluid velocity in 
Σ´ seen in Σ´

• is rotation vector 
of Σ´ relative to Σ 
seen in Σ´
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Vectors and transforms
Σ inertial frame: 

absolute
• Position 

vector of fluid 
element

• Fluid velocity

• Position of O´
Velocity of O´

• transform

Σ ´́́́ body frame: 
relative
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Vectors interpreted in the other frame
Seen in Σ inertial 
frame: absolute

• vector

Seen in Σ ´́́́ body 
frame: relative
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a a
(as seen in Σ′ is 

interpreted as 

x x
(as seen in Σ′ is 

interpreted as 

a
) aas seen in Σ′ is 

interpreted as 

x
)

xas seen in Σ′ is 
interpreted as 

Gravity vector interpreted in the other frame
Seen in Σ inertial 
frame: absolute

• vector

Seen in Σ ´́́́ body 
frame: relative
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Scalars and intrinsic variables

Absolute, inertial

• ρ

• p
• Τ
• µ

• ν
• κ
• Stress tensors are      
• dependant on velocity

Relative: Conserved

• ρ

• p
• Τ
• µ

• ν
• κ
•
•

• Is entropy S conserved?
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Why is this notation so 
complex?
• It distinguishes in detail the frame transforms
• And provides a general framework

Why is it in the least 
important?
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The general equation
in conservation form for a conserved
intrinsic quality a

Relative
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Mass conservation:
the equation of continuity

Relative
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Momentum conservation

Relative
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Energy conservation

Relative
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Generalised rothalpy E*

Relative
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1. First objective achieved…

• Write out the equations 
including

• g  and
• Viscous effects;

• And write out the energy 
equation in the relative 
frame.

Why?
• Now we can look at 

physical effects.
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2. Next: find useful dimensionless constants for 
the momentum equation

• Several assumptions and notes:

• First: comparison to convective effects

• Only linear effects are identified this way

• For the present, single-scale problems 
are written; but most r scales will differ 
from x scales

• FYSA, Therefore, some gross 
simplifications

© CSIR  2009                        www.csir.co.za

Momentum equation: typical scales
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• The formal structure underlying the simulations 
of Roohani and Skews 2007…
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Extract meaning from models, term by term
Strouhal

• Strouhal number: typical temporal behaviour
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Euler

• Euler number
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Reynolds: translational viscous effects

• Reynolds number: typical viscous behaviour, 
different normalisation
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Ekman: rotational viscous effects

• Ekman number: development of boundary 
layers and end-wall viscous phenomena in 
rotationally dominated flows
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Translational Acceleration of the frame

• Note the similarity to the gravitational term…
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Rotational Acceleration of the frame

• Angular acceleration
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Coriolis effects

• Rossby number: 
• Ro<<1, rotational effects dominate the flow; 

Taylor-Proudman columns in inviscid, isentopic, 
incompressible flow
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Centrifugal effects
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• Centrifugal effects, e.g. wake curvature, are
on scale
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Gravitational effects
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effects in hydrostatics
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3. A question: can Taylor columns exist in 
missile combustion chambers?

• When do rotational effects dominate?
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Taylor-Proudman theorum

• Constant angular velocity Ω
• Rossby number 

Ro = U/2ΩL
• For Ro<<1, rotational effects 

dominate convection
• For incompressible, inviscid flow, 

• ∂/∂z=0

• An obstacle A which is moved 
and generates streamlines at z0

• …generates identical streamlines 
at all z

Ω rad s-1

z

z0

• Accomplished by slight spin-up 
or spin-down

• Theory, Proudman 1916

• Experiment, Taylor 1917

• Could Taylor columns 
exist in internal flow in 
missiles and rockets?

• What influence can be 
predicted on external 
flow?

• Progressive assumptions
?
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Rockets or missiles considered as…

• Closed cylinders,
• Incompressible,
• Almost rigid rotation,
• With Rossby number Ro characterising

rotational dominance 
• Viscous effects can be characterised

[Greenspan] by times scales related to the 
• Ekman number:

• t~1, development of viscous boundary layers 
(I),

• t~Ω-1Ek-1/2, spin-up time (II, III),
• t~Ω-1Ek-1/2, decay of residual viscous effects

• Take ν for dry air for the present
© CSIR  2009                        www.csir.co.za

[Greenspan] spin-up from rest: 
I Ekman boundary layer
II front,
III almost quiescent core

Typical values

• For rigid rotation, Ro ~ ½

• Will viscous effects dominate Taylor columns?

• Apache and Cajun sounding rockets

• Uselton and Carman ADC 1969

• Ω ~ 1.5 to 32 rads-1, radius 59mm

• Highly manoeuvrable missiles, 

• Marquardt, Lawrence and Lawrence, AEDC, 1998

• Ω ~ 100 rads-1,  radius r ~ 59 mm

• Unguided fin-stabilised artillery rockets, 122mm

• Khalil et al., Egypt Armed Forces, 2009

• Muzzle Ω ~ 100 rads-1

© CSIR  2011                        www.csir.co.za

• For these rockets,
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Low spin 
[Uselton
and Carman 
1969]

Medium
spin 
[Uselton
and Carman 
1969]

High spin
[Khalil et al. 
2009]

Spin rate Ω 1.5 rads-1 32 rads-1 100 rads-1

Radius r 59 mm 59 mm 61 mm

Ro, rigid .5 .5 .5

Ek 70x10-5 3.4x10-5 1.1x10-5

Ekman layer 
time

.67 s .03 s .01 s

Spin up time 24.9 s 5.4 s 3.1 s

Residual
viscous 
effect time

930 s 930 s 930 s

Comment Taylor 
columns 
possible in this 
approx

Taylor 
columns 
possible in this 
approx

Ekman layer 
established fast, 
but Taylor columns 
possible i.t.a.; burn 
time is 1.8 s

Angular acceleration and translational acceleration

• Khalil et al. 2009
• Fin stabilised artillery rockets
• Measurements of translational acceleration, spin rate available

• ~ 100 rads-1,       ~ 100 rads-1

• Linear approximation indicates low angular acceleration effects…
• But we are aware of the vortex interactions through CFD

• ~500 ms-2 for thrust of 23600N, 
• ~ 2.1, a significant factor even in these terms:

translational acceleration likely to have significant effect
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Translational acceleration 
Roohani and Skews, 2007 and 2011

• Biconvex, NACA0012, NACA2412 and 
RAE2812 airfoils

= 1041ms-2

For transonic cases, 

• ~ 0.012

• But very significant changes are experienced –
and these are non-linear, due to shock position 
and shape

• Subsonic cases: U~100 ms-1

• ~ 0.1, and significant changes in linear 
range should be apparent
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Conclusions

• 1. the energy equation is expressed in terms of 
translations and rotational acceleration,

• 2. the generalised enthalpy equation is similarly 
expressed,

• 3. but the meaning of these is still to be 
explored

• 4. dimensionless constants for momentum 
changes are re-derived,

• 5. But translational acceleration needs 
reconsideration in the light of numerical 
experiments,

• And rotational indications by Ro and Ek are that 
Taylor columns in rockets need consideration in 
terms of heat transfer, boundary conditions and 
compressibility
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Further work

• Compressibility

• Thermodynamics: is entropy conserved in 
frame transformation?
- Express energy equation in terms of T
- Derive dimensionless numbers

• Taylor columns:
- Compressibility
- Boundary conditions
- Heat transfer

• Shocks:
- Do Rankine-Hugoniot relations transform?
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Further work II

• Boundary conditions on accelerating walls
- Boundary layer formation

• Turbulence
- How do we deal with numerical turbulence 

models?
- Is it appropriate to apply classic turbulence 

models even in the absolute frame?

• Perturbations
- Rossby waves
- Orr-Sommerfeld and transition
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¿questions?questions?questions?questions?


