MODELLED LONG TERM TRENDS OF SURFACE OZONE OVER SOUTH AFRICA

Mogesh Naidoo
Research Scientist
Climate Studies, Modelling and Environmental Health
Natural Resources and the Environment
CSIR

South African Society for Atmospheric Sciences - Conference 2011
Amanzingwe, Hartebeespoort
September 2011
Background – research group

CSM&EH - Air quality

- Focus on ozone
- Secondary pollutant
- Comprehensive modelling
- CAMx
The CAMx model

- CAMx – *Photochemical* dispersion model
- Able to simulate ozone, particulate matter and other air toxics
- Regional to continental scale
- Used extensively in the United States for air quality management
Framework for retrospective studies – MM5/CAMx

Past

Future?

MM5 → CAMx in NRE → Retrospective Air quality
New framework for air quality forecast – CCAM/CAMx

CCAM

CAMx
in NRE

Future Air quality

Past ✓

Future ✓
Current research focus

- The response of air quality to changes in climate
- Simulations on longer time scales
- Drive air quality models with long term forecasted meteorology
- Need a baseline (1989 – 2009)
- To date: Initial testing and 2 years (2003 and 2006)
Development of ccamcamx

MM5 → mm5camx → CAMx
CCAM → ccamcamx → CAMx
The CCAM model

- Conformal-Cubic Atmospheric Model (CCAM)
- Developed by CSIRO (e.g. McGregor, 2005)
- May be run on a global and regional scale simultaneously
- CCAM provides much of what CAMx needs, but not all variables

CCAM quasi-uniform C48 grid with resolution about 210 km
The CCAM/CAMx system

<table>
<thead>
<tr>
<th>CAMx requirement</th>
<th>Direct from CCAM</th>
<th>Derived from CCAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land-use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topography</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>3D layer interface height</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>3D layer average pressure</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>3D layer average U Wind</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>3D layer average V Wind</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>2D temperature</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>2D rain precipitation</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>3D layer average temperature</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>3D layer average water vapour</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>3D layer average cloud water content</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>3D layer average ice water content</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>3D layer average rain water content</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>3D layer average snow water content</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>3D layer average graupel water content</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column cloud optical depth</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>3D layer interface vertical diffusivity</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Initial testing

Initial testing (7 day run)

- Comparison of CCAM/CAMx with
 - MM5/CAMx – performance against well tested system
 - Measured (monitored) data – performance in real world

- MM5/CAMx – previous ozone modelling study focused on SA Highveld, 2006

- Keeping all CAMx inputs “standardized”, leaving only meteorology as a variable
CAMx data flow

- Haze & albedo
- USGS surface data
- Photolysis rates
- Met model
- Emissions
- Initial & boundary

CAMx
The emissions inventory

- Developed for a previous project (MM5/CAMx)
- Year 2006
- Pollutants – SO$_2$, PM, CO, NH$_3$, NOx and VOC
- Spatial domain – South Africa, at a resolution of 12 km
- Contains following categories
 - Residential – Domestic fuel burning
 - Transportation – Road vehicles, diesel trains and airport ground vehicles
 - Large Industry – Sasol, Eskom and refineries
 - Smaller Industry – Smaller more disperse industry
 - Biogenic – Vegetation and soils
Model domain

- **CCAM**: 335x335 @12km
- **MM5**: 81x52 @36km
- **CAMx**: 150x135 @12km

[Map of South Africa with model domains and a station marked as Camden]
Initial results

• A comparison of surface ozone between
 • CCAM/CAMx vs MM5/CAMx
 • CCAM/CAMx vs monitored data

• Time period – 7 day (11 – 17 December 2006)
Surface ozone: CCAM/CAMx vs MM5/CAMx vs monitored

Average bias (ppb)
MM5/CAMx ~ -3
CCAM/CAMx ~ -4
Spatial difference – average over 7 days

$$\left(\overline{O_3}^{\text{CCAM/CAMx}} \right) - \left(\overline{O_3}^{\text{CCAM/MM5}} \right)$$
2003 annual average
• Framework performs reasonably well for this analysis

• Room for improvement
 • Include land use variables from CCAM

• Benefits of CCAM
 • Computationally fast
 • Regional and global scale (long range influences)
 • Forecast at climate change timescale
 • Capacity to provide output
Thank you for your time