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Introduction 

A nonhydrostatic sigma coordinate model 
(NSM) is currently being developed at the 
Council for Scientific and Industrial Research 
(CSIR), using the equation set of Engelbrecht 
et. al. (2007), for purposes of simulating 
weather at spatial resolutions where the 
hydrostatic approximation is not valid. The 
aim of this study is to introduce a moisture 
scheme to the NSM, for the explicit simulation 
of moist convection.  

 
Models that simulate clouds explicitly use 
microphysical parameterisations which are 
grouped into bulk and bin approaches 
(Stensrud, 2007). Bulk approaches use a 
specified function for the particle size 
distributions and generally predict the particle 
mixing ratio (Rutledge and Hobbs, 1983). The 
particle size distribution is usually 
approximated by the inverse exponential 
distribution, in this study we follow the same 
approach. A bin approach does not use a 
specified function for the particles distribution. 
It divides the particle distribution into a 
number of finite size and categories. This 
division of particle distribution into numerous 
bins requires much larger memory and 
computational capabilities, and poor 
knowledge of ice phase physics hampers the 
accurate representation of evolving ice particle 
concentrations. Therefore bin methods are 
employed in a few research models (Stensrud, 
2007). 
 
The Equation Set 
 
In this study we introduce a bulk scheme 
because we would like to use this model for 
operational forecasting in the near future. We 
follow closely the scheme used by Rutledge 
and Hobbs (1983) and Khairoutdinov and 
Randall (2003).  
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Equations 1 to 3 are the x, y, and sigma 
coordinates momentum equations. The vertical 
momentum equation contains the gas constant 
of a mixture of dry air and moisture. The 
thermodynamic energy equation includes 
heating or cooling by latent heat release or 
absorption.  
 
Equation 6 is the water continuity equation for  
predicting the mixing ratios of water vapour, 
cloud water, and ice. Cloud water and ice 
particles are assumed to have one size 
throughout the cloud. The right hand side 
represents microphysical sources and sinks of 
the water particles. Condensation is for 
example a source for cloud water and a sink 
for water vapour. Ice melting is a sink for ice 
and a source for cloud water. Equation 7 is for 
rain water and snow which are assumed to 
have an inverse exponential size distribution. 
Both have a fall speed and that is indicated by 
FALLOUT in the equation.  
 
The approximations in the model introduced to 
obtain a quasi-elastic equation set requires that 
a computationally expensive diagnostic 
geopotential perturbation (elliptic) equation 
(equation 8) be solved at each time step. The 
last three terms in equation 8 are a 
consequence of moisture and the microphysics 
processes associated with it.  
 
Figure 1 shows potential temperature as 
simulated for a moist bubble in which 
condensation was allowed to take place. The 
bubble with moisture is warmer and rises faster 
than a dryer one because of warming by latent 
heat release. 
 

 
Figure1: Moist bubble theta simulation. 

 
Figure 2: Dry bubble theta simulation 
 
Way forward 
 
The NSM will be used to simulate convection 
in an environment that is similar to the real 
atmosphere with different bulk microphysics 
schemes. 
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