Journal of Alloys and Compounds 509 (2011) 2986–2992

Effects of Ce³⁺ concentration, beam voltage and current on the cathodoluminescence intensity of SiO₂:Pr³⁺–Ce³⁺ nanophosphor

G.H. Mhlongo^{a,b}, O.M. Ntwaeaborwa^{b,*/} M.S. Dhlamini^a, H.C. Swart^b, K.T. Hillie^{a,b,**}

^a National Centre for Nanostructured Materials, CSIR, PO Box 395, 1 Meiring Naude Road, Brummeria, Pretoria 0001, South Africa

^b Department of Physics, University of the Free State, Bloemfontein 9300, South Africa

* Corresponding author at: University of the Free State.

** Corresponding author at: National Centre for Nanostructured Materials, CSIR, PO Box 395, 1 Meiring Naude Road, Brummeria, Pretoria 0001, South Africa.

Tel.: +27 12 841 3874; fax: +27 12 841 2229.

Email addresses: ntwaeab@ufs.ac.za (O.M. Ntwaeaborwa), thillie@csir.co.za (K.T. Hillie).

ABSTRACT

SiO₂:Pr³⁺-Ce³⁺ phosphor powders were successfully prepared using a sol-gel process. The concentration of Pr³⁺ was fixed at 0.2 mol% while that of Ce³⁺ was varied in the range of 0.2–2 mol%. High resolution transmission electron microscopy (HRTEM) clearly showed nanoclusters of Pr and Ce present in the amorphous SiO₂ matrix, field emission scanning electron microscopy (FESEM) indicated that SiO₂ clustered nanoparticles from 20 to 120nm were obtained. Si-O-Si asymmetric stretching was measured with Fourier transformer (FTIR) spectroscopy and it was also realized that this band increased with incorporation of the activator ions into the SiO₂ matrix. The broad blue emission from the Ce³⁺ ions attributed to the $5d^{1}-4f^{4}$ transition was observed from the SiO₂:0.2 mol% Pr³⁺-1 mol% Ce³⁺ phosphor. This emission was slightly enhanced compared to that of the singly doped SiO₂:1 mol%Ce³⁺ phosphor. Further investigations were conducted where the CL intensity was measured at different beam voltages and currents from 1 to 5 kV and 8.5 to 30mA, respectively, in order to study their effects on the CL intensity of SiO₂:0.2 mol% Pr³⁺-1 mol% Ce³⁺. The electronbeam dissociated the SiO₂ and as a result an oxygen-deficient surface dead or non-luminescent layer of SiO_x, where x < 2 on the surface, was formed.